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Abstract

In this paper we propose a new scheme for image segmentation composed of two
stages: in the first phase, we smooth the original image by some filters associated
with noise types, such as Gaussian filters for Gaussian white noise and so on. Indeed,
we propose a novel diffusion equations scheme derived from a non-convex
functional for Gaussian noise removal in this paper. In the second phase, we apply a
variational method for segmentation in the smoothed image domain obtained in the
first phase, where we directly calculate the minimizer on the discrete gray level sets. In
contrast to other image segmentation methods, there is no need for us to re-initialize
parameters, which deduces the complexity of our algorithm to O(N) (N is the number
of pixels) and provides significant efficiency improvement when dealing with
large-scale images. The obtained numerical results of segmentation on synthetic
images and real world images both clearly outperform the main alternative methods
especially for images contaminated by noise.

Keywords: two-phase segmentation; discrete gray level set; forward-backward
diffusion; non-convex functional; Chan-Vese minimal variance

1 Introduction

Images are the proper 2-D projections of the 3-D world containing various objects. To re-
construct the 3-D world perfectly, at least approximately, the first crucial step is to identify
the regions in images that correspond to individual objects. This is the well-known prob-
lem as image segmentation which has broad applications in a variety of important fields
such as computer vision and medical image processing.

Image segmentation has been studied extensively in the past decades. A well-established
class of methods consists of active contour models, which have been widely used in image
segmentation with promising results. In general, these models apply variational meth-
ods where they minimize some energy functionals depending on the features of the im-
age. Classical ways to solve such problems are to solve the corresponding Euler-Lagrange
equations. The existing active contour models can be roughly categorized into two classes:
region-based models [1-9] and edges-based models [10-14]. A literature review of major
active contour models can be found in [15-17].

Based on image gradient information, edges-based models drive one or more initial
curve(s) to the boundaries of objects in the image. However, edges-based models are usu-
ally sensitive to noise and weak edges information [2]. Instead of utilizing image gradient
information, region-based models typically aim to identify each region of interest by us-
ing a certain region descriptor, such as intensity, color, texture, to guide the motion of the
©2014 Wu et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.boundaryvalueproblems.com/content/2014/1/11
mailto:zhang-d-z@163.com
http://creativecommons.org/licenses/by/2.0

Wu et al. Boundary Value Problems 2014, 2014:11 Page 2 of 16
http://www.boundaryvalueproblems.com/content/2014/1/11

contour [17]. Therefore region-based models tend to rely on global information to steer
contour evolution, which increase the chance to have better performance in the presence
of image noise and weak object boundaries. In addition, region-based models are less sen-
sitive to the initial contour locations than edge-based models. For instance, Chan and Vese
[1] developed an active contour without edge model to deal with image segmentation by
using the level-set framework introduced by Osher and Sethian [15], which is similar to
the segmentation method independently proposed by Tsai et al. [3]. The active contour
methods based on level-set framework have several following advantages. Firstly, they can
deal with topological changes such as breaking and merging. Secondly, intrinsic geomet-
ric elements such as the normal vector and the curvature can be easily interpreted with
respect to the level-set function. Finally, this level-set framework can be extended and
applied in any dimension.

However, these active contour methods based on level-set framework have some draw-
backs. Firstly, most of these methods have initialization problems: different initial curves
produce different segmentations because of the non-convexity of Chan-Vese models [4].
Secondly, these methods are usually implemented by solving corresponding evolution
equations that suffer from severe numerical stability constrains which render them in-
efficient. For instance, Chan-Vese models become severely inefficient due to the signed
distance re-initialization procedure for stability reason. Recently, some researchers devel-
oped fast algorithms [18—23] to the Chan-Vese image segmentation model to avoid these
drawbacks above. In [18-21], the authors developed fast algorithms based on calculating
the variational energy of the Chan-Vese model directly without the length term. In [18],
the authors proposed a fast method for image segmentation without solving the Euler-
Lagrange equation of the underlying variational problem proposed by Chan and Vese,
therefore they calculated the energy directly and checked if the energy is decreased when
they change a point inside the level set to outside or vice versa.

In this paper we develop a two-phase image segmentation model. In the first phase, we
propose a new non-convex functional to get the smoothing image of the original image
for noise removal, resulting in the sharpened edge. We also prove the nonexistence of the
minimizer of the non-convex functional above. Noted that this purpose may be accom-
plished by other smoothing filters, for example, the Gaussian low-pass filter in the general
case. In the second phase, a new functional based on gray level sets is firstly proposed, and
then the associated discrete model based on the discrete gray level sets is discussed, which
educes the new segmentation algorithm to obtain the segmentation results. Each stage is
independent and thus the method at each stage is flexible. Although the new methods
share some similarities to those in [18-20], it is a new framework that we calculate the
energy directly on discrete gray level sets. Furthermore, we discuss other complicated is-
sues which are not considered in [18], such as sensitivity to noise. Last but not least, our
segmentation method can also deal with large-scale images because of the following rea-
sons. Firstly, we do not need the initial conditions and the procedure of re-initiation as
we directly calculate the minimizer on the discrete gray level sets rather than solving the
Euler-Lagrange equation of the underlying variational problem. Secondly, in the second
stage of our algorithm, the main computation process, which is adding operators and logi-
cal operators which cost little CPU time, deduces the complexity of the algorithm to O(N).

This paper is organized as follows. In Section 2, we propose two-phase segmentation
model. Experimental results are given in Section 3, and the final section is our conclusion.
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2 Two-phase segmentation model

In this section, we show a two-stage scheme for implementation of the piecewise constant
segmentation model. More precisely, the smoother version of the original image is first
obtained by some smooth filter, and then, minimizing the Chan-Vese minimal variance
criterion on the gray level sets, the image is divided into two subregions. Based on the
idea above, we deal with the problem in two phases, respectively. Firstly, we propose a new
denoising functional to obtain smoothing images. Secondly, we consider the continuous
model of the new two-phase segmentation model based on gray level sets to propose the
associated discrete model and then obtain a new algorithm.

2.1 The non-convex functional for Gaussian noise removal

In our two-phase algorithm, the second phase is fixed and can be easily performed and

the new method depends in a large part on the smooth version u of the original image. So

it is better to use different edge-preserving denoising models for various types of noise.
According to conclusions in [24], the non-convex functional may provide better or

sharper edges than the convex functional does. In the smoothing phase of our method,

the following edge-preserving denoising model is considered

min{E(u):é/ﬂqul“dx+)»/Q|u—f|2dx}, (2.1)

where 0 < « < 1. Note that for 0 < « < 1, the model is non-convex, so the edges will be pro-
tected and even enhanced. However, the model above is an ill-posed problem. According
to the proof given by Chipot et al. [25], we have the following theorem.

Theorem 2.1 Iff(x) is not a constant and f € L*°(Q2), the function E(u) has no minimizer
in WY(Q2) and inf 120y E(u) = 0.

Proof We only prove the one-dimensional case Q2 = (4, b), and the same proof goes for
N=>2.
By density, we may always find a sequence of step functions i, such that

2ty < |f 100, lim i, —f];2q) = 0.
n—+00

In fact, we can find a partition a = xy <% < - - - < %, = b such that i, is the constant ,; on
each interval (x;,x;), /1, = max;(x; — x;_1) < 1 with lim,,_, .0 /1,, = 0. Let us set 0; = x; — x;_1.
Next, we define a sequence of continuous functions u, by

2/(1-)

( ) Zln ifxe [xi—lr Xi—0; ]»
U, \x) = Uy il —Uy i ~ . 2/(1—
" %(x — %) + Uy ifx € [x -0, A=) .

i

Note that
n

Xi 2
X —X;
y 2 - E P VY R
|2, — u”'LZ(Q) = / 2/(l_o()(’/‘n,zﬁ-l Uy,i) < 2(-a) + 1) dx
xi—ni Ui

i=1

4 /(1)
= §V|L°°<Q>Z“i ’
i=1
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n

4 -
< i 3o
i=1
_ % 2 b— h(lﬂx)/(l—a)
= 3lf|L°°(Q)( a)h, ,
and therefore,
lim |l:ln - un|L2(Q) =0.

n—+00

Since
[tn = flr20) < |ty — talp2) + it = fl12(0)
and then taking the limit on both sides yields
Jim il =0

Moreover,

I L [ (Hh i1 — )"
- / |Vul* dx = — Z 7"’1;(/(1_;’[ dx
% Ja R A

i

IA

1 - 1 -
2l Dol s & 2 V1o o Yo
i=1 [

i=1

1
azalfﬁoo(g)hn(b - (1).

Thus

1 (b

lim —/ [Vul|*dx =0,
n—+oo ¢ J,

and finally,

0< inf E(u)< lim E(u,) =0,
MEWLZ(Q) n—>+00

inf  E(u)=0.
uewh2(Q)

Now, if there exists a minimizer u € W2(82), then necessarily E(u) = 0, which implies
b
f lu—fPdx=0 <& u=f ae,
a

1 b
—/ IVul’dx=0 < u' =0 ae.

o Ja
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The first equality is possible only if f € W'2(£2), and in this case the second equality implies
f" =0, which is possible only if f is a constant. Therefore, excluding this trivial case, E(u)
has no minimizer in W%(Q). O
Remark 2.1 As we all know, if the region €2 is bounded,

wh(Q) ¢ WH(Q) C BV(Q),

then

inf  E(u)> inf E(u)> inf E(u).
uewl2(Q) ueWbl(Q) ueBV(Q)

Note that E(x#) > 0, and therefore

inf E(u)=0.
ueBV(Q)

However, we cannot obtain any information about the minimizer of E(x) in BV(Q).

From the Euler-Lagrange equation for (2.1), we can obtain the following diffusion equa-

tion:
ou . -
Fr div(|Vul*?Vu) = 2w -f), x)eQxT, (2.2)
ulx,0)=f, x€%, (2.3)
d
—’f‘ =0, (nf)edQxT. (2.4)
on lag

Remark 2.2 (Segmentation for various types of noisy image) There are lots of methods
to obtain the smooth image in the first phase of the new method.

« If the type of noise is ‘salt and pepper; for example, the AMF (adaptive median filter)
can be selected;

« If the noise is ‘addition Gaussian noise, for example, the Gaussian lower-pass filter, the
new non-convex functional (2.1), the TV method (total variation model) [26], the PM
method (Perona-Malik model) [27], and other anisotropic diffusion [28] methods can
be used to smooth the original image;

« If the noise is ‘multiplication noise; for example, the SO method (Shi-Osher Model),
which is an effective multiplicative noise removal model [29], can be used to denoise

the original image.

2.2 Chan-Vese minimal variance criterion based on gray level sets
First let us review the following Chan-Vese minimal variance criterion

F(cl,cz,qb):/S;(u—cl)zH(gb)dxdy+/Q(u—cz)z(l—H(qﬁ)) dxdy. (2.5)

Assume that the smooth image u is the solution from diffusion equations (2.2)-(2.4). Let
xx = {(x,9); u(x,y) < K} be the K-level set of u. It is clear that for the noise image, 9 is

Page 5 of 16
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Figure 1 The level lines at different gray levels. (a) The noise image with Gaussian white noise of mean 0
and variance 0.2. (b) The smooth image by Gaussian low-pass filter with o = 1.5. (c)-(g) The level lines of the
noise image at the gray level 60, 80, 120, 180, and 200. (h)-(I) The level lines of the smooth image at the gray
level 60, 80, 120, 180, and 200.

disorderly and irregular; while for the smooth image, d xx is smooth and regular. These
basic facts are illustrated in Figure 1, where some 9 xx are very close to the real edges of
the original image.

Hence, the level-set function can be replaced by the image gray function # in the Chan-

Vese minimal variance criterion [2], and the new model is as follows:

]:(K)=/(u—cl)zH(u—K)dxdy+/(u—cz)z(l—H(u—I())dxdy, (2.6)
Q2 Q
where
 JouH(u-K)dx _ [ou - H(u-K))dx -
T Hw-Kdx' 7T [JA-H@-K)dx 2.7)

and the Heaviside function H

1 ifz>0,
0 ifz<O.

H(z) =
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Minimizing the function above, the best threshold is obtained, and then the image is seg-
mented into two subregions {(x, y); u > K} and {(x, y); u(x, y) < K}.
Notice that
F(K) = / u?dx - ¢ f H(u-K)dx-c3 / (1-H(u-K))dx, (2.8)
Q Q Q
a / Hu-K)dx +c, / (1-H(u-K))dx= / fdx, (2.9)
Q Q Q
for K, = minycq i,

1
F(Km)zf(u—cl)zdx, a=u= —/ udx,
Q 1€2] Jo

and for Kj; = max,cq u,

1
F(I(M)z/(u—cz)zdx, C=U —/ udx.
Q 12 Ja
Theorem 2.2 Assume f € L*(Q), and then there exists the minimizer K € [K,,, Ky] of
F(K). Furthermore, if f is not a constant function, then the minimizer is the minimum
point with F'(KC) = 0.

Proof 1f f € L*(Q), u € CY(R) and F(K) € C[K,,, Kyr], there exists the minimizer K* €
(Ko, Kyt of F(K). Noted that g(a) = [, (1 — «)* dx get the minimal at & = %, and then

/(u—c1)2H(u—I()dx§/(u—ﬁ)zH(u—I()dx,
Q Q
/(u—cz)z(l—H(u—I())dxf/(u—ﬁ)z(l—H(u—K))dx.
Q Q
Hence
F(K) < F(Ky) = F(K,,) for K € [K,, Ky,

which implies that the minimizer is the minimum point. By the Fermat theorem, we obtain
that there exists K € (K, K1) such that F/(KC) = 0. O

For any images we can always obtain the function F(K). Figure 2(d) shows the function
F(K) for the image in Figure 2(a). From the figure, we can see that F(K) has the global
minimizer and has several local minimizers.

Based on the new model (2.6), the two-phase algorithm is sketched below.

Algorithm 2.1
1. (Smoothing) By (2.2)-(2.4) obtain some appropriate smooth version u of the noise
image f .
2. (Minimal variance) Calculate the new model (2.6) for each
K € [max,cq U, min,cq 1], and then obtain the minimizer KC with
E(K) = minge(k,, k) E(K). The segmentation results are {u(i,j) > K} and
{u(i,)) > K}.
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Figure 2 Segmentation results by Algorithm 2.1. (a) The noise image. (b) The smooth image by Gaussian
low-pass filter with o = 0.1. (c) The segmentation result (K = 169). (d) The function F(K).

2.3 Discrete version of model (2.6)

Let u;j, for (i,j) e D={1,...,M} x {1,...,N}, be the gray level of a true M-by-N image
u at pixel location (i, ), and let [K,,, Ky be the range of the smooth image u, i.e., K, <
u;j < Ky. Let Dy C D and D, = D\Dy, and then the image u is divided into two regions.
Instead H(¢) by Dy, and (1 — H(¢)) by D, respectively. Then minimizing the energy (2.5)

is changed into minimize

Fle,e,Du,D0) = Y (wyj—ar)’ + Y (- o)’ (2.10)
(ij)eDy (i,)eDy
with
2Dy Hij 2 Gij)ens Uij
0=—, €= —", (2.11)
[D1] [Ds|

where |D;| = Z(meDI 1 is the number of pixels in Dy, and |D,| = Z(meDz 1 is the num-

ber of pixels in D,. If the energy F reaches a minimum, the best segmentation results are

obtained, i.e., the subregion D; and subregion D,.
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It is noticed that since the selection of D; and D, is arbitrary, there are lots of pairs
(D4, D5), so minimizing the energy F is difficult. Now, we introduce the following defini-

tion, which contains a limited number of elements.

Definition 2.1 (Discrete gray level set) The K-discrete gray level set DX, which is the set
of pixel location (i, ), is defined as follows

DX & {(i,j) 1wy < K},
where u;; is the gray level of the image u at pixel location (i, ).
For any K € [K,,, Ky], the image u is divided into two subregions, i.e., Df 2D sy <
K} and DX & {(k, 1) : ux; > K}. Then DX = D\DK. Let A £ {(DX,DX),K € K, K}, and

then the element number N4 of the set +4 is Ny = Ky — K, + 1 which is less than 256 in
general. Then minimizing the energy (2.6) is changed into minimize

FK)= Y (wj-c)*+ Y (wj-c)’, for (Df,Df) e A (212)
(i,)eDf (i)eDY
with
. Z(i,j)ebf Uij . Z(i,j)eD§ Uij (213)
1= — g 25—k, .
2 D5
Theorem 2.3
min  F(cy, ¢, D1,D3) = min  F(K). (2.14)
(D1,D3),DyCD (DK, DK)en

Proof 1t is clear that minp, p,)pcpF < min(D{<,D12<)6A.7-'. We only need to prove

min(p,,n,),0,cp F > min(D{QDg)M F.
From Theorem 2.2, there exist two subdomains D} and Dj such that

F(ccs,Df,D%¥) = min  F(c,co,Dy,D9).
(¢i,¢5, DY, D3) L (c1,¢2,D1,D5)

Without loss of generality, assume ¢; < ¢, and there exist (i1,71) € D} and (i, /2) € D} such
that u; j, > u;, j,. Denote D} = D} — (i1,j1) + (i2,/2) and D), = D} — (i, 2) + (i1,j1). Note that
|D}| = |D}l, D3| = |D,|, ¢ > ¢} and ¢} < c}.

Having compared the energy F(cj, c3, D}, D) and F(cy, ¢3, D}, Dj), we get

F(c}, 3, D1,D3) = F(e1, €3, D, Dj)

= Z (ui,j—cj‘)2+ Z (uz’,j—C;)Z

(ij)eD} (ij)eD}
\2 7\2
- § : (i =) - E : (i) = c3)
(i,)eDy (i)eD)

==|Dilei” - [D3[e5” + Di ey + Dy 3
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= [Di|(e +¢f) (e = ) + D3] (ch + ¢3) (¢, — 3)
= (Ci + CT)(”inz = Uigjy) + (C/z + Cé)(uilvjl = Uiy jp)

/ * / *
= (Cl +t6 =6~ 62)(ui2,1'2 - uilJl)‘
Since ¢; < ¢y, we have

Uiy —Uipjp 2, + Uiy jy = Uiy jy

<0.
|D1] |Dy|

e —cy—ca=2c —

So we get

F(Cl’ C2;D11D2) > F(Ci, C/2,D/1,D/2).
Since F(c1, ¢, D1, D7) = ming, p,),p,cp F(c1,¢2,D1,D5), it is a contradiction. Therefore, for
any (i,j) € Dy, (i,j') € Dy, we have u;; < uy y. Hence there exists K € [K},, Ky such that

uj <K <uyy,ie., (Dy,D,) € A. We complete the proof of the theorem. d

From (2.8) and (2.9), we can easily see that

F(c1,¢3,D1,D5) = Z (wij—c1)* + Z (i — c2)?

(ij)eDr (ij)eDa
= > ul—|Dilc ~ |Dalc3. (2.15)
(ij)eD

Hence we have the following.

Theorem 2.4 min DK DK)et F(K) is equivalent to

(ﬁg&ﬁwwﬁéMfW+Uﬁk%, (2.16)

where K € [K,,,, Kj1), c1 and ¢, is defined as (2.11).

Now, if the energy functional E reaches a maximum, the best segmentation results are
obtained, i.e., the subregion DX and subregion DX . Since K = K,,,, K, +1,..., Ky, the energy
functional E has Ky — K, + 1 cases, and then the maximum of E is easily found. The
algorithm in the second phase is sketched below.

Algorithm 2.2 The method of maximizing the following functional E
1. Sweep the image u once, record the number of all pixels at every gray level of the
image u which range from K, to K.
Calculate the energy E(K) by (2.16) for K € [K,y,, Ky ], and find the maximizer IC.
3. The image u is divided into two subregions, i.e., DI = {(i,)) : u < KC} and
DY ={(i,j): u=K}.

Based on Algorithm 2.2, the following is the new two-phase scheme for image segmen-
tation.
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Algorithm 2.3
o (Smoothing) For the input noise image f, use the Gaussian smooth filter or diffusion
equations (2.2)-(2.4) to obtain the smooth image u (if the input image is noiseless, this
step is optional).
o (Minimal variance) Use Algorithm 2.2 to obtain the segmentation results for the
smooth image u.

3 Simulations

In this section, numerical examples on some synthetic and real world images are presented
to illustrate the efficiency and effectiveness of our new two-phase scheme. The simulations
are performed in Matlab R2007b on a 2.8 GHz Pentium 4 processor. For comparison pur-
pose, the Chan-Vese method (CVM) [2] is also tested. We utilize a locally one-dimensional
(LOD) scheme adopted for CVM, which is an unconditional scheme [8].

3.1 Configuration of smoothing filter

In the new algorithm, the first stage is smoothing the original image. The low-pass filtering
is generally made by convolution with Gaussian of an increasing variance. Koenderink [30]
noticed that the convolution of signal with Gaussian at each scale was equivalent to the
solution of the heat equation with the signal as initial datum f, i.e.,

Z_L: - ru (3.1)
u(x,0) = u®. (3.2)

FFT (fast Fourier transform algorithm), the classical five-point explicit numerical schemes
and the additive operator splitting (AOS) schemes can be used for the heat equation. In our
experiment, we will use the Gaussian low-pass filter as one smoothing method in the first
phase. For simplicity, we refer to the method as GLF-GLS (Gaussian low-pass filter-gray
level set).

On the other hand, using the scheme in [31], problems (2.2)-(2.4) can be discretized as

20 =0,

m

u™l = % Z[[ - mrAl(uk)]fl[u” + Ar(f— u”)],

I=1

div” = (u"*l - u”)/r,

1
A= ———(u—f)div”,
o2MN
0 _ _ . .
Ui =f; =f (ih, jh),
n _ n n _ n n __ n n _ n
Uio = Ui Upj = U Upp = U, Uiy =Uij1s

where A;(1") = [a;;(u")],
cricnr
chZI [] (S N(l)],
Cl+CY

= 2N s =1
0 (else),

a;j(u") =
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(2) (h)

Figure 3 Segmentations for the noise Test07 image (size: 512 x 512). (a) The original image.

(b) Corrupted Test07 image with Gaussian noise (o = 40). (c) Smoothed Test01 image with the AOS scheme
(t =70, ¢ = 0.7, twice iterations). (d) Algorithm DE-GLS. (e) Algorithm GLF-GLS. (f) CVM. (g)-(i) The
segmentation counter of Algorithm DE-GLS, Algorithm GLF-GLS and CVM, respectively.

and
L
PToe s Ve’
where
n n
vigl-y X
W™ 9 2

PaeN ()

where N (i) is the set of the two neighbors of pixel i (boundary pixels have only one neigh-
bor). AOS schemes with large time steps still reveal average grey value invariance, stabil-
ity based on extremum principle, Lyapunov functionals, and convergence to a constant
steady-state [31]. The AOS scheme is less than twice the typical effort needed for the
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Table 1 Comparison of CPU time in seconds and iterate step

Image CVM Steps GLF-GLS DE-GLS  Steps
CPU(s) CPU(s) CPU(s)

TestO1 53.14 5 0.07 093 2

Ultrasound  107.34 8 0.06 0.62 2

Brain 297.18 12 0.07 1.48 2

(2) (h) (i)

Figure 4 Segmentations for the noise ultrasound image (size: 481 x 403). (a) The original image. (b) The
smooth image by Gaussian low-pass filter with o = 1.5. (c) Smoothed ultrasound image with the AOS scheme
(t =6, = 0.9, twice iterations). (d) Algorithm DE-GLS. (e) Algorithm GLF-GLS. (f) CVM. (g)-(i) The
segmentation counter of Algorithm DE-GLS, Algorithm GLF-GLS and CVM, respectively.

PM scheme, a rather low price for gaining absolute stability [31]. Hence, in our numer-
ical experiments, the AOS scheme is considered as the other smoothing method in the
first phase. For simplicity, we refer to the two-phase method with the smoothing method
as DE-GLS (diffusion equation-gray level set).

3.2 Segmentation performance

In Figure 3, we illustrate the performance of CVM, GLF-GLS and DE-GLS on the synthetic
noise TestOI image (size: 512 x 512). Among the segmentations, all algorithms give similar
and good performances. For CVM (the Chan-Vese method), utilizing the unconditional

LOD scheme, the time step size can be sufficiently large to reduce the iteration steps (only
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(8) (@)

Figure 5 Segmentations for the noise brain image (size: 630 x 630). (a) The original image. (b) The
smooth image by Gaussian low-pass filter with o = 1.0. (c) Smoothed brain image with the AOS scheme
(t =20, @ = 0.6, twice iterations). (d) Algorithm DE-GLS. (e) Algorithm GLF-GLS. (f) CVM. (g)-(i) The
segmentation counter of Algorithm DE-GLS, Algorithm GLF-GLS and CVM, respectively.

5/12 steps in Table 1). However, re-initializing the level-set function costs a lot of CPU
time (Table 1). In the new method, GLF-GLS cost very little time (Table 1) and for DE-
GLS, it not only costs little time, but also has a very good segmentation result, especially
for some singular information, such as corners and edges of the image.

In Figures 4 and 5, we illustrate the results of GLF-GLS and DE-GLS about the real brain
and ultrasound image. Few differences between the segmented images are observed, but
our method works much faster than CVM (Table 1).

3.3 Computational complexity

We end this section by considering the complexity of our algorithm. Our algorithm re-
quires two phases: smoothing the original image and segmentation. Smoothing the orig-
inal image is done by the AOS scheme, which is very efficient, and the complexity of this
stage is O(N), where N is the number of pixels in the image [31] and so is the Gaussian
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low-pass filter. In the second segmentation stage, our algorithm only sweeps the image
once, so the complexity of the stage is no more than O(N). In Table 1, we compare the
CPU time needed for all three algorithms. Especially, we see that our algorithm GLF-GLS
is about 0.01-0.08 seconds and is the fastest out of the three algorithms.

4 Summary

In this paper, we have proposed and implemented a novel image segmentation algorithm
based on the Chan-Vese active contour model. The discrete gray level-set method is em-
ployed in our numerical implementation. This algorithm works in two steps, we first
smooth the noisy image by using the heat equation filter method, and then we utilize the
new discrete gray level-set method to segment the region of the original image. The pro-
posed new segmentation algorithm does not require the initialization of the level-set func-
tions, which is a difficult problem in the Chan-Vese segmentation algorithm. Each step of
the proposed new segmentation algorithm is simple and easily implemented. In the first
step, there are a lot of algorithms to get the smoothing version of the original image, and
in the second step, we only sweep the image once and calculate (2.16) at every gray level
(in fact, only 256 gray level sets) and find the optimal gray level. In Table 1, we show the
CPU time of the Chan-Vese method and our proposed method. Obviously, our method is
much more efficient than the Chan-Vese method.
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