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Abstract
This paper concerns the existence of nontrivial solutions for a boundary value
problem with integral boundary conditions by topological degree theory. Here the
nonlinear term is a sign-changing continuous function and may be unbounded from
below.

1 Introduction
Consider the following Sturm-Liouville problem with integral boundary conditions

⎧⎪⎨
⎪⎩
(Lu)(t) + h(t)f (t,u(t)) = ,  < t < ,
(cosγ)u() – (sinγ)u′() =

∫ 
 u(τ )dα(τ ),

(cosγ)u() + (sinγ)u′() =
∫ 
 u(τ )dβ(τ ),

(.)

where (Lu)(t) = (p̃(t)u′(t))′ + q(t)u(t), p̃(t) ∈ C[, ], p̃(t) > , q(t) ∈ C[, ], q(t) < , α and
β are right continuous on [, ), left continuous at t =  and nondecreasing on [, ] with
α() = β() = ; γ,γ ∈ [,π/],

∫ 
 u(τ )dα(τ ) and

∫ 
 u(τ )dβ(τ ) denote the Riemann-

Stieltjes integral of u with respect to α and β , respectively. Here the nonlinear term
f : [, ] × (–∞, +∞) → (–∞, +∞) is a continuous sign-changing function and f may be
unbounded from below, h : (, ) → [, +∞) with  <

∫ 
 h(s)ds < +∞ is continuous and is

allowed to be singular at t = , .
Problemswith integral boundary conditions arise naturally in thermal conduction prob-

lems [], semiconductor problems [], hydrodynamic problems []. Integral BCs (BCs de-
notes boundary conditions) cover multi-point BCs and nonlocal BCs as special cases and
have attracted great attention, see [–] and the references therein. For more informa-
tion about the general theory of integral equations and their relation with boundary value
problems, we refer to the book of Corduneanu [], Agarwal and O’Regan []. Yang [],
Boucherif [], Chamberlain et al. [], Feng [], Jiang et al. [] focused on the existence
of positive solutions for the cases in which the nonlinear term is nonnegative. Although
many papers investigated two-point and multi-point boundary value problems with sign-
changing nonlinear terms, for example, [–], results for boundary value problemswith
integral boundary conditions when the nonlinear term is sign-changing are rarely seen ex-
cept for a few special cases [, , ].
Inspired by the above papers, the aimof this paper is to establish the existence of nontriv-

ial solutions to BVP (.) under weaker conditions. Our findings presented in this paper
have the following new features. Firstly, the nonlinear term f of BVP (.) is allowed to
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be sign-changing and unbounded from below. Secondly, the boundary conditions in BVP
(.) are the Riemann-Stieltjes integral, which includes multi-point boundary conditions
in BVPs as special cases. Finally, the main technique used here is the topological degree
theory, the first eigenvalue and its positive eigenfunction corresponding to a linear opera-
tor. This paper employs different conditions and different methods to solve the same BVP
(.) as []; meanwhile, this paper generalizes the result in [] to boundary value problems
with integral boundary conditions. What we obtain here is different from [–].

2 Preliminaries and lemmas
Let E = C[, ] be a Banach space with themaximumnorm ‖u‖ =max≤t≤ |u(t)| for u ∈ E.
Define P = {u ∈ E | u(t) ≥ , t ∈ [, ]} and Br = {u ∈ E | ‖u‖ < r}. Then P is a total cone in E,
that is, E = P – P. P∗ denotes the dual cone of P, namely, P∗ = {g ∈ E∗ | g(u) ≥ , for all u ∈
P}. Let E∗ denote the dual space of E, then by Riesz representation theorem, E∗ is given by

E∗ =
{
v | v is right continuous on [, ) and is bounded variation on [, ]

with v() = 
}
.

We assume that the following condition holds throughout this paper.

(H) u(t) ≡  is the unique C solution of the linear boundary value problem

{
–(Lu)(t) = ,  < t < ,
(cosγ)u() – (sinγ)u′() = , (cosγ)u() + (sinγ)u′() = .

Let ϕ,ψ ∈ C([, ],R+) solve the following inhomogeneous boundary value problems,
respectively:

⎧⎪⎨
⎪⎩
–(Lϕ)(t) = ,  < t < ,
(cosγ)ϕ() – (sinγ)ϕ′() = ,
(cosγ)ϕ() + (sinγ)ϕ′() = 

and

⎧⎪⎨
⎪⎩
–(Lψ)(t) = ,  < t < ,
(cosγ)ψ() – (sinγ)ψ ′() = ,
(cosγ)ψ() + (sinγ)ψ ′() = .

Let κ = –
∫ 
 ϕ(τ )dα(τ ), κ =

∫ 
 ψ(τ )dα(τ ), κ =

∫ 
 ϕ(τ )dβ(τ ), κ = –

∫ 
 ψ(τ )dβ(τ ).

(H) κ > , κ > , k = κκ – κκ > .

Lemma . ([]) If (H) and (H) hold, then BVP (.) is equivalent to

u(t) =
∫ 


G(t, s)h(s)f

(
s,u(s)

)
ds,

where G(t, s) ∈ C([, ]× [, ],R+) is the Green function for (.).

Define an operator A : E → E as follows:

(Au)(t) =
∫ 


G(t, s)h(s)f

(
s,u(s)

)
ds, u ∈ E. (.)

It is easy to show that A : E → E is a completely continuous nonlinear operator, and if
u ∈ E is a fixed point of A, then u is a solution of BVP (.) by Lemma ..
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For any u ∈ E, define a linear operator K : E → E as follows:

(Ku)(t) =
∫ 


G(t, s)h(s)u(s)ds, u ∈ E. (.)

It is easy to show thatK : E → E is a completely continuous nonlinear operator andK (P) ⊂
P holds. By [], the spectral radius r(K ) of K is positive. The Krein-Rutman theorem []
asserts that there are φ ∈ P \ {} and ω ∈ P∗ \ {} corresponding to the first eigenvalue
λ = /r(K ) of K such that

λKφ = φ (.)

and

λK∗ω = ω, ω() = . (.)

Here K∗ : E∗ → E∗ is the dual operator of K given by:

(
K∗v

)
(s) =

∫ s



∫ 


G(t, τ )h(τ )dv(t)dτ , v ∈ E∗.

The representation of K∗, the continuity of G and the integrability of h imply that ω ∈
C[, ]. Let e(t) := ω′(t). Then e ∈ P \ {}, and (.) can be rewritten equivalently as

r(K )e(s) =
∫ 


G(t, s)h(s)e(t)dt,

∫ 


e(t)dt = . (.)

Lemma . ([]) If (H) holds, then there is δ >  such that P = {u ∈ P | ∫ 
 u(t)e(t)dt ≥

δ‖u‖} is a subcone of P and K(P) ⊂ P.

Lemma . ([]) Let E be a real Banach space and � ⊂ E be a bounded open set with
 ∈ �. Suppose that A : �̄ → E is a completely continuous operator. () If there is y ∈ E
with y �=  such that u �= Au + μy for all u ∈ ∂� and μ ≥ , then deg(I – A,�, ) = .
() If Au �= μu for all u ∈ ∂� and μ ≥ , then deg(I – A,�, ) = . Here deg stands for the
Leray-Schauder topological degree in E.

Lemma . Assume that (H), (H) and the following assumptions are satisfied:

(C) There exist φ ∈ P \ {}, ω ∈ P∗ \ {} and δ >  such that (.), (.) hold and K maps
P into P.

(C) There exists a continuous operator H : E → P such that

lim‖u‖→+∞
‖Hu‖
‖u‖ = .

(C) There exist a bounded continuous operator F : E → E and u ∈ E such that Fu + u +
Hu ∈ P for all u ∈ E.

(C) There exist v ∈ E and ζ >  such that KFu≥ λ( + ζ )Ku –KHu – v for all u ∈ E.

http://www.boundaryvalueproblems.com/content/2014/1/15
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Let A = KF , then there exists R >  such that

deg(I –A,BR, ) = ,

where BR = {u ∈ E | ‖u‖ < R}.

Proof Choose a constant L = (δλ)–( + ζ –) + ‖K‖ > . From (C), for  < ε < L– , there
exists R >  such that ‖u‖ > R implies

‖Hu‖ < ε‖u‖. (.)

Now we shall show

u �= KFu +μφ for any u ∈ ∂BR and μ ≥ , (.)

provided that R is sufficiently large.
In fact, if (.) is not true, then there exist u ∈ ∂BR and μ ≥  satisfying

u = KFu +μφ. (.)

Since φ ∈ P \ {}, e(t) ∈ P \ {}, ∫ 
 φ(t)e(t)dt > . Multiply (.) by e(t) on both sides and

integrate on [, ]. Then, by (C), (.), we get

∫ 


u(t)e(t)dt

=
∫ 


(KFu)(t)e(t)dt +μ

∫ 


φ(t)e(t)dt

≥ λ( + ζ )
∫ 



∫ 


G(t, s)h(s)u(s)dse(t)dt –

∫ 


(KHu)(t)e(t)dt –

∫ 


v(t)e(t)dt

= λ( + ζ )
∫ 



∫ 


G(t, s)h(s)u(s)e(t)dsdt

–
∫ 



∫ 


G(t, s)h(s)(Hu)(s)e(t)dsdt –

∫ 


v(t)e(t)dt

= λ( + ζ )
∫ 



[∫ 


G(t, s)h(s)e(t)dt

]
u(s)ds

–
∫ 



[∫ 


G(t, s)h(s)e(t)dt

]
(Hu)(s)ds –

∫ 


v(t)e(t)dt

= λ( + ζ )r(K )
∫ 


e(s)u(s)ds – r(K )

∫ 


(Hu)(s)e(s)ds –

∫ 


v(t)e(t)dt

= ( + ζ )
∫ 


u(t)e(t)dt – r(K )

∫ 


(Hu)(t)e(t)dt –

∫ 


v(t)e(t)dt. (.)

Thus,

∫ 


u(t)e(t)dt ≤ ζ –

(
r(K )

∫ 


(Hu)(t)e(t)dt +

∫ 


v(t)e(t)dt

)
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/15
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By (.),
∫ 
 (KHu)(t)e(t)dt = r(K )

∫ 
 (Hu)(t)e(t)dt holds. Then (.), (.) and (.) im-

ply

∫ 



(
u(t) + (KHu)(t) + (Ku)(t)

)
e(t)dt

≤ ζ –
(
r(K )

∫ 


(Hu)(t)e(t)dt +

∫ 


v(t)e(t)dt

)

+ r(K )
∫ 


(Hu)(t)e(t)dt +

∫ 


(Ku)(t)e(t)dt

≤ ζ –( + ζ )r(K )
∫ 


(Hu)(t)e(t)dt + ζ –

∫ 


v(t)e(t)dt +

∫ 


(Ku)(t)e(t)dt

≤ ζ –( + ζ )r(K )ε‖u‖ + L, (.)

where L = ζ – ∫ 
 v(t)e(t)dt +

∫ 
 (Ku)(t)e(t)dt is a constant.

(C) shows Fu + u + Hu ∈ P and (C) implies μφ = μλKϕ ∈ P. Then (C), (.)
and Lemma . tell us that

u +KHu +Ku = KFu +μφ +KHu +Ku = K (Fu +Hu + u) +μφ ∈ P.

The definition of P yields

∫ 


(u +KHu +Ku)(t)e(t)dt ≥ δ‖u +KHu +Ku‖

≥ δ‖u‖ – δ‖KHu‖ – δ‖Ku‖. (.)

It follows from (.), (.) and (.) that

‖u‖ = δ–
∫ 


(u +KHu +Ku)(t)e(t)dt + ‖KHu‖ + ‖Ku‖

≤ ε(δλ)–
(
 + ζ –)‖u‖ + Lδ– + ε‖K‖ · ‖u‖ + ‖Ku‖

= εL‖u‖ + L, (.)

where L = ‖Ku‖ + Lδ– is a constant.
Since  < εL < , then (.) deduces that (.) holds provided that R is sufficiently

large such that R >max{L/( – εL),R}. By (.) and Lemma ., we have

deg(I –A,BR, ) = . �

3 Main results
Theorem . Assume that (H), (H) hold and the following conditions are satisfied:

(A) There exist two nonnegative functions b(t), c(t) ∈ C[, ] with c(t) �≡  and one con-
tinuous even function B : R → R+ such that f (t,x) ≥ –b(t) – c(t)B(x) for all x ∈ R.
Moreover, B is nondecreasing on R+ and satisfies limx→+∞ B(x)

x = .
(A) f : [, ]×R→ R is continuous.

http://www.boundaryvalueproblems.com/content/2014/1/15
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(A) lim infx→+∞ f (t,x)
x > λ uniformly on t ∈ [, ].

(A) lim supx→ | f (t,x)x | < λ uniformly on t ∈ [, ].

Here λ is the first eigenvalue of the operator K defined by (.).
Then BVP (.) has at least one nontrivial solution.

Proof We first show that all the conditions in Lemma . are satisfied. By Lemma .,
condition (C) of Lemma . is satisfied. Obviously, B : E → P is a continuous operator.
By (A), for any ε > , there is L >  such that when x > L, B(x) < εx holds. Thus, for u ∈ E
with ‖u‖ > L, B(‖u‖) < ε‖u‖ holds. The fact that B is nondecreasing on R+ yields (Bu)(t) ≤
B(‖u‖) for any u ∈ P, t ∈ [, ]. Since B : R → R+ is an even function, for any u ∈ E and
t ∈ [, ], (Bu)(t)≤ B(‖u‖) holds, which implies ‖Bu‖ ≤ B(‖u‖) for u ∈ E. Therefore,

‖Bu‖ ≤ B
(‖u‖) < ε‖u‖, ∀u ∈ E with ‖u‖ > L,

that is, lim‖u‖→+∞ ‖Bu‖
‖u‖ = . Take Hu = cBu, for any u ∈ E, where c = maxt∈[,] c(t) > .

Obviously, lim‖u‖→+∞ ‖Hu‖
‖u‖ =  holds. Therefore H satisfies condition (C) in Lemma ..

Take u(t) ≡ b = maxt∈[,] b(t) >  and (Fu)(t) = f (t,u(t)) for t ∈ [, ], u ∈ E, then it
follows from (A) that

Fu + u +Hu ∈ P for all u ∈ E,

which shows that condition (C) in Lemma . holds.
By (A), there exist ε >  and a sufficiently large number l >  such that

f (t,x)≥ λ( + ε)x, ∀x≥ l. (.)

Combining (.) with (A), there exists b ≥  such that

f (t,x)≥ λ( + ε)x – b – cB(x) for all x ∈ R,

and so

Fu≥ λ( + ε)u – b –Hu for all u ∈ E. (.)

Since K is a positive linear operator, from (.) we have

(KFu)(t)≥ λ( + ε)(Ku)(t) –Kb – (KHu)(t), ∀t ∈ [, ],u ∈ E.

So condition (C) in Lemma . is satisfied.
According to Lemma ., we derive that there exists a sufficiently large number R > 

such that

deg(I –A,BR, ) = . (.)

From (A) it follows that there exist  < ε <  and  < r < R such that

∣∣f (t,x)∣∣ ≤ ( – ε)λ|x|, ∀t ∈ [, ],x ∈ R with |x| ≤ r.

http://www.boundaryvalueproblems.com/content/2014/1/15
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Thus

∣∣(Au)(t)∣∣ ≤ ( – ε)λ
(
K |u|)(t), ∀t ∈ [, ],u ∈ E with ‖u‖ ≤ r. (.)

Next we will prove that

u �= μAu for all u ∈ ∂Br and μ ∈ [, ]. (.)

If there exist u ∈ ∂Br andμ ∈ [, ] such that u = μAu. Let z(t) = |u(t)|. Then z ∈ P and
by (.), z ≤ (– ε)λKz. The nth iteration of this inequality shows that z ≤ (– ε)nλn

Knz
(n = , , . . .), so ‖z‖ ≤ (–ε)nλn

‖Kn‖ · ‖z‖, that is,  ≤ (–ε)nλn
‖Kn‖. This yields –ε =

( – ε)λr(K ) = ( – ε)λ limn→∞ n√‖Kn‖ ≥ , which is a contradictory inequality. Hence,
(.) holds.
It follows from (.) and Lemma . that

deg(I –A,Br , ) = . (.)

By (.), (.) and the additivity of Leray-Schauder degree, we obtain

deg(I –A,BR \ Br , ) = deg(I –A,BR, ) – deg(I –A,Br , ) = –.

So A has at least one fixed point on BR \ Br , namely, BVP (.) has at least one nontrivial
solution. �

Corollary . Using (A∗
 ) instead of (A), the conclusion of Theorem . remains true.

(A∗
 ) There exist three constants b > , c >  and α ∈ (, ) such that

f (x) ≥ –b – c|x|α for any x ∈ R.
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