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Abstract
In this paper, an analysis is made on the laminar jet flow and heat transfer of a
copper-water nanofluid over an impermeable resting wall. With the homogeneous
model (Maïga et al. in Int. J. Heat Fluid Flow 26(4): 530-546, 2005), the Navier-Stokes
equations describing this heat fluid flows are reduced to a set of differential equations
via similarity transformations. An implicitly analytical solution overlooked in previous
publications is discovered for the velocity distribution. We further present the explicit
solutions with high precision for both the velocity and the temperature distributions.
A mathematical analysis shows that those explicit solutions have exponential
behaviors at far field. Besides, the effects of the volumetric fraction parameter φ and
the dimensionless heat transfer parameter γ on the velocity and temperature
profiles, as well as on the reduced local skin friction coefficient and the reduced
Nusselt number, are examined in detail.

Keywords: jet flow; convective heat transfer; exponential behavior; nanofluid flow;
convective boundary condition; explicit solutions

1 Introduction
In an actual environment, the turbulent wall jets are dominant. While the laminar ones
still attract many researchers owing to their numerous practical and potential applications
including the cooling systems for the central processing units of laptops, spray-paint pro-
cessing for vehicles or buildings, downwards-directed jets from a vertical-take-off aircraft
spreading out over the ground, cooling jets over turbo-machinery components, sluice gate
flows, and so on. The boundary layer approximation is used commonly as an effective ap-
proach for simplification of the laminar wall jet problems. The corresponding similarity
(or non-similarity) solutions were found to be adequate for the prediction of their behav-
iors. Among those studies of the laminar wall jet, Glauert [] was the first to use the name
of wall jet for the description of such flows. By means of the similarity method, he re-
duced the two-dimensional Navier-Stokes equations to an ordinary differential equation
and then obtained a well-known implicit analytical solution. Merkin and Needham []
and Needham and Merkin [] extended Glauert’s problem [] to the cases that both the
wall moving and the wall blowing/suction are allowed. They then concluded that if wall
moving is introduced, the similarity solution could be only possible when an appropriately
lateral suction is applied through the moving surface. Magyari and Keller [] confirmed
Merkin and Needham’s conclusion [] that no similarity solution of Glauert’s type exists
for the wall jet flowing over a resting surface in the presence of suction and/or injection.
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Instead, they found that a particular kind of solution with algebraically decaying behavior
is in existence for the wall suction case. While Cohen et al. [] argued that the solutions
of Glauert’s type could be possible for the resting surface case when the suction/injection
velocity is proportional to x–b for  < b < . Xu et al. [] further found that except for the
solutions given by Cohen et al. [], an infinite number of solutions of an algebraical nature
exist for the considered case. For heat transfer problems,Magyari et al. [] made an analy-
sis on heat transfer characteristics of a boundary layer flow driven by a power-law shear at
far field over an impermeable flat surface. Mathematically, their problem is equivalent to a
wall jet flowing over a heated flat surface. They then presented both the analytical and the
numerical solutions for the special cases of the isothermal and of the adiabatic flat plate.
Cossali [] considered a forced convection thermal boundary layer over an impermeable
flat surface driven by an outer power-law shear. He obtained a family of similarity solutions
for various values of the exponent of the decaying exterior velocity profile and the expo-
nent of the power-law prescribing the thermal condition on the wall. Very recently, Fan
and Xu [] extended Magyari et al.’s [] problem to the case that the plate is permeable.
They found that both exponentially and algebraically decaying solutions could be possible
when the suction is applied through the wall. They then presented a family of solutions
covered for various power-law distributions of the outer velocity and the wall temperature
both analytically and numerically.
As a new generation heat transfer fluids, nanofluids have received more and more at-

tention for the reason that they possess a better thermal conductivity than that of the
traditional heat transfer fluids. Many researchers have made great efforts to investigate
the heat fluid flow in nanofluids under various circumstances since the heat transfer in-
tensification due to dilute nanofluids could provide opportunities for a number of inno-
vative applications in industrial sectors such as transportation, power generation, micro-
manufacturing, thermal therapy for cancer treatment, chemical andmetallurgical sectors,
as well as heating, cooling, ventilation, and air-conditioning. Several approaches have been
suggested for modeling nanofluids. Typical models include the homogeneous model [,
], the dispersion model [], the Buongiorno model [] and so on. Note that there are
controversies about the validity and applicability of those nanofluids models for the pre-
diction of the behavior of nanofluids. Readers are referred to [–] for more details.
Among those models, the homogeneous model is the most popular one since it is very
convenient to extend the conventional conservation equations for pure fluids to nanoflu-
ids. As a result, all traditional heat transfer correlations regarding the computation of ther-
mophysical properties could be suitable for nanofluids as well. This model is only valid for
dilute nanofluids with a similar behavior to Newtonian fluids. When the concentration of
the nanofluids grows high, the nanofluids no longer have the nature of Newtonian fluids,
but exhibit behaviors like non-Newtonian fluids. In such a situation, this model cannot be
used for modeling nanofluids. Fortunately, it has been found that, even for dilute nanoflu-
ids, the heat transfer enhancement can still be improved significantly as compared with
the traditional heat transfer fluids. With the homogeneous model, some investigations
have been done towards understandings of the heat transfer characteristics of nanofluids.
For examples, Bachok et al. [] investigated a boundary layer flow and heat transfer due
to a rotating disk immersed in a nanofluid. Their theoretical results show that one can
distinguish how the addition of nanoparticles into pure fluids can improve the heat trans-
fer capability of the fluids even if the amount of added nanoparticles is small. Rohni []
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made an analysis for a viscous nanofluid flow and heat transfer over an unsteady shrinking
flat surface. Considering three kinds of nanofluids, including Cu-water, AlO-water and
TiO-water, they concluded that the nanoparticle volume fraction parameter (which is as-
sociated with the concentration of nanofluids) and types of nanofluid play a key role for
determination of the flow behavior. Similar conclusions were, respectively, given by Yacob
et al. [] and Vajravelu et al. [] via their investigations about the flow and heat transfer
of nanofluids past a wedge and over a flat surface.
In previous studies about the heat transfer problems in the boundary layer, the isother-

mal wall condition and the constant wall heat flux condition were frequently used since
they possess a simple mathematical structure and often admit similarity solutions. Re-
cently, Aziz [] made an analysis on a thermal boundary layer over a convectively heated
flat surface in a uniform stream of fluid. He found that the similarity solutions could also
be possible if the convective heat transfer associated with the hot fluid on the lower sur-
face of the plate is inversely proportional to the square root of the distance along the wall.
Ishak [] extended Aziz’s work [] by introducing the effects of suction and injection
through the flat surface and then presented similarity solutions with the same heat trans-
fer coefficient. Aziz and Khan [] discovered similarity solutions for a free convective
flow of a nanofluid about a vertical surface with a convective boundary condition by as-
suming that the convective heat transfer coefficient for the hot fluid varies inversely with
the fourth root of the distance along the vertical wall. Makinde and Aziz [] derived a
similarity solution for a hydromagnetic mixed convection flow past a convectively heated
vertical plate embedded in a porous medium with the convective heat transfer coefficient
for the hot fluid being a constant. Hayat et al. [] noticed that the convective boundary
condition could also be applied to derive similarity solutions for non-Newtonian fluids.
They then obtained the similarity solutions for the problem of the flow and heat trans-
fer of an Eyring Powell fluid over a continuously moving surface in the presence of a free
stream velocity. It should be noted to this end that investigations of flow and heat transfer
problems with convective boundary conditions are very attractive and unique, since they
are more realistic and practically useful than those with commonly used conditions of a
constant surface temperature or constant heat flux.
The aim of this paper is to investigate the laminar nanofluid flow and heat transfer due

to a jet spreading out over a convectively heated flat surface. The homogeneous model
will be introduced to the boundary layer equations for modeling the nanofluid. Similarity
solutions of the boundary layer equations will be sought, according to which the forms
of the velocity distribution across the jet and the heat transfer coefficient associated with
the hot fluid on the lower surface of the plate are assumed, respectively, to vary inversely
proportional to the square root and the three-quarter root of the distance along the flat
surface from the leading edge. Explicit analytical approximations with high precision will
be given for both the velocity and the temperature distributions. Besides, the important
quantities of practical interests including the boundary layer thickness, the skin friction
coefficient, the Nusselt number, as well as the overall surface heat transfer rate are com-
puted and discussed. To the best of our knowledge this problem has not been considered
before and the results are original and new.

2 Mathematical description
Consider a two-dimensional laminar jet flowing over a flat plate in a viscous nanofluid
of temperature T∞. As shown schematically in Figure , a jet of fluid spreads out from a
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Figure 1 The physical sketch.

narrow slit to the upper surface of the plate, while the lower surface of the plate is heated
or cooled by convection from a fluid of temperature Tf . With the assumptions that () the
fluid is incompressible and the flow is laminar, () the nanofluid is dilute, () the shape
of the metal nanoparticles suspended in the fluid is spherical, and () the homogeneous
model developed byMaïga et al. [] is employed, the velocity and temperature within the
momentum and thermal boundary layers, which develop along the surface, can be written
as

∂u
∂x

+
∂υ

∂y
= , ()

u
∂u
∂x

+ υ
∂u
∂y

=
μnf

ρnf

∂u
∂y

, ()

u
∂T
∂x

+ υ
∂T
∂y

= αnf
∂T
∂y

, ()

subject to boundary conditions

u = , υ = , –knf
∂T
∂y

= hf (x)(Tf – T) at y = ,

u → , T → T∞, as y→ ∞.
()

Here the Cartesian coordinates system (x, y) is chosen with the x-axis being measured
along the plate and the y-axis being normal to it, respectively. u and v are the velocity
components along the x- and y-axes, T is the temperature, hf (x) is the heat transfer coef-
ficient due to Tf ; μnf , ρnf , αnf , and knf are, respectively, the viscosity, the density, and the
diffusivity and thermal conductivity of the nanofluid, which are given by

μnf =
μf

( – φ).
, ρnf = ( – φ)ρf + φρs, αnf =

knf
(ρCp)nf

,

(ρCp)nf = ( – φ)(ρCp)f + φ(ρCp)s,
knf
kf

=
(ks + kf ) – φ(kf – ks)
(ks + kf ) + φ(kf – ks)

,
()

where φ is the solid volume fraction of the nanofluid,μ is the viscosity, ρ is the density, k is
the thermal conductivity, Cp is the specific heat capacitance, the subscript ‘nf ’ represents
the nanofluid, ‘f ’ represents the base fluid, and ‘s’ represents the nanoparticles, respec-
tively. It should be noted here that the expression for μnf is estimated by Brinkman []
using the existing relations for two-phase mixtures, the expressions for ρnf and (ρCp)nf
are given by Xuan and Li [], and the expression for knf is approximated by theMaxwell-
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Garnetts model [] with the assumption that the shape of the nanoparticles is restricted
to spherical ones.
We now introduce the following similarity variables:

ψ =
(
ν
f · x)/ · f (η), η =




(
ν
f · x)–/ · y, θ (η) =

T – T∞
Tf – T∞

, ()

where ψ is the stream function defined by u = ∂ψ/∂y and v = –∂ψ/∂x, and νf is the kine-
matic viscosity of the base fluid.
Substituting Eq. () into Eqs. ()-(), the continuity equation () is automatically satisfied,

and the momentum equation () and the energy equation () are reduced to

εf ′′′ + ff ′′ + f ′ = , ()
ε

Pr
θ ′′ + f θ ′ = , ()

subject to the boundary conditions

f () = , f ′() = , θ ′() = –γ
[
 – θ ()

]
, f ′(∞) = , θ (∞) = , ()

where Pr = νf /αf is the Prandtl number, γ is the reduced heat transfer parameter, and ε

and ε are two constants related to the properties of nanofluids and are given as

ε =


( – φ).[( – φ) + φρs/ρf ]
, ε =

knf /kf
( – φ) + φ(ρCp)s/(ρCp)f

. ()

The physical quantities of practical interest are the local skin friction coefficient Cfx and
the local Nusselt number Nux, which are given by

Cfx =
τw

ρf ur
, Nux =

xqw
kf (Tw – T∞)

, ()

where τw = μnf (∂u/∂y)y= is the wall shear stress, qw = –knf (∂T/∂y)y= is the wall heat flux,
and ur = (/)x–/ is the reference velocity.
In terms of similarity variables (), we are able to obtain the non-dimensional expres-

sions for Cfx and Nux via Eq. () as

CfxRe/x =
f ′′()

( – φ).
, NuxRex–/ = –

knf
kf

θ ′()
θ ()

, ()

where Rex = (urx)/νf is the local Reynolds number.

3 Analytical solutions
3.1 Asymptotic analysis
Here we check the asymptotic behaviors of the velocity profile f ′(η) and the temperature
profile θ (η) in the limit case η → ∞. Due to the boundary conditions (), for considerably
large η, we have

lim
η→∞ f ′(η) → , lim

η→∞ θ (η)→ .
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Integrating f ′(η) over η one time, we obtain

lim
η→∞ f (η) → λ, ()

where λ is an integral constant. For the physical constraint f ′ ≥ , it is readily seen that
λ ≥ .
For η → ∞, we suppose f (η) and θ (η) can be expressed by

f (η) = λ + F(η), θ (η) = �(η), ()

where F(η) and �(η) are negligibly small.
Substituting Eq. () into Eqs. () and () and then linearizing them, we obtain

εF ′′′ + λF ′′ = , ()
ε

Pr
�′′ + λ�′ = , ()

which have the explicit solutions

F ′(η) = C exp

(
–

λ

ε
η

)
+C, ()

�(η) = C exp

(
–

λPr
ε

η

)
, ()

where C, C, and C are integral constants.
Due to Eqs. () and (), it is known that

F ′ = � =  as η → ∞. ()

With substitution of the boundary condition () into Eq. (), we find C = , which leads
to

F ′(η) = C exp

(
–

λ

ε
η

)
. ()

It can be seen from Eqs. () and () that F ′(η) and �(η) (hence f ′(η) and θ (η)) decay
exponentially as η → ∞.

3.2 The implicit solution for f (η)
Wemultiply Eq. () by f (η) and integrate it from η to ∞, obtaining

εff ′′ –
ε


f ′ + f f ′ = . ()

Multiplying Eq. () by f –/ and integrating again, we obtain

εf –/f ′ +


f / = constant. ()
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It is found here that if f(η) is the solution of Eq. (), so is f(η) = Af(Aη), since for any
constant A, f(η) always satisfies the boundary conditions (). When A varies, the expres-
sions for ψ and η change accordingly, and u is precisely the same as that of changing the
value of the arbitrary constant velocity U to U/A. Without loss of generality, we choose
f (∞) =  so that the constant in Eq. () is equal to /.Write f = g; we then have f ′ = gg ′.
Therefore Eq. () takes the form

εg ′ =


(
 – g

)
, ()

which has the implicit solution

η = ε

[
log

(√
 + g + g

 – g

)
+

√
 arctan

( √
g

 + g

)]
. ()

By replacing g with f /, Eq. () can further be written as

η = ε

[
log

(√
 + f / + f
 – f /

)
+

√
 arctan

( √
f /

 + f /

)]
. ()

3.3 The explicit solutions for f (η) and θ (η)
Based on the above mentioned asymptotic analysis for f (η) and θ (η) and the homotopy
analysis method (HAM), it is assumed that they can be expressed by a set of real functions
in the following forms:

f (η) =
∞∑
k=

fk(η),

θ (η) =
∞∑
k=

θk(η),

()

where fk(η) and θk(η) are the high order deformation derivatives and are given by

fk(η) = Ā
k +

k+∑
j=

σ
j
kĀ

j
k exp(–λjη), ()

θk(η) =
k+∑
j=

ω
j
kB̄

j
k exp(–λjη), ()

where λ is a given positive constant, and σ
j
k and ω

j
k are the coefficients defined as

σ
j
k =

{
,  ≤ j ≤ k + ,
, other cases,

ω
j
k =

{
,  ≤ j ≤ k – ,
, other cases.

()

The recursive coefficients Āj
k and B̄j

k for k ≥  are determined by

Ā
k = , ()

Ā
k = χkσ


k–Ā


k– +Ck

 , ()
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Ā
k = χkσ


k–Ā


k– +Ck

 , ()

Ā
k = –

�f

λ

(
εḠ

k + C̃
k
)
, ()

Āj
k =

�f

λ(j – )(j – )j
(
εḠ

j–
k + C̃ j–

k + B̃j–
k + Ãj–

k
)
, ()

B̄
k = χkω


k–B̄


k– +Ck

 , ()

B̄
k = χkω


k–B̄


k– +


λ

(
ε

Pr
F̄
k + Ẽ 

k

)
, ()

B̄j
k = χkω

j
k–B̄

j
k– +


λj(j + )

(
ε

Pr
F̄j–
k + Ẽ j–

k + D̃j–
k

)
, ()

where �f and �θ are the HAM auxiliary parameters; Ck
 , Ck

 , and Ck
 are integral constants

given by

Ck
 = –

�f

λ

(
εḠ

k + C̃
k
)
–

k+∑
j=

�f

λ(j + )(j + )
(
εḠ

j
k + C̃ j

k + B̃j
k + Ãj

k
)
,

Ck
 =

�f

λ

(
εḠ

k + C̃
k
)
+

k+∑
j=

�f

λj(j + )
(
εḠ

j
k + C̃ j

k + B̃j
k + Ãj

k
)
,

Ck
 = –


γ + 

k+∑
j=

[

λj

+
γ

λj(j + )

](
ε

Pr
F̄j
k + Ẽ j

k + D̃j
k

)

–


γ + 

(

λ
+

γ

λ

)(
ε

Pr
F̄
k + Ẽ 

k

)
,

()

and

χk =

{
, k = ,
, k > .

()

Other coefficients appearing in the above recursive formulas are defined as

C̄j
k = (–λj)σ j

kĀ
j
k , Ēj

k = (λj)σ j
kĀ

j
k , Ḡj

k = (–λj)σ j
kĀ

j
k ,

D̄j
k = (–λj)ωj

kB̄
j
k , F̄ j

k = (λj)ωj
kB̄

j
k ,

()

and

Ãj
k =

k–∑
n=

max{k–n,j–}∑
s=max{,j–n–}

C̄s
k––nC̄

j–s
n ,

B̃j
k =

k–∑
n=

max{k–n,j–}∑
s=max{,j–n–}

Ās
k––nĒ

j–s
n ,

C̃ j
k =

k–∑
n=[ j– ]

Ā
k––nĒ

j
n, ()
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D̃j
k =

k–∑
n=

max{k–n,j–}∑
s=max{,j–n–}

Ās
k––nD̄

j–s
n ,

Ẽ j
k =

k–∑
n=[ j– ]

Ā
k––nD̄

j
n,

where [x] gives the greatest integer less than or equal to x.
When we set Ā

 = , Ā
 = –, Ā

 = , B̄
 = , B̄

 = –λ/(γ + λ), the purely explicit solu-
tions for fk(η) and θk(η) (f (η) and θ (η)) can be determined successively for k = , , , . . . .
Note that here the homotopy auxiliary linear operators are selected as

Lf =
∂

∂η + λ
∂

∂η + λ ∂

∂η
, Lθ =

∂

∂η + λ
∂

∂η
, ()

and the homotopy auxiliary functions are chosen by

�f (η) = exp(–λη), �θ (η) = exp(–λη). ()

4 Results and discussion
We first examine the reliability and consistency of the explicit solution f (η) denoted in
Eq. (). As shown in Figure , for various values of φ, our explicit solution agrees well
with the implicit one given in () in the whole range  ≤ η < ∞. Further, to check the

Figure 2 Comparison of the implicit solutions (25) with the explicit solutions at 100th order
truncations for various values of φ in the case of �f = –3/2. Circle: the implicit solutions; line: the explicit
solutions.
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Table 1 Computational errors for Errθ with �f = –3/2 and �θ = –1 in the case of Pr = 1

kth order φ = 20/100, γ = 1 φ = 8/100, γ = 1/2

0 8.18646× 10–3 4.04103× 10–3

30 1.48150× 10–4 1.44346× 10–5

60 6.73996× 10–5 4.55130× 10–6

90 3.01452× 10–5 2.26475× 10–6

120 2.74295× 10–5 1.37636× 10–6

150 2.31459× 10–5 9.35413× 10–7

180 6.82566× 10–7

The nanofluid is Cu-water.

Figure 3 Velocity profile f ′(η) for various values of φ.

accuracy of the explicit solution θ (η), we define the following error estimation function:

Errθ = lim
ηs→∞

∫ ηs



(
ε

Pr
θ ′′ + f θ ′

)

dη. ()

Substituting various orders of explicit solutions f (η) and θ (η) into Eq. (), the corre-
sponding errors can be obtained, as listed in Table . It is clearly seen from this table that
the errors decrease monotonously with the increase of the computational order k for both
considered cases. The accuracies of those explicit solutions can be further improved when
more and more orders of HAM truncations are involved.
The variation of the non-dimensional velocity profiles f ′(η) with η for various values of

φ are plotted in Figure . It is found from this figure that for each selected value of φ, there
is a critical value of ηc corresponding to the maximum velocity, when η < ηc, the velocity
profile f ′(η) increases dramatically as η enlarges, while, when η ≥ ηc, f ′(η) decreases grad-
ually as η evolves. This is due to the fluid flow near the flat surface being restrained by the
resting wall, while the flow at far field is retarded by the ambient quiescent fluid. On the
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Figure 4 Temperature profiles θ (η) for various values of φ with Pr = 1 and γ = 1.

other hand, we notice that the solid volumetric fraction parameter φ plays an important
role in the variation of f ′(η); the larger is the value ofφ, the greater is themaximumvelocity
f ′(η). We further notice that the peak velocity of the flow increases with φ enlarging, but
the critical value of ηc varies contrarily, it decreases as φ increases. This can be explained
by two reasons. One is that the higher concentration nanofluid flow possesses more ki-
netic energy than the lower concentration nanofluid or Newtonian fluid flows since they
have the same incidence velocities. The other reason is that, unlike Newtonian fluid flows
that are usually subject to a solid boundary, the nanofluid flows past a geometry are often
restricted by a slip boundary, which is of help to reduce the flow drag near the resting wall.
We then consider the variation of the non-dimensional temperature profiles θ (η) with

η for various values of φ in the case of Pr =  and γ = . As illustrated in Figure , θ (η)
decreases continuously as η evolves for any prescribed value of φ. On the other hand, θ (η)
enhances smoothly with φ increasing. This shows that the heat transfer characteristics of
the considered fluid can be gradually improved as appropriate nanoparticles are continu-
ally added to it. We also notice that the reduced heat transfer parameter γ has an obvious
effect on θ (η). As shown in Figure , the temperature profile θ (η) increases consecutively
as γ enlarges for all η. This changing trend becomes more evident for small values of γ .
We further notice that, as γ tends to , θ (η) approaches  as well. In this limiting case,
there is no heat transfer by convection through the wall at all. As γ tends to ∞, θ (η) ap-
proaches . In this limiting case, the wall temperature is equal to the temperature of the
fluid under the wall. Following that, we discuss the effect of the Prandtl number Pr on
the variation of θ (η). As shown in Figure , θ (η) diminishes consecutively as Pr increases.
This trend is very similar to the case of the Newtonian fluid flow, but the variation range
for θ (η) is apparently smaller as compared with that of the Newtonian fluid flow. When
Pr is sufficiently large, its effect on θ (η) becomes negligibly small.
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Figure 5 Temperature profiles θ (η) for different values of γ with φ = 0.1 and Pr = 1.

Figure 6 Temperature profiles θ (η) for different values of Pr with φ = 0.1 and γ = 1.
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Figure 7 Variation of the reduced local skin friction coefficient Cfx with φ.

The local skin friction coefficient Cfx and the local Nusselt number Nux are practically
important in various applications regarding the flow and heat transfer in the boundary
layer region. We therefore discuss them successively. As shown in Figure , Cfx enlarges
almost linearly as φ evolves from  to .. Using the explicit solution for f (η), one readily
gives the explicit expression for CfxRe/x , due to Eq. (),

CfxRe/x =


( – φ).

+∞∑
k=

k+∑
j=

(λj)σ j
kĀ

j
k . ()

Figure  gives the variation of the reducedNusselt numberNuxRe–/x with φ for Pr =  and
γ = /. It is found thatNuxRe–/x increases gradually with φ increasing, but its changing
range is slower than that of CfxRe/x . Though it is not shown in this paper, it is found that
γ has little effect on the variation of NuxRe–/x , it is almost unchanged for all ranges  <
γ < ∞. Similarly, we are able to give the explicit expression for NuxRe–/x in the following
form:

NuxRex–/ = –
knf
kf

( +∞∑
k=

k+∑
j=

(–λj)ωj
kB̄

j
k

)/( +∞∑
k=

k+∑
j=

B̄j
k

)
. ()

The boundary layer thicknesses are of physical importance for this problem, defined by

δf /x = ηδ
f /Re

/
x , δθ /x = ηδ

θ /Re
/
x , ()

where δf is the thickness of the velocity boundary layer and δθ is the thickness of the ther-
mal boundary layer. Here it is assumed that the edges of the velocity and the thermal
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Figure 8 Variation of the reduced Nusselt number Nux with φ for γ = 1/10 and Pr = 1.

boundary layers are located at the points ηδ
f and ηδ

θ with f ′(ηδ
f ) and θ (ηδ

θ ) having the same
value of .. The variations of the boundary layer thicknesses ηδ

f and ηδ
θ with φ are plot-

ted in Figure . It is seen from the figure that the ηδ
f increases continuously as φ enlarges

from  to .; beyond this value, its value decreases as φ evolves. ηδ
θ exhibits a totally dif-

ferent trend, its values increase gradually as φ increases from  to .. But its increasing
rate gradually descends as φ evolves, particularly, when φ ≥ ., its effect on ηδ

θ becomes
dramatically small. It is worth mentioning that the homogeneous model is only valid for
small values of φ, i.e.  ≤ φ ≤ .. When φ is considerably large, the nanofluid shows the
characteristics of non-Newtonian fluids and this model cannot predict the behaviors of
the nanofluid accurately.

5 Conclusions
In this paper, the laminar jet flow and heat transfer of a copper-water nanofluid over a rest-
ing wall has been examined in detail. By means of the homogeneous model, the original
Navier-Stokes equations describing these jet flows have been reduced to a set of differen-
tial equations. An analytical solution for the velocity distribution has been obtained. The
explicit solutions for both the velocity and the temperature distributions have been given
by means of the HAM technique. The effects of the volumetric fraction parameter φ and
the dimensionless heat transfer coefficient γ on the velocity and temperature profiles, as
well as on the reduced local skin friction coefficient and the reduced Nusselt number have
been investigated. Some novel results and findings of this study have been presented:
. An implicitly analytical solution for the velocity distribution is given, which has not

been reported before.
. A mathematical analysis for solution behavior at far field is presented. It is found

that both the velocity and the temperature profiles decay exponentially at infinity.
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Figure 9 Variation of the boundary layer thicknesses of ηf
δ
and ηθ

δ
with φ for γ = 1/10 and Pr = 1.

. Purely explicit solutions with high precision for both the velocity and the
temperature distributions are obtained.

. The volumetric fraction parameter φ has an important effect on the velocity and
temperature distribution. The maximum velocity increases as φ enlarges. The
temperature profiles increase as φ evolves, too. This means that the addition of
nanoparticles into pure fluids is of help to reduce the flow drag near the wall and to
improve the heat transfer capability of the base fluids.

. The dimensionless heat transfer parameter γ plays a key role on the variation of the
temperature profiles. The temperature profiles enhances as γ increases.
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