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Abstract
In this article, we study superconvergence of the finite element approximation to the
solution of a general second-order elliptic boundary value problem in three
dimensions over a fully uniform mesh of piecewise tensor-product linear triangular
prism elements. First, we give the superclose property of the gradient between the
finite element solution uh and the interpolant �u. Second, we introduce a
superconvergence recovery scheme for the gradient of the finite element solution.
Finally, superconvergence of the recovered gradient is derived.
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1 Introduction
Superconvergence of the gradient for the finite element approximation is a phenomenon
whereby the convergent order of the derivatives of the finite element solutions exceeds
the optimal global rate. Up to now, superconvergence is still an active research topic (see
[–]). Recently, we studied the superconvergence patch recovery (SPR) technique intro-
duced by Zienkiewicz and Zhu [–] for the linear tetrahedral element and proved point-
wise superconvergent property of the recovered gradient by SPR. For the linear tetrahedral
element, Chen andWang [] also discussed superconvergent properties of the gradients
by SPR and obtained superconvergence results of the recovered gradients in the average
sense of the L-norm. In addition, Chen [] and Goodsell [] derived superconvergence
estimates of the recovered gradient by the L-projection technique and the average tech-
nique, respectively. This article will use the SPR technique to obtain a superconvergence
estimate for the gradient of the tensor-product linear triangular prism element. In this
article, we shall use the letter C to denote a generic constant which may not be the same
in each occurrence and also use the standard notations for the Sobolev spaces and their
norms.

2 General elliptic boundary value problem and finite element discretization
We consider the model problem

Lu≡ –
∑

i,j=

∂j(aij∂iu) +
∑
i=

ai∂iu + au = f in �, u =  on ∂�. (.)
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Figure 1 Triangular prisms partition. This figure gives
how to partition the domain �. The domain � is firstly
partitioned into subcubes of side h, and each of these is
then subdivided into two triangular prisms.

Here � = [, ] × [, ] = �xy × �z ⊂ R is a rectangular block with boundary ∂� con-
sisting of faces parallel to the x-, y-, and z-axes. We also assume that the given functions
aij,ai ∈ W ,∞(�), a ∈ L∞(�), and f ∈ L(�). In addition, we write ∂u = ∂u

∂x , ∂u = ∂u
∂y , and

∂u = ∂u
∂z , which are usual partial derivatives.

To discretize the problem, one proceeds as follows. The domain � is firstly partitioned
into subcubes of side h, and each of these is then subdivided into two triangular prisms.We
denote by {T h} these uniform partitions as above. Thus �̄ =

⋃
e∈T h ē. Obviously, we can

write e =D× L (see Figure ), where D and L represent a triangle parallel to the xy-plane
and a one-dimensional interval parallel to the z-axes, respectively.
We introduce a tensor-product linear polynomial space denoted by P , that is,

q(x, y, z) =
∑

(i,j,k)∈I
aijkxiyjzk , aijk ∈R,q ∈P ,

where P = Pxy ⊗ Pz, Pxy stands for the linear polynomial space with respect to (x, y),
and Pz is the linear polynomial space with respect to z. The indexing set I satisfies I =
{(i, j,k)|i, j,k ≥ , i + j ≤ ,k ≤ }. Let �e

xy be the linear interpolation operator with respect
to (x, y) ∈ D, and let �e

z be the linear interpolation operator with respect to z ∈ L. Thus we
may define the tensor-product linear interpolation operator by �e :H

(e) → P(e). Obvi-
ously, �e =�e

xy ⊗ �e
z =�e

z ⊗ �e
xy. In addition, the weak form of problem (.) is

a(u, v) = (f , v) ∀v ∈H
(�), (.)

where

a(u, v)≡
∫

�

( ∑
i,j=

aij∂iu ∂jv +
∑
i=

ai∂iuv + auv

)
dxdydz,

and

(f , v) =
∫

�

fv dxdydz.

Define the tensor-product linear triangular prism finite element space by

Sh(�) =
{
v ∈H

(�) : v|e ∈P(e) ∀e ∈ T h}.
Thus, the finite element method of problem (.) is to find uh ∈ Sh(�) such that

a(uh, v) = (f , v) ∀v ∈ Sh(�).
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Moreover, from the definitions of �e and Sh(�), we may define a global tensor-product
linear interpolation operator � :H

(�) → Sh(�). Here (�u)|e = �eu. As for this interpo-
lation operator, the following Lemma . holds (see []).

Lemma . For �u and uh, the tensor-product linear interpolant and the tensor-product
linear triangular prism finite element approximation to u, respectively, we have the super-
closeness estimate

|uh –�u|,∞,� ≤ Ch| lnh|  ‖u‖,∞,�. (.)

3 Gradient recovery and superconvergence
For v ∈ Sh(�), we consider a SPR scheme of ∇v. We denote by Rh the SPR-recovery oper-
ator for ∇v and begin by defining the point values of Rhv at the element nodes. After the
recovered values at all nodes are obtained, we construct a tensor-product linear interpola-
tion by using these values, namely SPR-recovery gradient Rhv. Obviously, Rhv ∈ (Sh(�)).
Let us first assume thatN is an interior node of the partition T h, and denote by ω the el-

ement patch aroundN containing  triangular prisms. Under the local coordinate system
centeredN , we letQi(xi, yi, zi) be the barycenter of a triangular prism ei ⊂ ω, i = , , . . . , .
Obviously,

∑
i=(xi, yi, zi) = (, , ). SPR uses the discrete least-squares fitting to seek lin-

ear vector function p ∈ (P(ω)) such that

∑
i=

[
p(Qi) –∇v(Qi)

]
q(Qi) = (, , ) ∀q ∈ P(ω), (.)

where v ∈ Sh(�). We define Rhv(N) = p(, , ). If N is a boundary node, we calculate
Rhv(N) by linear extrapolation from the values of Rhv already obtained at two neighboring
interior nodes, N and N (with diagonal directions being used for edge nodes and corner
nodes) (see Figure ). Namely,

Rhv(N) = Rhv(N) – Rhv(N).

Lemma . Let ω be the element patch around an interior node N , and u ∈W ,∞(ω). For
�u ∈ Sh(�) the interpolant to u, we have

∣∣∇u(N) – Rh�u(N)
∣∣ ≤ Ch‖u‖,∞,ω. (.)

Proof Choose v = �u and set q =  in (.) to obtain
∑

i= p(Qi) =
∑

i= ∇�u(Qi). There-
fore,

Rh�u(N) –



∑
i=

∇�u(Qi) = p(, , ) –



∑
i=

p(xi, yi, zi)

= –



∑
i=

[
∂p(, , )xi + ∂p(, , )yi + ∂p(, , )zi

]
= (, , ).
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Figure 2 N, a boundary node. N1 and N2 are interior nodes. We can calculate Rhv(N) by linear extrapolation
from the values of Rhv already obtained at two neighboring interior nodes, N1 and N2.

That is,

Rh�u(N) =



∑
i=

∇�u(Qi). (.)

Further,




∑
i=

∇�u(Qi) –∇u(N)

=



∑
i=

∇(�u – u)(Qi) +



∑
i=

[∇u(Qi) –∇u(N)
]

=



∑
i=

∇(�u – u)(Qi)

+



∑
i=

[
∂∇u(N)xi + ∂∇u(N)yi + ∂∇u(N)zi

]
+ r(u), (.)

where 


∑
i=[∂∇u(N)xi + ∂∇u(N)yi + ∂∇u(N)zi] = (, , ), and the high-order term

r(u) satisfies |r(u)| ≤ Ch|u|,∞,ω .
In (.), we write f(u) = 


∑

i= ∇(�u – u)(Qi). For every u ∈ P(ω), it is not diffi-
cult to verify f(u) = (, , ). Thus, by the Bramble-Hilbert lemma [], we have |f(u)| ≤
Ch|u|,∞,ω . Therefore,∣∣∣∣∣ 

∑
i=

∇�u(Qi) –∇u(N)

∣∣∣∣∣ ≤ Ch|u|,∞,ω. (.)

Combining (.) and (.), we obtain the result (.). �
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Lemma. For�u ∈ Sh(�) the tensor-product linear interpolant to u, the solution of (.),
and Rh the SPR recovery operator, we have the superconvergent estimate

|∇u – Rh�u|,∞,� ≤ Ch‖u‖,∞,�. (.)

Proof Denote by F : ê → e an affine transformation. Obviously, there exists an element
e ∈ T h, using the triangle inequality and the Sobolev embedding theorem [], and (.),
such that

|∇u – Rh�u|,∞,� = |∇u – Rh�u|,∞,e

≤ Ch–|∇û – Rh�̂u|,∞,ê

≤ Ch–
[|∇û|,∞,ê + |Rh�̂u|,∞,ê

]
≤ Ch–

[|∇û|,∞,χ̂ + |�̂u|,∞,χ̂
]

≤ Ch–‖û‖,∞,χ̂ ,

where χ̂ is a small patch of elements surrounding the triangular prism, ê. Due to the fact
that for û quadratic over χ̂ ,

∇û – Rh�̂u = (, , ) in χ̂ ,

so, from the Bramble-Hilbert lemma [],

|∇u – Rh�u|,∞,� ≤ Ch–|û|,∞,χ̂ ≤ Ch|u|,∞,�,

which completes the proof of the result (.). Finally, we give the main result in this arti-
cle. �

Theorem . For uh ∈ Sh(�) the tensor-product linear triangular prism finite element ap-
proximation to u, the solution of (.), and Rh the SPR recovery operator, we have the su-
perconvergence estimate

|∇u – Rhuh|,∞,� ≤ Ch| lnh|  ‖u‖,∞,�. (.)

Proof Using the triangle inequality, we have

|∇u – Rhuh|,∞,� ≤ ∣∣Rh(uh –�u)
∣∣
,∞,�

+ |∇u – Rh�u|,∞,�

≤ |uh –�u|,∞,�

+ |∇u – Rh�u|,∞,�,

which combined with (.) and (.) completes the proof of the result (.). �
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