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Abstract
Numerical analysis has been carried out on the problem of magnetohydrodynamic
boundary layer flow of a nanofluid over a moving surface in the presence of thermal
radiation. The governing partial differential equations were transformed into a system
of ordinary differential equations using suitable similarity transformations. The
resultant ordinary equations were then solved using the spectral relaxation method.
Effects of the physical parameters on the velocity, temperature and concentration
profiles as well as the local skin-friction coefficient and the heat and mass transfer
rates are depicted graphically and/or in tabular form.
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1 Introduction
Many engineering and industrial processes involve heat transfer by means of a flowing
fluid in either laminar or turbulent regimes. A decrease in thermal resistance of heat trans-
fer in the fluids would significantly benefitmany of these applications/processes. Nanoflu-
ids have the potential to reduce thermal resistances, and industrial groups such as elec-
tronics,medical, food andmanufacturingwould benefit from such improved heat transfer.
It is well known that conventional heat transfer fluids, such as oil, water and ethylene glycol
mixture, are poor heat transfer fluids. Choi [] introduced the technique of nanofluids by
using a mixture of nanoparticles and the base fluids. The presence of the nanoparticles in
the nanofluid increases the thermal conductivity and therefore substantially enhances the
heat transfer characteristics of the nanofluid. Nanotechnology has been an ongoing hot
topic of discussion in public health as researchers claim that nanoparticles could present
possible dangers in health and environment, Mnyusiwella et al. []. There are several nu-
merical studies on the modelling of natural convection heat transfer in nanofluids (Kaka
and Pramuanjaroekij [], Godson et al. [], Olanrewaju et al. []). Gbadeyan et al. [] nu-
merically studied boundary layer flow induced in a nanofluid due to a linearly stretching
sheet in the presence of thermal radiation and induced magnetic field. Khan and Aziz []
studied natural convection flow of a nanofluid over a vertical plate with a uniform sur-
face heat flux. Makinde and Aziz [] investigated boundary layer flow of a nanofluid past
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a stretching sheet with a convective boundary conditions. Khan et al. [] studied the un-
steady free convection boundary layer flow of a nanofluid along a stretching sheet with
thermal radiation in the presence of a magnetic field.
Thermal radiation-convection interaction problems are found in the cooling of high

temperature components design where heat transfer from surfaces occurs by parallel ra-
diation and convection, the interaction of incident solar radiation with the earth’s surface
to produce complex free convection patterns. Hadey et al. [] studied the flow and heat
transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the
presence of thermal radiation. Khan et al. [] analyzed the effects of variable viscosity
and thermal conductivity on the flow and heat transfer in a laminar liquid film on a hor-
izontal shrinking/stretching sheet. Khan et al. [] investigated, by employing the homo-
topy perturbation transform method (HPTM) and the Padé approximation, the problem
of magnetohydrodynamic (MHD) boundary layer flow over a nonlinear porous stretch-
ing sheet. Khan et al. [] considered a two-dimensional, steady magnetohydrodynamic
flow and heat transfer analysis of a non-Newtonian fluid in a channel with a constant wall
temperature in the presence of thermal radiation.
As the governing equations modelling MHD flow and heat transfer of nanofluids are

highly nonlinear, exact solutions are impossible to obtain. Over the years, numericalmeth-
ods have been developed, improved, and hybred as a way of getting more accurate solu-
tions. The current study seeks to employ a recently developed numerical technique known
as spectral relaxation method [] to solve the problem of magnetohydrodynamic bound-
ary layer flow of nanofluids over a moving surface in the presence of thermal radiation.
The current method has been successfully employed in [–], among others. We ap-
ply this method to the problem of MHD flow of a nanofluid past a stretching sheet in the
presence of thermal radiation. The governing boundary layer equations are transformed
to a system of nonlinear ordinary differential by using suitable local similarity variables.

2 Mathematical formulation
We consider the steady MHD boundary layer flow of a nanofluid past a moving semi-
infinite flat plate in a uniform free stream in the presence of thermal radiation.We assume
that the velocity of the uniform stream is U and that of the plate is Uw = λU , where λ

is the velocity parameter. The flow is assumed to take place at y ≥ , with y being the
coordinate measured normal to the moving surface. A uniform magnetic field is applied
in the y direction. At moving surface, the temperature and the nanoparticles take constant
values Tw and Cw, respectively, while the free stream values are taken to be T∞ and C∞,
respectively. Following the nanofluid model proposed by Tiwari and Das [] along with
Boussinesq and boundary layer approximations, the governing equations for the present
problem are:
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where u and v are the velocity components along the x-axis and y-axis, respectively, α =
k/(ρc)f is the thermal diffusivity of the fluid, ν is the kinematic viscosity coefficient, k is
the thermal conductivity, qr is the heat flux,DB is the Brownian diffusion coefficient,DT is
the thermophoresis diffusion coefficient, B is the uniform magnetic field strength of the
base fluid, σ is the electrical conductivity of the base fluid, τ is the ratio of the nanoparticle
heat capacity and the base fluid heat capacity.
The boundary conditions are taken as

v = , u = λU , T = Tw, C = Cw at y = , ()

u→U , T → T∞, C → C∞ as y → ∞. ()

The surface moving parameter λ >  corresponds to the downstream movement of the
plate from the origin, while λ <  corresponds to the upstream movement of the plate.
By using the Rosseland diffusion approximation (Hossain et al. []) and following Rap-

tis [] among other researchers, the radiative heat flux qr is given by

qr = –
σ ∗

Ks

∂T

∂y
, ()

where σ ∗ and Ks are the Stefan-Boltzman constant and the Rosseland mean absorption
coefficient, respectively. We assume that the temperature differences within the flow are
sufficiently small such that T may be expressed as a linear function of temperature.

T ≈ T
∞T – T

∞. ()

Using () and () in the last term of equation (), we obtain

∂qr
∂y

= –
σ ∗T∞
Ks

∂T
∂y

. ()

2.1 Similarity transformations
In order to reduce the governing equations into a systemof ordinary differential equations,
we introduce the following local similarity variables:

ψ = (Uνx)

 f (η), θ (η) =

T – T∞
Tw – T∞

,

φ(η) =
C –C∞
Cw –C∞

, η = (U/νx)

 y,

()

where f (η) is the dimensionless stream function, η is the similarity variable, θ (η) is the
dimensionless temperature, φ(η) is the dimensionless nanoparticles concentration. It is
worth mentioning that the continuity equation () is identically satisfied from our choice
of the stream function with u = ∂ψ

∂y and v = – ∂ψ

∂x . Substituting the similarity variables into
equations ()-() gives

f ′′′ + ff ′′ –Haf ′ = , ()(
 + R
Pr

)
θ ′′ + f θ ′ +Nbφ′θ ′ +Ntθ ′ = , ()
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φ′′ + Lef φ′ +
Nt
Nb

θ ′′ = , ()

subject to the boundary conditions

f () = , f ′() = λ, θ () = , φ() = , ()

f ′ → , θ → , φ →  as η → ∞, ()

where R = αδT∞
kk is the radiation parameter, Pr = ν

α
is the Prandtl number, Le = ν

DB
is the

Lewis number,Ha = xB
Uρf is the localHartman number,Nb = (ρc)pDB(φw–φ∞)

(ρC)f ν is the Brownian

motion parameter and Nt = (ρC)pρT (Tw–T∞)
(ρc)fT∞ν

is the thermophoresis parameter.
The quantities of engineering interest are the skin-friction coefficient Cf , the local Nus-

selt number Nux, and the local Sherwood number Shx. These quantities are defined as
follows:

Cf =
τw

ρu
, Nux =

qw
k(Tw – T∞)

, Shx =
xqm

DB(Cw –C∞)
, ()

where τw, qw and qm are the shear stress, heat flux andmass flux at the surface, respectively.
Upon using the similarity variables into the above expressions, we get

(Re)

Cf = f ′′(),

(
Rex


)–

Nux = –θ ′(),
(
Rex


)–

Shx = –φ′(), ()

where Rex =Ux/ν is the local Reynolds number.

3 Method of solution
To solve the set of ordinary differential equations ()-() together with the boundary
conditions () and (), we employ the Chebyshev pseudo-spectral method known as
spectral relaxation method (SRM). This method transforms sets of nonlinear ordinary
differential into sets of linear ordinary differential equations. The entire computational
procedure is implemented using a program written in MATLAB computer language. The
fluid velocity, temperature, the local skin-friction coefficient and the local Nusselt and
Sherwood numbers are determined from these numerical computations. The SRM algo-
rithm starts with the assumption of having a system of m nonlinear ordinary differential
equations in m unknowns functions, zi(η), i = , , . . . ,m, where η ∈ [a,b] is the indepen-
dent variable. To solve the resultant iterative scheme, we then use the Chebyshev pseudo-
spectral method. The details of the spectral methods can be found in Canuto et al. [],
Trefethen []. Before applying the spectral method, the domain on which the governing
equation is defined is transformed to the interval [–, ] on which the spectral method can
then be implemented. We use the transformation η = (b – a)(τ + )/ to map the interval
[a,b] to [–, ].
To apply the SRMto the nonlinear ordinary differential equations, we first set f ′(η) = g(η)

and then write the equations as the following set of equations:

f ′ = g, ()

g ′′ + fg ′ – g –Hag = , ()
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(
 + R
Pr

)
θ ′′ + f θ ′ +Nbθ ′φ′ +Ntθ ′ = , ()

φ′′ + Lef φ′ +
Nt
Nb

θ ′′ = , ()

and the boundary conditions become

f () = , g() = λ, θ () = φ() = ,

g(∞) = , θ (∞) = , φ(∞) = .
()

In view of the SRM, we obtain the following iterative scheme:

f ′
r+ = gr , fr+() = , ()

g ′′
r+ + fr+g ′

r+ –Hagr+ = , gr+() = λ, gr+(∞) = , ()(
 + R
Pr

)
θ ′′
r+ + fr+θ ′

r+ +Nbθ ′
r+ = –Nt′r+, θr+() = , θr+(∞) = , ()

φ′′
r+ + Lefr+φ′

r+ = –
Nt
Nb

θ ′′
r+, φr+() = , φr+(∞) = . ()

The above equations form a system of linear decoupled equations which can be solved
iteratively for r = , , . . . , starting from initial guesses/approximations (g(η), θ (η),φ(η)).
Applying the Chebyshev pseudo-spectral method to ()-(), we obtain

Afr+ = B, fr+(τN̄ ) = , ()

Agr+ = B, gr+(τN̄ ) = λ, gr+(τ) = , ()

Aθr+ = B, θr+(τN̄ ) = , θr+(τ) = , ()

Aφr+ = B, φr+(τN̄ ) = , φr+(τ) = , ()

where

A =D, B = gr,

A =D + diag[fi+]D –HaI, B = ,

A =
(
 + R
Pr

)
D + diag[fi+ +Nb]D, B = –Ntθ ′

r+,

A =D + diag[Lef i+]D, B = –
Nt
Nb

θ ′′
r+,

where I is the identity matrix of size (N̄ + )× (N̄ + ), f , g, φ and θ are the values of f , g , φ
and θ , respectively, when evaluated at the grid points. Equations ()-() constitute the
SRM scheme. The initial approximation required to start the iterative process is

g(η) = λ –  + η + ( – λ)e–η, ()

θ(η) = e–η, ()

φ(η) = e–η, ()
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Table 1 Comparison of SRM solutions for –θ ′(0) and –φ′(0) against those of the bvp4c as well
as those obtained by Olanrewaju et al. [5] for different values of Pr

Pr [5] bvp4c
–θ ′(0)

Present (SRM) [5] bvp4c
–φ′(0)

Present (SRM)

1 0.35300909 0.35300909 0.35300909 0.60037641 0.60037641 0.60037641
2 0.44343465 0.44343465 0.44343465 0.56245704 0.56245704 0.56245704
6 0.59307165 0.59307165 0.59307165 0.481913727 0.481913727 0.481913727

Table 2 Comparison of SRM solutions for –θ ′(0) and –φ′(0) against those of the bvp4c as well
as those obtained by Olanrewaju et al. [5] for different values of Le

Le [5] bvp4c
–θ ′(0)

Present (SRM) [5] bvp4c
–φ′(0)

Present (SRM)

10 0.31104609 0.31104594 0.31104594 1.22044717 1.22044716 1.22044716
20 0.31066665 0.31066665 0.31066665 1.6237386 1.62037385 1.62037385
50 0.310302944 0.31030279 0.31030279 2.36541737 2.36541736 2.36541736

which are randomly chosen functions that satisfy the boundary conditions. The iteration
is repeated until convergence is achieved. The convergence of the SRM scheme is defined
in terms of the infinity norm as

Er =Max
(‖fr+ – fr‖;‖gr+ – gr‖;‖θr+ – θr‖;‖φr+ – φr‖

)
. ()

Accuracy of the scheme is established by increasing the number of collocation points N
until the solutions are consistent and further increases do not change the value of the
solutions.

4 Results and discussion
The system of ordinary differential equations ()-() subject to the boundary conditions
()-() are numerically solved by using spectral relaxation method (SRM). This is a re-
cently developed method, and details of the method are found in []. The SRM results
presented in this work were obtained using N =  collocation points, and also the con-
vergence was achieved after as few as five iterations. We also take  to be the infinity
value η∞. We use these default values for the parameters Pr = ., Nt =Nb = ., Le = ,
R = , λ = ..
Tables  through  show a comparison among the SRM results to those previously ob-

tained results as well as the bvp4c results. As can be clearly observed from these tables,
there are excellent agreements in all the tables giving us confidence in the findings of this
study. Table  depicts the effects of increasing the values of the Prandtl number on heat
and mass transfers. Physically, the Prandtl number is a dimensionless number which is
the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. Increas-
ing values of the Prandtl number means that momentum diffusivity dominates thermal
diffusivity. Thus, the rate of heat transfer at the surface increases with increasing values
of the Prandtl number while the rate of mass transfer is reduced as the Prandtl number
increases. Table  shows the effect of increasing the Lewis number Le on the heat and
mass transfer coefficients. The Lewis number is defined as the ratio of thermal diffusivity
to mass diffusivity or the ratio of the Schmidt number to the Prandtl number. As can be
clearly seen in Table , increasing the Lewis number means that the fluid becomes more

http://www.boundaryvalueproblems.com/content/2014/1/2
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Table 3 Comparison of SRM solutions for –θ ′(0) and –φ′(0) against those of the bvp4c as well
as those obtained by Olanrewaju et al. [5] for different values of λ

λ [5] bvp4c
–θ ′(0)

Present (SRM) [5] bvp4c
–φ′(0)

Present (SRM)

0.5 0.36940306 0.36940302 0.36940302 0.81838542 0.81838541 0.81838541
1 0.42412772 0.42412771 0.42412771 1.0624088 1.0624088 1.0624088
2 0.50948651 0.50948651 0.50948651 1.32551731 1.32551731 1.32551731

Table 4 Computations of –θ ′(0) and –φ′(0) at different values of Nb and Nt

Nb –θ ′(0) –φ′(0)
0.1 0.27455519 0.48306117
0.5 0.24471306 0.53071472
1 0.21121513 0.53632970

Nt –θ ′(0) –φ′(0)
0.1 0.27455519 0.48306117
0.5 0.25536198 0.32985814
1 0.23358969 0.25949965

Table 5 Comparison of SRM solutions for –f ′′(0) against those of the bvp4c for different
values of λ

λ bvp4c
f ′′(0)

Present (SRM)

0.1 0.46251223 0.46251223
0.2 0.44315478 0.44315478
0.4 0.32874112 0.32874112

viscous therefore causing increases in the rate of mass transfer at the surface. As expected,
increasing the Lewis number reduces the rate of heat transfer on the surface as this corre-
sponds to the reduced Prandtl number. In Table , we display the effect of increasing the
values of the moving surface parameter λ on the rates of heat and mass transfer. These
rates both increase with increasing values of the surface moving parameter. Table  de-
picts the effects of Brownian motion parameter Nb and the thermophoresis parameter
on the heat and mass transfer coefficients. The rate of heat transfer on the surface as ex-
pected is reduced as the Brownian motion parameter increases, while the rate of mass
transfer slightly increases as this parameter increases. Also in Table , we depict the effect
of the thermophoresis parameter Nt on the Nusselt and Sherwood numbers. By defini-
tion thermophoresis is the migration of a colloidal particle in a solution in response to a
macroscopic temperature gradient. Both the Nusselt number and the Sherwood number
are reduced as the values of this parameter increases.
InTable we show the influence of the velocity parameter on the skin friction. Increasing

positive values of λ corresponds to acceleratedmovement of the plate. This in turn results
in reduction of skin friction. The effects of physical parameters of importance in this study
on the velocity, temperature and nanoparticles distributions are depicted in Figures -.
Figure  displays the effect of the Hartman numberHa on the dimensionless velocity. The
presence of a magnetic field normal to the flow in an electrically conducting fluid gives
rise to a Lorentz force, which acts against the flow. Thus the velocity distributions of the
nanofluid are greatly reduced with increasing values of the Hartman number.

http://www.boundaryvalueproblems.com/content/2014/1/2
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Figure 1 Graph of the SRM solutions of the
velocity profiles for different values of Ha.

Figure 2 Graph of the SRM solutions of the
velocity profiles for different values of λ.

Figure 3 Temperature profiles for different
values of Ha.

Figure  presents the effect of λ on the velocity profiles. Increasing the down stream
movement of the plate from the origin, as expected, enhances the fluid velocity. The influ-
ence of themagnetic field parameter on the temperature distribution is shown in Figure .
From this figure, we observe that the temperature profiles increase with increasing values
of the magnetic field parameter. This implies that the applied magnetic field tends to heat
the fluid, thus reducing the heat transfer from the wall.
Figure  shows the effect of increasing the radiation parameter R on the temperature

distribution. We observe in this figure that the thickness of the thermal boundary layer

http://www.boundaryvalueproblems.com/content/2014/1/2
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Figure 4 Graph of the SRM solutions of the
temperature profiles for different values of R.

Figure 5 Influence of Nt on the temperature
profiles.

Figure 6 Graph of the SRM solutions of the
temperature profiles for different values of Nb.

increases as the values of the radiation parameter are increased. Thus thermal radiation
enhances thermal diffusion.
In Figure , we have the influence of the thermophoresis parameter on the tempera-

ture distribution. Increases in this parameter physically imply high temperature gradients.
This in turn results in high temperature distributions within the nanofluid flow. Increas-
ing the values of the Brownian motion parameter Nb results in thickening of the thermal
boundary layer. Thus enhancing the temperature of the nanofluid as can be easily seen in
Figure .

http://www.boundaryvalueproblems.com/content/2014/1/2
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Figure 7 Graph of the SRM solutions of the
nanoparticle volume fraction profiles for
different values of Ha.

Figure 8 Influence of Le on the nanoparticle
volume fraction profiles.

Figure 9 Influence of Nt on the nanoparticle
volume fraction profiles.

The effect of themagnetic field strengthHa on the nanoparticle volume fraction profiles
is shown in Figure . Application of a normal magnetic field results in slowing down of the
nanofluid flow thereby resulting in volumetric increase of the nanoparticles within the
flow as less particles are now transported per given time.
In Figure we depict the effect of the Lewis number on the nanoparticles. Large values of

the Lewis number implies increased values of the Schmidt number which in turn results
in thinning of the solutal boundary layer as can be clearly seen in Figure . Increasing

http://www.boundaryvalueproblems.com/content/2014/1/2
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the thermophoresis as expected results in increase of the nanoparticle volume fraction
profiles. This is displayed in Figure .

5 Conclusion
Numerical analysis has been carried out on MHD boundary layer flow of nanofluids over
a moving surface in the presence of thermal radiation. The governing partial differential
equations were transformed into a system of ordinary differential equations using suitable
similarity transformations. The resultant equations were then solved using the spectral
relaxation method. The accuracy of the SRM is validated against the MATLAB in-built
bvp4c routine for solving boundary value problems as well as previously obtained results.
An excellent agreement was observed between our results and those obtained using other
methods giving confidence to our present results.We observed that the local temperature
rises as the Brownian motion, thermophoresis and radiation effects intensify. Lastly, the
Nusselt number decreases while the Sherwood number increases as the Brownianmotion
and thermophoresis effects are increased.
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Greek letters
α thermal diffusivity of the fluid
ρ fluid density
σ electrical conductivity
σ ∗ Stefan-Boltzman constant
η similarity variable
λ velocity parameter
τ ratio of the nanoparticle heat capacity and the base fluid capacity
μ coefficient of viscosity
ν kinematic viscosity
θ dimensionless temperature

Nomenclature
B0 magnetic field of constant strength
C concentration of the nanoparticles
Cw surface concentration of the nanoparticles
Cf skin-friction coefficient
DB Brownian diffusion coefficient
DT thermophoresis diffusion coefficient
Ha Hartman number
k thermal conductivity coefficient
Ks Rosseland mean absorption coefficient
Le Lewis number
Nb Brownian motion
Nt thermophoresis parameter
Nux local Nusselt number
Pr Prandtl number
qw heat flux from the plate
qm mass flux from the plate
Rex stagnation flow Reynolds number
R radiation number
Shx Sherwood number
(x, y) cartesian coordinates
(u, v) velocity components
U free stream velocity
T temperature
Tw moving surface temperature
T∞ free stream temperature
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