Guo Boundary Value Problems 2014, 2014:37 0 Boundary Value PrOblemS

http://www.boundaryvalueproblems.com/content/2014/1/37 a SpringerOpen Journal

RESEARCH Open Access

Variational approach to a class of impulsive
differential equations

Dajun Guo’

"Correspondence:
guodj@sdu.edu.cn
Department of Mathematics,
Shandong University, Jinan,
Shandong 250100, People’s
Republic of China

@ Springer

Abstract

In this article, the author discusses the existence of solutions for a class of impulsive
differential equations by means of a variational approach different from earlier
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1 Introduction
The theory of impulsive differential equations has been emerging as an important area of
investigation in recent years [1-3]. There is a vast literature on the existence of solutions
by using topological methods, including fixed point theorems, Leray-Schauder degree the-
ory, and fixed point index theory [4—15]. But it is quite difficult to apply the variational ap-
proach to an impulsive differential equation; therefore, there was no result in this area for
a long time. Only in the recent five years, there appeared a few articles which dealt with
some impulsive differential equations by using variational methods [16—20]. Motivated
by [17], in this article we shall use a different variational approach to discuss the existence
of solutions for a class of impulsive differential equations and we only deal with classical
solutions.

Consider the boundary value problem (BVP) for the second-order nonlinear impulsive

differential equation:

-u"(t) =f(t,u(t), Vte],
Aulpy =cx  (k=1,2,3,...,m),
Ay =dy (k=1,2,3,...,m),
u(0) = u(1) =0,

where J =[0,1], 0 <ty <+ <ty <~ <tu< L, ] =]\{t,.... 5., tm}, cx and di (k =
1,2,...,m) are any real numbers, f(¢,u) is a real function defined on J x R, where R de-
notes the set of all real numbers, and f(t, «) is continuous on /' X R, left continuous at

t=t,le.

lim  f(t,w) =f(t, u)

t—>t—0,w—u
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forany u € R (k=1,2,...,m), and the right limit at ¢ = # exists, i.e.

lim  f(t,w)

t—=t+0,w— U

(denoted by f (£, u)) exists for any u € R (k=1,2,...,m). Aul,—;, denotes the jump of u(t)
att =ty ie.

Aulp—yy = u(t;(’) - u(t,:),

where u(¢) and u(t; ) represent the right and left limits of u(¢) at = f, respectively. Sim-
ilarly,

Aoy = (8) = v (&)

where #/(tf) and u/(;) represent the right and left limits of #/(¢) at ¢ = , respectively. Let
PC[J,R] = {u: uisareal function on J such that u«(¢) is continuous at ¢ # #, left continuous
at ¢ = t, and u(t;) exists, k =1,2,...,m} and PC[J,R] = {u € PC[],R] : t/(¢) is continuous
att #tr and u/(¢}), o/ (¢) exist, k =1,2,...,m}. A function u € PC*[J,R] N C*[J', R] is called
a solution of BVP (1) if u(¢) satisfies (1).

Let us list some conditions.

(Hy) There exist p >2,a >0 and b > 0 such that
[f(t, u)| <a+bluff, VteJ,ueR.
(Hy) There exist 0 < ¢ < % and d > 0 such that
u
/ f(t,v)dvfcu2+d, Vie],ueR.
0

Lemma 1 u € PC'[J,R] N C?[J',R] is a solution of BVP (1) if and only if v € C[J,R] is a
solution of the integral equation

1
v(t) = / G(t, S)g(s, v(s)) ds, Vte], (2)
0
where
(t,5) = s1-¢), VO<s<t<I; 3)
T ta-s), Yo<t<s<l,
gtv)=f(t,v+a(t)-a(l)t), Vte],veR (4)
and
v(t) = u(t) — a(t) + a(l)t, a(t) = Z [ck +(t— tk)dk], Vte]. (5)

O<ty<t
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Proof For u € PC'[J,R] N C[J', R], we have the formula (see [21], Lemma 1(b))

u(t) = u(0) + t'(0) + /t(t —s)u’(s)ds
0

O A{[u(&) - u@)] + - e[ () - # ()]}, VeeT. (6)

O<ty<t

So, if u € PC'[J,R] N C*[J', R] is a solution of BVP (1), then, by (1) and (6), we have

u(t) =t/ (0) - /0 (t = s)f (s, u(s)) ds + Z [cx + (¢ — tx)dk]

O<ty<t

=t/ (0) — /t(t - S)f(s, u(s)) ds+al(t), Vte]. (7)
0

It is clear, by (5), that

at)=0, Yo<t<t;  al)=) [+ (1-t)di], (8)
k=1
SO
V(0) = &/ (0) + a(1). 9)

Substituting (9) into (7), we get
v(t) = v/ (0) — /t(t - s)f(s, u(s)) ds
0
=t/(0) - /t(t - s)f(s, v(s) + a(s) — a(l)s) ds
0
=1/(0) - /t(t -9)g(s,v(s))ds, Vee]. (10)
0
By virtue of (5), we see that v € C[J,R] (in fact, v € C'[J, R]) and
v(1) = u(1) —a() +al) =u(1) =0,
so, letting ¢ = 1 in (10), we find
1
V(0) = / a- S)g(s, V(s)) ds. (11)
0
Substituting (11) into (10), we get
1 t
v(t) = / t(1- s)g(s, V(s)) ds + / s(1- t)g(s, v(s)) ds
¢ 0
1
= / G(t, s)g(s, v(s)) ds, Vte],
0

so v(t) is a solution of the integral equation (2).
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Conversely, suppose that v € C[/, R] is a solution of (2), i.e.

¢ 1
v(t)=(1- t)/ sg(s, v(s)) ds + t/ 1- s)g(s, v(s)) ds, Vte]. 12)
0 ¢

By (4), it is clear that g(¢, v(¢)) is continuous on [/, so differentiation of (12) gives

V() = - /Otsg(s, v(s)) ds + (1 - t)tg(t, v(t))
1
+ / (1 -9)g(s,v(s)) ds — (1 - t)g(£, v(2))
t 1
= —/ sg(s,v(s)) ds + / 1-9g(s, v(s)) ds, Vvte]. (13)
0 t
Differentiating again, we get

V'(8) = —tg(t,v(0)) - A - )g(t,v(1)) = —g(t,v(®)), Vte]. (14)

From (13) we see that v/(¢{) and v/(¢;) (k=1,2,...,m) exist and

ti 1
V() =v () = —/0 sg(s,v(s)) ds + / (1 -9)g(s,v(s)) ds. (15)
Lk

It follows from (4), (5), (12), (14), and (15) that u € PC'[J,R] N C2[J',R] and u(t) satis-
fies (1). a

Lemma?2 Let condition (H;) be satisfied. Ifv € LP[], R] is a solution of the integral equation
(2), thenv e C[J,R].

Proof 1t is clear, for function a(t) defined by (5),
m
a(t)] <ao, Vte];  ag=Y (ol + (1 —te)ldil). (16)
k=1

By (4), (5), (16), and condition (H;), we have

lg(t,v)| < a+b|v+alt) —d(l)t|p_l <a+b(lv| + Zao)p_l

<a+ b(2 max{|v|,2czo})p71 <a+ 172‘”_1(|V|1’_1 + (2610)‘”_1), Vte],veR,
S0,
lgt,v)| <ar+biv)P™', Vee],veR, 17)
where

a=a+ b22(p’1)ag_l, bl = b2p’1.
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It is clear that g(t,v) satisfies the Caratheodory condition, i.e. g(t,v) is measurable with
respect to ¢ on J for every v € R and is continuous with respect to v on R for almost ¢ € J
(in fact, g(¢, v) is discontinuous only at t = #; (k =1,2,...,m)), so (17) implies [22, 23] that
the operator g defined by

@) =g(t,v(t)), Vte] (18)

is bounded and continuous from L?[J, R] into L1[], R], where 1% + é =1(g>1).
Let v € L?[], R] be a solution of the integral equation (2). Then by the Hélder inequality,

1 s :
’V(tl) - v(tz)‘ < (/ ’G(tl,s) - G(tz,S)‘p ds> (/ ’g(s, v(s))’qu> , Y,k €],
0 0

which implies by virtue of the uniform continuity of G(¢,s) onJ x J thatve C[J,R]. O

2 Variational approach
Theorem 1 If conditions (H;) and (H,) are satisfied, then BVP (1) has at least one solution
u € PCY[J,R] N C*[J,R].

Proof By Lemma 1 and Lemma 2, we need only to show that the integral equation (2) has
a solution v € L?[], R]. The integral equation (2) can be written in the form

v=Ggv, 19)

where G is the linear integral operator defined by

1
(Gv)(t) :/ G(t,s)v(s)ds, Vte], (20)
0

and the nonlinear operator g is defined by (18), which is bounded and continuous from
I?[],R] into L[], R] ( 117 + % =1). It is well known that G(¢, s) is a L? positive-definite kernel
with eigenvalues {#} (n=1,2,3,...) and, by the continuity of G(t,s), we have

/01 /Ol[G(t,s)]p dsdt < o0, (21)

s0 [22, 23] the linear operator G defined by (20) is completely continuous from L2[J, R]
into L?[J, R] and also from L[], R] into L?[J,R], and G = HH*, where H = G? (the positive
square-root operator of G) is completely continuous from L[/, R] into L?[], R] and H* de-
notes the adjoint operator of H, which is completely continuous from L[/, R] into L%[J,R].
We now show that (19) has a solution v € L?[], R] is equivalent to the equation

u=H*gHu (22)
has a solution u € L2[J,R]. In fact, if v € L[], R] is a solution of (19), i.e. v = HH*gv, then

H*gv = H*gHH*gv, so, u = H*gv € L*[],R] and u is a solution of (22). Conversely, if u €
L2[],R] is a solution of (22), then Hu = HH*gHu = GgHu, so, v = Hu € L*[J,R] and v is a
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solution of (19). Consequently, we need only to show that (22) has a solution u € L%[J, R].
It is well known [22, 23] that the functional ® defined by

1 L e(H)
D(u) = E(u, u) —/0 dt/o gt,v)dv, YuelLl*[J,R] (23)
is a C! functional on L[/, R] and its Fréchet derivative is
&' (u) =u—H*gHu, YuelL®[],R]. (24)
Hence we need only to show that there exists a u € L2[J, R] such that ®'(x) = 8 (6 denotes

the zero element of L2[/,R]), i.e. u is a critical point of functional ®.
By (4), (5), (16), and condition (H;), we have

u u+a(t)-a(l)t a(t)-a(l)t
/ g(t,v)dv:/ f(t,w)dw—/ fe,w)ydw, Vte],ueR (25)
0 0 0

and
a(t)-a(l)t
‘ / ftw) dw‘ < |a(t) - aQ)e| (a + bla(t) - a()e]"™)
0
<2ag(a+b2'ah ") =ay, Vte]. (26)

So, (25), (26), and condition (H;) imply

(Hu)(t) (Hu)(t)+a(t)-a(l)t
/ glt,v)dv < / ft,w)dw + ay
0 0

< c{(Hu)(t) +a(t) — a(l)t}2 +d+ay
< 2c{[(Hu)(t)]2 + [a(t) - a(l)t]z} +d+ay

< 2c[(Hu)(®)]" + 8cal +d +a, VueL*[J,R],te]. (27)
It is well known [24],
1
Gl =4 =—, (28)
T

where G is defined by (20) and is regarded as a positive-definite operator from L[], R] into
L2[J,R], and A; denotes the largest eigenvalue of G. It follows from (23), (27), and (28) that

1
D) = 5 (u,u) = 2e(Hu, Hu) - 8cay —d —a,
1 1 2c
= E(u,u) —2c(Gu,u) - 8cal —d —ay > E(u,u) - F(u,u) ~8cay—d—ay
1 2
= (5——2>Ilullz—80aé—d—a2, Yu € L?[J,R], (29)
i1

which implies by virtue of 0 < ¢ < ”4—2 (see condition (H,)) that

lim ®(u) = oco. (30)

lluefl =00

Page 6 of 10
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So, there exists a 7 > 0 such that
D) > DO)=0, VuelL?[,R],|ul>r. (31)

It is well known [22, 23] that the ball T(9,r) = {u € L*[J,R] : || u|| < r} is weakly closed and
weakly compact and the functional ® (i) is weakly lower semicontinuous, so, there exists
u* € T(0,r) such that

(u*) = MEi]{l(g,r) D(u) < D6). (32)

It follows from (31) and (32) that

CD(M*) = ueirzl[g,m CD(M)

Hence ®'(u*) = 6 and the theorem is proved. d
Example 1 Consider the BVP

-u"(t) = %u(t) sin(t —u(t)) -3, Vte],
Aty =k (k=1,2,...,m),

At gy =di (k=1,2,...,m),

u(0) =u(1) =0,

(33)

where J =[0,1], 0 <ty < <t < <tu< L, ] =\{t,....0s.. ., tm}, cx and dy (k =
1,2,...,m) are any real numbers.

Conclusion BVP (33) has at least one solution # € PC'[J,R] N C2[J,R].
Proof Evidently, (33) is a BVP of the form (1) with
9 . s
ft,u) = Eusm(t —u)—t°. (34)
It is clear that f € C[J x R, R]. By (34), we have
9
[f(t,u)|§5|u|+1, Vie],ueR. (35)
Moreover, it is well known that
1 2
|u|§§(1+u ), Yu e R. (36)
So, (35) and (36) imply that
9 , 13
[f(t,u)| <-u'+—, VteJ,ueR,

4 4

and consequently, condition (H;) is satisfied forp = 3,a = % and b = %. On the other hand,
choose ¢; such that

0<€0<%(7‘L’2—9). (37)

Page 7 of 10
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For |u| > %, we have |u| < eyu?, so,
, 1
lu| <eou”+ —, VueR. (38)
€0
By (35), we have
“ 9
/f(t,v)dv51u2+|u|, VteJ,ueR. (39)
0

It follows from (38) and (39) that

u 1
/f(t,v)dv§<2+eo)u2+—, VieJ,ueR. (40)
0

€0

Since, by virtue of (37),

9 w2
O0<—=+¢€<—,
4 4
we see that (40) implies that condition (H,) is satisfied for ¢ = % +¢€oand d = % Hence,
our conclusion follows from Theorem 1. O

By using the Mountain Pass Lemma and the Minimax Principle established by Am-
brosetti and Rabinowitz [25, 26], we have obtained in [23] the existence of a nontrivial
solution and the existence of infinitely many nontrivial solutions for a class of nonlinear
integral equations. Since (2) is a special case of such nonlinear integral equations, we get
the following result for (2).

Lemma 3 (Special case of Theorem 1 and Theorem 2 in [23]) Suppose the following.
(a) Thereexist p>2anda>0,b>0 such that

|g(t,v)| <a+bpll, Vte],veR.

(b) Thereexist0 <t < % and M > 0 such that
/ git,wydw <tvg(t,v), Vte],|v|=M.
0

(c) ‘@ — 0 as v — 0 uniformly fort € ] and '@ — 00 as |v| — oo uniformly fort € J.

Then the integral equation (2) has at least one nontrivial solution in L?[],R]. If, in addi-
tion,

(d) gt,—v) = —g(t,v),Vte],veR.

Then the integral equation (2) has infinite many nontrivial solutions in L[], R].

Let us list more conditions for the function f (¢, u).

(H3) Thereexist0 <1 < % and M > 0 such that

/Mf(t,v+zz(t) —a()t)dv < tuf (t,u+a(t) —a(l)t), Vie],|ul>=M.
0

Page 8 of 10


http://www.boundaryvalueproblems.com/content/2014/1/37

Guo Boundary Value Problems 2014, 2014:37
http://www.boundaryvalueproblems.com/content/2014/1/37

(H,) [eerd0-eDD 6 a5 4 — 0 uniformly for £ € J, and [&0=400 o6 a5 || — 00
uniformly for ¢t € /.

(Hs) f(t,—u+a(t) —a@)t) =—f(t,u +a(t) —a()t),Ve€ ], u e R.

Theorem 2 Suppose that conditions (Hy), (Hsz), and (Ha) are satisfied. Then BVP (1) has
at least one solution u € PC'[J, R1N C[J', R]. If, in addition, condition (Hs) is satisfied, then
BVP (1) has infinitely many solutions u, € PC*[J,R] N C*[J,R] (n=1,2,3,...).

Proof In the proof of Lemma 2, we see that condition (H;) implies condition (a) of Lem-
ma 3 (see (17)). On the other hand, it is clear that conditions (Hs), (Hs), (Hs) are the same
as conditions (b), (c), (d) in Lemma 3, respectively. Hence the conclusion of Theorem 2
follows from Lemma 3, Lemma 2, and Lemma 1. O

Example 2 Consider the BVP

)= [u(t) - t]%, VO <t<3;
[u(t) +3t-3]%, Vi<t<l,
Aul,_1 =1, (41)
Au’|t:; =4,
u(0) = u(1) = 0.

Conclusion BVP (41) has infinite many solutions u,, € PC'[J,RINC?[J',R] (n =1,2,3,...).

Proof Obviously, (41) is a BVP of form (1). In this situation, / = [0,1], m =1, t = %, J =
(0,1\{3}, c1 =1, d1 = -4, and

3 1,
(u—1)°, YO<t<g3; 42)
(w+3t-3)° Vi<r=<Ll

f(t’u): {

It is clear that f(¢, ) is continuous on J' x R, left continuous at ¢ = £, and the right limit
f(tf,u) exists. By (42), we have

3 3
[f(t,u)| < (Iul + %) < (2max{|u|,§})

3 3 3 ’ 3
<P+ () )=8ul+27, ViejueR,

so, condition (Hj;) is satisfied for p = 4, a = 27 and b = 8. By (5), we have
0, Vo<t<i;
a(t) = { -2 (43)
t=<

50, a(1) = -1 and (42) and (43) imply
ftu+a®)-a)t)=u’, Vte]ueR, (44)

and, consequently, (Hs) is satisfied for 7 = % and any M > 0. On the other hand, from (44)
we see that conditions (Hy) and (Hs) are all satisfied. Hence, our conclusion follows from
Theorem 2. O

Page 9 of 10
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