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1 Introduction
We are concerned with the initial-boundary value problem for a p-Laplacian evolution

equation with gradient source and absorption terms,

= div(|VulP>Vu) + A Vul” - Bu?, x€Q,t>0, (L.1)
ulx,t)=0, xe€dt>0, (1.2)
ulx,0) =up(x), x€9, (1.3)

where1<p<2,0<qg<1,A8,r>0,QCRN (N >1)is abounded domain with smooth
boundary and uy(x) € L*(2) N Wé'p (2) is a non-negative function. The symbols || - |,
| - ll1,s denote L5(S2), W5(S2) norms, respectively (where s > 1), and |2| denotes the mea-
sure of Q.

Equation (1.1) appears in the study of non-Newtonian fluids through porous media,
combustion theory, and the turbulent flow of a gas in porous medium. In the non-
Newtonian fluid theory, the quantity p is a characteristic of the medium. Media with p > 2
are called dilatant fluids and those with p < 2 are called pseudo plastics. If p = 2, they are

Newtonian fluids. The p-Laplacian operator also appears in the study of torsional creep
3
5;
glacial sliding (p € (1, %], see [3]). Many nonlinear diffusion phenomena are described by

(elastic for p = 2, plastic as p < 2, see [1]), flow through porous media (p = 5, see [2]) or
the cooperation and interaction between the nonlinear source term and absorption term
during the diffusion. From a physical point of view, A|Vu|" is called gradient source term
and —Buf represents an absorption term.

The extinction phenomenon is an important property for solutions of many evolution-
ary equations, especially for fast diffusion equations. In 1974, Kalashnikov [4] consid-
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ered the Cauchy problem of a semilinear equation with absorption term u, = Ay — u4
and firstly introduced the definition of extinction for its solution, that is, there exists a
finite time T > 0 such that the solution is nontrivial on (0, T') and then u(x, #) = 0 for all
(x,2) € Q x [T, +00). In this case, T is called the extinction time. Later, many authors be-
came interested in the extinction and nonextinction of all kinds of evolutionary equations.
We have the following parabolic equation without gradient source term:

= div(|Vull>Vu) + au’ - pu?, x€Q,t>0, (1.4)

where r > 0 and 0 < g < 1. In the case A = 8 = 0, Dibenedetto [5] and Yuan et al. [6] proved
that the necessary and sufficient condition for the extinction to occur is 1 < p < 2. For the
case A = 0, Gu [7] proved thatif 1 < p < 2 or 0 < g < 1, the solutions of the problem vanish in
finite time, but if p > 2 and g > 1, there is nonextinction. Tian [8] and Yin et al. [9] showed
that r = p — 1 is the critical exponent of the weak solution for the case 8 = 0. But all the
results are limited to a local range and a higher dimensional space, while a precise decay
estimate has not been given. Recently, Fang and Li [10] considered equation (1.4) with
q =1, when the diffusion term was replaced by a doubly degenerate operator in the whole
dimensional space, and they showed that the extinction of the weak solution is determined
by competition of source and absorption terms. They also obtained the exponential decay
estimates which depend on the initial data, coefficients, and domains. Thereafter, they
obtained the same results for a class of nonlocal problems, see [11, 12].

Recently, many researchers have devoted studies to the occurrence of such a phe-
nomenon for a class of nonlinear parabolic equations with gradient terms. For example,
Benachour et al. [13] considered the semilinear heat equation with absorption term,

ur=Au—ArVul|", x€,t>0, (1.5)

subject to (1.2) and (1.3) and proved that the sufficient condition for the extinction to
occur is 0 < r < 1 by using the upper and lower solutions methods. Lagar et al. [14] studied
the qualitative properties of non-negative solutions to the Cauchy problem for the fast
diffusion equation with gradient absorption

u = div(|VulP?Vu) - [Vul?, xeRY,t>0, (1.6)

with 1 < p <2, g > 0 and obtained the result that the solution of (1.6) either remains pos-
itive as ¢t — oo for g > p — % or vanishes in finite time for 0 < ¢ < £. For the porous
medium equation with gradient source term and without absorption term, the research
of the extinction and nonextinction of solutions has also been performed (see [15]).

Motivated by the works mentioned above, and because there is little literature on the
study of the extinction and nonextinction properties for parabolic equations with nonlin-
ear gradient source and absorption terms, in this paper, our goal is to establish the suffi-
cient conditions about the extinction and nonextinction of solutions for the problem (1.1)-
(1.3) in the whole dimensional space. By combining the L”-integral norm estimate method
and the technique of differential inequalities, we find that the critical exponent of extinc-
tion for the non-negative weak solution is determined by the competition of nonlinear
terms for 1 < p < 2, and decay estimates depend on the choices of initial data, coefficients,
and domain. More precisely, we obtain the following results.
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Theorem 1 Assume thatl<p<2,q=landp-1=r.

(1) If N = 2, the non-negative weak solution of problem (1.1)-(1.3) vanishes in finite time
for any non-negative initial data uy provided that ) is sufficiently small,and we have the
following.

(a) ]fN+2 <p<2,

“M(',f)“ZS|:(||Mo||§_p+%)e(p2) ?]2, tel0,Ty),

“u(-, t) ||2 =0, tel[T},+).

2N
b) [f1<l9§m:

1

C, C, |2r
JuC, )], < |:(||Mo||1+1 + §> =26 FZ] , tel0,Ty),
0,

[ut.0)] =0, telTo+o0).

Herel = wﬁﬂ, Gy, Th, Cy, and T, are given by (3.5), (3.6), (3.11), and (3.12),
respectively.
(2) If N =1, the non-negative weak solution of problem (1.1)-(1.3) vanishes in finite time
for any non-negative initial data uy provided that X is sufficiently small, and

1
, C Cs|2»
|ut.0)], < [(nuoni Py g"’)e(”-wt— FB] ., tel0,Ts),

||l/l(,t) ||2 = 01 te [T3,+OO),
where Cs and T are given by (3.15) and (3.16), respectively.

Theorem 2 Assumethatl<p<2,q=landp-1<r<¥%.

(1) If N = 2, the non-negative weak solution of problem (1.1)-(1.3) vanishes in finite time
provided that ug (or A or |2|) is sufficiently small, and we have the following.

@) If &5 <p<2,

lut 0], < lluollze™?, ¢ e[0,Ta),

L

fut, = [ (Jut, ol + S )ermmer - S ez,

||u(~, £) ||2 =0, tel[Ts +00).

N
) If1<p=355

|uC 1), < lluollae™, te[0,Te),

.

C Cs >
Ja 0y = | (e To) [+ 5 o2 - 2 v my, T,
B B

[ut.0)], =0, telTr+o0),

where [ = ;\”1” Cy, Ts, Cs, and Ty are given by (3.17)-(3.20), respectively.

Page 3 of 17


http://www.boundaryvalueproblems.com/content/2014/1/39

Xu and Fang Boundary Value Problems 2014, 2014:39 Page 4 of 17
http://www.boundaryvalueproblems.com/content/2014/1/39

(2) If N =1, the non-negative weak solution of problem (1.1)-(1.3) vanishes in finite time
provided that uy (or A or |2|) is sufficiently small, and

|u(, )], < luoll2e™!,  te[0,Ts),

1
“”‘(':t) ”2 =< |:<”M(, Ts)”;ip + %)e(pz)ﬁ(tm - %] ’ p, t € [T, To),

(> 8) ||2 =0, te[Ty,+00),
where Cg and Ty are given by (3.21) and (3.22), respectively.

Theorem 3 Assumel<p<2,q=1and p—1>r. Then the non-negative weak solution of
problem (1.1)-(1.3) cannot vanish in finite time for any non-negative initial data uy provided
that X is sufficiently large.

Remark 1 According to Theorems 1-3, we observe that p — 1 = r is still the critical expo-
nent of extinction for the solution of (1.1)-(1.3) when1<p <2 and g =1.

Remark 2 Assumethatp > 2, g = 1, then the non-negative weak solution of problem (1.1)-
(1.3) cannot vanish in finite time for any » > 0 and non-negative initial data. This result can
be extended to the case g > 1 (the detailed proof can be found in [7]).

Theorem 4 Assume that1<p<2,0<q<1andp-1-=r, the non-negative weak solution
of problem (1.1)-(1.3) vanishes in finite time for any non-negative initial data uy provided
that A is sufficiently small.

Theorem 5 Assumethatl<p<2,0<g<]1.
2
(1) If N > 2, Azj—fz<p<2with %m<r<g or1<‘19§]\2[—1+\[2 with
2
% < r < %, the non-negative weak solution of problem (1.1)-(1.3) vanishes

in finite time provided that uy (or A or |S2|) is sufficiently small or B is sufficiently large
(where s > W).

(2)IfN =1, % <r< %, the non-negative weak solution of problem (1.1)-(1.3)
vanishes in finite time provided that uy (or A or |2|) is sufficiently small or B is sufficiently

large.
Remark 3 If p —1 < g <1, the conditions in Theorem 5 imply that r > p — 1.

Remark 4 Assume that p =2, 0 < g < 1; Theorem 4 and Theorem 5 are still established.

20*q+Np(p-q-1)
2p(1+q)+2N(p—q-1)
solution of problem (1.1)-(1.3) vanishes in finite time provided that 1, (or X or |2]) is suf-

ficiently small or g is sufficiently large (as 1\% < 2 < p, the proof of this result is the same

as the proof for the case % < p <2 in Theorem 5(1)).

Remark 5 Assumethatp >2,0<g<1and <r < £; the non-negative weak

rq PPa+N(p-1)(p-g-1)
g <7 = TplgD)+Np—g-D)
negative weak solution of problem (1.1)-(1.3) vanishes in finite time for any non-negative

Remark 6 Assume that p >2,0<g<1, and r < £, the non-

initial data uo provided that A (or |€2|) is sufficiently small or B is sufficiently large (the
detailed proof can be referred to [16]).
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Remark 7 Ifr= ’—2’, Theorem 2, Theorem 5, and Remark 5 will be still established and the
choice of |€2| will not affect the extinction behavior of solutions any longer.

Remark 8 Theorems 1-5 all require that #y or A or |Q2| should be sufficiently small or 8
should be sufficiently large, and we will give more concrete conditions to satisfy in the
later proofs.

The outline of the paper is as follows. In Section 2, we firstly give the definition of weak
solutions for problem (1.1)-(1.3), and then give some preliminary lemmas. Then we prove
Theorems 1-3 and Theorems 4-5 in Section 3 and Section 4, respectively.

2 Preliminary results

Due to the singularity of (1.1), problem (1.1)-(1.3) has no classical solutions in general, and
hence it is reasonable to find a weak solution of the problem. To this end, we first give the
following definition of a weak local solution.

Definition 1 We say that a non-negative nontrivial function u(x, t) defined in Qr = Q2 x
(0, T) is a weak solution of problem (1.1)-(1.3) if the following conditions hold:

(i) u € C(0, T; L®(R2)) N LF(0, T; WP (R)), u; € LX(0, T; L2(R));

(ii) For any 0 < t; < t; < T and any test function 0 < ¢ € C3°(Qr)

(5]
/ ux, tr)ex, t) dx = / u(x, t)e(x, tl)dx+/ /{ugos— |Vu|p_2Vu~V<p}dxds
Q Q n Ja

2
+/ /{A|Vu|r—,3uq}<p(x,s)dxds;
151 Q

(iii) u(x, ) = up(x) a.e. x € Q.

We can also define the weak lower solution and the weak upper solution of problem
(1.1)-(1.3) in the same way except that the ‘=" in Definition 1 is replaced by ‘<’ and ‘>
respectively. Similar to the analysis in [17] and [14, Section 6], the existence in time of a
non-negative weak local solution of problem (1.1)-(1.3) can be constructed by the usual
vanishing viscosity method which would satisfy a comparison principle.

Before proving our main results, we show some preliminary lemmas and the Gagliardo-
Nirenberg inequality which are very important in the following proofs of our results. As
for the proofs of these lemmas, we will not repeat them again (see [10-12, 18]).

Lemma 1 Let y(t) be a non-negative absolutely continuous function on [0, +00) satisfying

dy

dt+ayk§0, t>0;  y(0)>0,

where o > 0 is a constant and k € (0,1), then we have the decay estimate
1
2O <[y KO —a- 0] TF, tel0,T.),
y(£) =0, te[Ty +00),

1-k
where T, = '2(1—_(](3;.
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Lemma 2 Let y(t) be a non-negative absolutely continuous function on [0, +00) satisfying

d
d_zwfﬂsygo, t=To;  y(To)20

where o, 8 > 0 are constants and k € (0,1), then we have the decay estimate

y(t) < [(J’lk(To) ¥ %)e“”ﬂ“w - %] Y telToT),

¥(t)

€ [T, +00),
where T, = =p5 k In(1 + yl K(To)) + To.

Lemma 3 Let 0 <k <m <1, y(t) > 0 be a solution of the differential inequality

dy
$+ayk+ﬁy<yy, t>0;  ¥0)=y>0,

where «, B > 0, y is a positive constant such that y < ay'é’m, then there exists n > 3, such
that

0 <y(t) <yoe™™, t>0.

Lemma 4 Let «,8,y >0 and 0 < m < k < 1, then there exists at least one non-constant
solution of the ODE problem

d
d—i+ayk+ﬁy=yy”’, t>0; y(0)=y0>0, y(¢)>0,t>0.

Lemma 5 (Gagliardo-Nirenberg inequality) Suppose that u € Wé"m(Q), 1<m<+00,0<

j<k1>1>1_ X then we have
| D], < C|[ D ul]y el

, , . 1 ] 1_k
whereClsaconsmntdependmgonlyonN m,r,j, Kk, qand— =L +6(%—ﬁ) 9,0<6<1.
Ifm< thenqe[ lfm> thenqe[

N+r/’N (k —j)m +OO]

N+r]’
3 Thecase1<p<2,g=1
3.1 Proof of Theorem 1
1) IfN > 2 we have the following.
(a) If 2 N+2 < p < 2, multiplying (1.1) by u# and integrating over 2 yield

1d
— [lull3 + IIVu||”+/3IIuII2— /uIVMI’dx, (3.1)
2 dt o
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since p — 1 = r, we can easily get Iﬁ = p — 1 < 1. By the Young inequality, we obtain

1+
/ wlVul” dx < ]| Vull2 + C(e)lull,. ",
; :

p-2r

=elVully + Ce)|Q] e ||u||2 &

=e|[Vulll + C(<’?)|Q| “ulh, 3.2)
substituting (3.2) into (3.1) leads to
1d » P
5 dtllullz + (1= 2e)|Vullh + Bllull; < )\C(8)|Q| S lully.

Here we can choose ¢ small enough such that 1 — A¢ > 0. By the Holder inequality and the

Sobolev embedding inequality, we have
1_N—p 1_N-p
lloella < 19212 R Jlull o < ColS2> 7 [Vt (3.3)
-p

then we substitute (3.3) into (3.1) to obtain

1d Py N2

Sl + [A=2e)C" 1217 F —ac(ee 7 Jiuls + Blull3 <o, (3.4)
ie.

d -

Sl + Cilluls™ + Bllull2 <0,

t
where

-p Np p 2p
Cr=(1-xe)CH|QIN 2 —AC(e)|R] . (3.5)

Once ¢ is fixed, we can choose A small enough such that C; > 0. By Lemma 2, we can obtain
the desired decay estimate for

1 B 2
T, = m1+—wnp) (3.6)
L 2-pp ( a
(b)Ifl<p< N+2, multiplying (1.1) by ! (I = ZN‘(P& > 1) and integrating over 2 yield
+ lpp + r
ﬁ%” iy + muw G 17 Bl = / u'|Vul” dx. (3.7)
By the Young inequality, we have
I-1\" - el
/MIIVM|’dx:<p+ ) /ul V' |" dx
Q p Q

SHVuI%H Hi + C(s)/ U7 dx
Q

Page 7 of 17
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r

+[-1
e[ VT [+ Cle) )T u,
= e Va7 + clerH ult (3.8)

then we substitute (3.8) into (3.7) to get

lpp pl-1
I+1 r 1
P AL [W—M]HW 7+ Bl
1-r +p—
< AC(e)| Q| lull 37 (39)

Here we can choose & small enough such that = 110” — L& > 0. By the Sobolev embedding

17
inequality, we have

p+l-1
[ | . = Coo[Vau™»
N-p

’

p

-1
Copllullyih < | Va7 |
" N-p

By the choice of /, we have
+1-1
Cop ™ < | va [, (3.10)

I+1

Substituting (3.10) into (3.9) leads to

—Nullz + Collullyy + Bllullia <0,

dt
where
cy_qm[@ %ﬁ xg}—xcwngﬁi. (3.11)

Once ¢ is fixed, we can choose A small enough such that C; > 0. By Lemma 2, we can
obtain the desired decay estimate for

m0+£W%MJ (3.12)

T, =

1
(2-p)B

(2) If N = 1, multiplying (1.1) by #* and integrating over €2, and then using the Young
inequality, we have

+ ka +k-1 .
P ldt” ullf] + [m AS}HVM 7 || + Bllulk!

< AC(e)|Q B [lull 27, (3.13)

By the Sobolev embedding theorem, we have

p+k-1
[

k-1
<y”Vu p

||d v’
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_ p+k-1 prkl
14 p||”||(p+k_1)d = ”VM »
p

p
}p, (3.14)
where y >0, d > p. Here setting k =1, d = 2 leads to

illull + Cllully™ + Bllully <0
dt 2 3 2 2=Y
where
Cs=(1-28)y ™ —AC(e)|Q . (3.15)

Once ¢ is fixed, we can choose A small enough such that C; > 0. By Lemma 2, we can
obtain the desired decay estimate for

Ts = m ln<1 + C% ||uo||§’”). (3.16)

3.2 Proof of Theorem 2
(1) If N > 2, we have the following.
(a) If % < p <2, multiplying (1.1) by u# and integrating over 2 yield

d
Mnun%||W||§+ﬁ||u||§=A/Qu|w|’dx,
and substituting (3.2) and (3.3) into the above equality gives

1 d N-p p p=2r

- N-p_p 1+55
5$||u||§+(1—)\g)COP|§2| N2 ully + Bllul; < AC()IQ12P ull, P,

p-2r

d _ N-p_p - oo
E||M||2+(1—)~8)Cop|9| N2 uly T+ Bllully < AC(e) Q177 [[ul|2

By Lemma 3, there exists a; > 8 such that
0 < |lulla < lluoll2e™, t>0,

provided that

(1-2)G 191 % 4 ]

ol < [ -
AC(e)|R21 20

Furthermore, there exists T, > 0 such that

N-p p p=2r L _p+l
-8 =

(1-18)Co IR N % — AC(e) 12207 || ]

— —2r r
> (1-26)C? 121 T8 — AC(e)|R1 577 (Jluo e ™) P77 = Cy 5 0 (3.17)
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holds for ¢ € [Ty, +00). Therefore, when ¢ € [Ty, +00), we have
d P
%Ilullz + Cyllully ~ + Bllull2 < 0.

By Lemma 2, we can obtain the desired decay estimate for

T; =

o —lp)ﬁ ln(l + C% ||u(-, T4)||§_p> + Ty (3.18)

(b)Ifl<p=< N+2, multiplying (1.1) by #! (I = % > 1) and integrating over 2 yield

l+1 lpp

——|| I ||W’%H ||”+/3||u||l”=A/ul|w|’dx
Ivide" T s P b1 Q ’

Substitute (3.8) and (3.10) into the above equality we obtain

r

W el
ol ||51%+[ T xe}cognunf; + Bllulld < ACEIRIT ul )],

l—ldt (p+1-

ie.
d l 2r _r
Ellullm + [(p ji P )»S]Coopllulll+1 + Bllullm < AC(S)IQI el -

By Lemma 3, there exists @y > 8 such that
0 < llull < lluollie™ ', ¢=0,

provided that
C(;Op( _Z’f )"8) ——p+1
lluollzn < |:—(p i ] .
AC(e)|Q2| &)

Furthermore, there exists T > 0 such that

Ip?
|:(p+l—1)P

r—p+1
—/\E]Coo AC(S)IQI T ullfy

lpP — p-2r N 1
= [(p+l—1)p AS]COS_)‘C(EHQW“ @ ([luto |l ae” 2Tﬁ)"’ wr

- C5>0 (3.19)

holds for ¢ € [Ty, +00). Therefore, when ¢t € [T, +00), we have

el + Csllull?,) + Bllullia 0.

By Lemma 2, we can obtain the desired decay estimate for

T, =

@ _lp)ﬂ In <1 + = |ut, To)| 7 ) + Te. (3.20)

Page 10 of 17
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(2) If N = 1, multiplying (1.1) by #* and integrating over 2 yield

” ||/<+1 (pp

{1 g IV 1 Bl = [ vy ds

1
k+1dt

If we substitute (3.8) and (3.14) into the above equality, we have as a result

kp? _ k-1
k+1dt” ully + [m—m}y PllullF7 + Bllully

< ACEIQI T

%”M”kﬂ + |:(k+ljniil)l’ —)»8:| 7p||'4||k+1 + Bllullca < AC(e)]€2T Wi ||M||k+{-
Here setting k =1 leads to

d B 3 o

2+ A= 2e)yPlully” + Bllullz < AC(e)IL22E ully ™"
By Lemma 3, there exists a3 > 8 such that

0 < llull2 < luoll2e™, ¢=0,
provided that

1-2re)y? ] ,,%,l—ml

ol < [ -
AC(e)|R21 20

Furthermore, there exists Tg > 0 such that

p- 27 = —p+l
(1-2ae)y™ = AC(e)|$2| 2 IIMllp
b2 Te\ 5 —p+1
> (L-2e)y 7 = AC(e) Q1207 (|lugllze ™) 77" = C > 0 (3.21)

holds for ¢ € [Tg, +00). Therefore, when ¢ € [Ty, +00), we have
d p1
%Ilullz + Cellully ™+ Bllull2 < 0.

By Lemma 2, we can obtain the desired decay estimate for

1
2-p)B

Ty =

ln(l - cﬁé [[ua(:» T8)||§"’) +Ts. (3.22)

3.3 Proof of Theorem 3
Let v(x, t) = g(t)p(x), where ¢(x) is the first eigenfunction corresponding to the first eigen-
value A; for the homogeneous Dirichlet boundary value problem,

—div(|VolPPVe) = AlplPp, xeQ  ¢x) =0, x€dQ,
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and let ¢(x) satisfy ¢(x) > 0, maxyecq ¢(x) = 1; by Lemma 4, there exists one non-constant
solution g(¢) that satisfies the ODE problem

g +rg i)+ Bgt)=g"(1), t=>0;  g(0)=0, g(t)>0,t>0.
Then for any test function 0 < ¢(x, t) € C5°(Qr), we have
/t/ {vs(x,s)go(x,s) — |[VVP2VvV e + Br(x, s)p(x, s) — )L|Vv|’go(x,s)} dxds
0 Ja
= /0 /Q [Z)p(x) + Mg’ (59" (%) + Bg(s)p(x) — Ag" ()| VP }p(, 5) dw s
- / / {(h1g"(5) = Bels) + £'(9))$) + hag? ()" ()
0 Jo
+ Bg(8)p(x) — 1g" ()| V| }p(x, s) dx ds
E/ /{g’(S)¢(x) + Mg N ()¢ (%) - Ag ()| VI Jo(x,5) dx ds
0 Ja
< / / {g7(5) + M1g"™ () = 2g" (5) V@ } o (x, 5) dx dis
0 Ja
= /t/g’(s){l + g (s) = AV }o(x, ) dx ds.
0 Ja

For such a v(x, £) to be a subsolution of problem (1.1)-(1.3), it suffices to show that

/ t / g {1+ 1g""7(s) - Ve[ }o(x,s) dxds < 0.
0 JQ

Here we only show that
/ {1+2:g777(s) - A|Vg| } dx < 0. (3.23)
Q

Since for any s € (0, t), g(s) is bounded and for p — 1 > r, we find that there exists a positive
constant M > 0 such that

0<g(s)<M,
and
0<g/ " (s) < MP, (3.24)

MPI) @

By choosing A > (HMIIWIK , we get

/ {1+ MM AV} dx <0,
Q

which together with (3.24) implies that (3.23) holds. Moreover, v(x,0) = g(0)¢(x) = 0 <
uo(x), x € Q; vix, t) =0, x € 92, t > 0. Therefore, v(x, t) is a non-extinction subsolution of
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problem (1.1)-(1.3). By the comparison principle, we have
u(x,t) > vix,t)>0, xe€Q,t>0,

which implies that the weak solution u(x, t) of problem (1.1)-(1.3) cannot vanish in finite
time.

4 Thecase1<p<2,0<g<1
4.1 Proof of Theorem 4
(1) If N > 2, we have the following.

(a) If 1\2[{:]2 < p <2, multiplying (1.1) by « and integrating over 2 yield

ld 1
2dt”u|l2+ IIVuII’”+ﬁIIuII11;’=k/ u|Vul" dx. (4.1)
Q

Since p — 1 =r, we easily get = p — 1 < 1. By the Young inequality, we obtain

p-2r 1+ -1

/u|w|’dx§s||wn§+C(e)|sz|2@-f> el 7

Q P
—EIIVMII"+C(8)IQI IIMIIP (4.2)

We substitute (4.2) into (4.1) to obtain

1-r
1d AC(e)|Q| T 1
S+ [““‘x— IVully + Blull < 0. (4.3)
By the Gagliardo-Nirenberg inequality, we have
lull, < CIN, p, @) el IV ll?,
_ Np(1-
where@lz(ﬁ—%)(%—}%+ﬁ 1:% Since 22 <p<2and 0<g<1, we

easily get 0 < 0; < 1. By the Young inequality again, we have

k ki k1(1-61) k16
lll§ < CN, p, @) [l 20 Tl %,

kip(1-61)

< C(N, p,q)h(mnvu”p+C(n1)”M”1p k101 )’

p(+q)

where n; > 0, ki > 1 will be determined later. Here we set ki = e

% then we have 1 < k; < 2 and k;p,igl =1+¢q,and
C(N,p,q)™B mp 1+
_ Vull? + B|lu q, 4.4
Ciny) [l ||2 =T )|| Iy + Bllulli,q (4.4)

and we now substitute (4.4) into (4.3) to obtain

k
lully' <0

1 Cle,npIQlT  mB ] C(N,p,q) g
u 1-ie— - Vullp 4 =221 2
2ah+ [ M oy 1V Cln)

Page 13 of 17
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Here we can choose X small enough such that 1 - e — %‘Q‘T - C"(l—,ﬁ) > 0. Here setting
C; = % leads to

d =

—lullz + Crllullyt™ <0,

Sl Gollully ™ =
By Lemma 1, we have

1
lulla < [luolls™ = C7(2 - k)t]™R, €0, Th),

llullo =0, te[Ti,+00),

Huon

where Ty = o
(b)Ifl<p=< 13{:’2, multiplying (1.1) by #* (where s > wﬁﬂ > 1) and integrating over
Q yield
N sp¥ + r
mz ]S + m Hvu b HP + Bllulld = / w'|Vul” dx. (4.5)

By the Young inequality, we have
PR p+s—1\" prs-l
u|Vu|"dx = — |Vu Z | dx
Q p Q
ps-l P S+
< 8” Vu » || +C(e) | u P dx
P Q

+5—1
= e[ Vi |+ ClolluliL

By the Gagliardo-Nirenberg inequality, we have

1-6 pts—1 92171
lullssr < CON, pr @)l | Va2 || 57,
bl L 1yl 1 pastl 1yl M
where 6, = > (s+q - erl)( > s+q) = EOP TN . By the choice of s, we

get 0 < 6, < 1. By the Young mequahty again, we obtain

prs=1  kobop
llls2 < CN,p, g, sl 20| Vv || 257

s+q

= O (| Va5 [ Clmliel 5 ),

__ (prsDistqg)
(prs—1)(A-02)+02(s+q)

=s+¢q,and

where 1, > 0, k; > 0 will be determined later. Here we set k, =

(4 Dlplg+s)Np=g-V] 'thop we have s < ky < s + 1 and <21=02)e+s=D

p(s+1)+N(p-q-1) pts—1-ko0s
C(N,p,q,5)p mB »
——lu ||s+ Vu + Bllul, (4.6)
C(n2) 1= Cln, )|| ” e

Page 14 of 17
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and we now substitute (4.6) into (4.5) to obtain

d . S AC(e)  mp prs1
izt | e 2RO
s+1dt p+s-1)p A C(n2) ’

C N} ’ ) _k2

w”u”gl <o0.

C(n2)

spP AC(e) mp i
Here we can choose A small enough such that TP M5 T Ty 20 Setting

k
Cg = SN2a) 2B o thys we have
C(n2)

d ko
Zpllsea + Cllulls,” <0.

By Lemma 1, we can obtain the desired decay estimate.
(2) If N =1, the proof is similar to the proof of (1)(a) except for using the Gagliardo-

Nirenberg inequality in the lower dimensional space, and we omit it here.

4.2 Proof of Theorem 5
(1) If N > 2, we have the following.
(a) If 22 < p < 2, multiplying (1.1) by # and integrating over 2 yield
1d

l+q r
5l + 1 Vallf + Blull =A/ ulVul" dx.
2 dt 2 V4 l+q o

Substituting (4.4) into the above equality gives

mp
C(m)

C(N,p,q) ™ B

lulls < ACE) QT ufly' 77
C(m) -

1d
——||u||§+[1—/\g—

\v4 12
% ]n ull? +

Here we can choose ¢ (or 7;) small enough such that 1 — ie — C'%ﬁ 5 = 0, thus we get

—llull2

+ ||M||k1—1 C(N:P:Q)_klﬁ £
dt >

AC(E)| Q% u]I” _kﬁl} =0
- & -1 ||\u <0.
C(m) 2
Therefore,

d k_

2l + Collully ‘<o,

provided that

CN g™ B 5w
oz <
C(m)rC(e)|2] 2P

and
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ie.

2p*q+ Np(p—q +1)

> ’
2p(g+1)+2N(p—-gq+1)

where

C(N,p,q)™ p2r —ki+1

¢y - LD _ cleyia ol > 0.
C(m)

By Lemma 1, we can obtain the desired decay estimate. Since p > 55, we have 2p > N(2 -

p). Therefore,ifg>p—1,thenr>p—1.
(b) If 1 < p < 2, multiplying (1.1) by u° (where s > IN-W+Dp > 1) and integrating over
Q yield

gt

sride st Ty ”V”” Up+5l|ull“q— /MSIVqux.

s+q

Substituting (4.6) into the above equality gives

S+ Spp 77 ﬂ p+s 1 C( ’p’ q’s) ﬂ
L4 [(p e 2l g SLLITE

Clm) oyl

r

=AC(e)I i lull,

s+1

_sP
esip — A€

Here we can choose ¢ (or 7;) small enough such that - g(2n§ 7= 0, thus we get

d ko — C(prvq;s)_k2ﬂ —ko+s
E”u”sﬂ‘*' ||u||sils|:T—)»C(8)|Q| G ||M0||S+1 <0.

Therefore,

ko—s < 0

llatlls+1 + Crollzell sy

dt

provided that

1
C(N,p,q,s)™B ]—pr,_kw

llzollse1 < |: o
C(m)rC(e)[L2| &0

and
—>ky -5,

p-r

P*q(s+1)+ Np(p-q-1)
ps+1)(1+q) +2N@p-q-1)

where

C(N,p,q, sy p L —kyts
Co = = lloll i1 >0.

Clnn) ~ 1.Cle) 2| 57

Page 16 of 17
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2N-(N+1)p

By Lemma 1, we can obtain the desired decay estimate. Since s > , it follows that

p(s+1)>N(2 - p). Therefore, if g >p—1, thenr>p-1.
(2) If N =1, the proof is similar to the proof of (1)(a) except for using the Gagliardo-
Nirenberg inequality in the lower dimensional space, and we omit it here.
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