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Abstract
We consider the asymptotic behavior of the solution of the non-local parabolic
equation ut = (κ (u))rr +

(κ (u))r
r + f (u)

(a+2πb
∫ 1
0 f (u)r dr)2

, for 0 < r < 1, t > 0, with a

homogeneous Dirichlet boundary condition. The equation is the so-called
Ohmic-heating model, which comes from thermal electricity in this paper, u and f (u)
represent the temperature of the conductor and the electrical conductivity. The
model prescribes the dimensionless temperature when the electric current flows
through two axis-symmetric conductors, subject to a fixed electric potential
difference. The global existence and uniform boundedness of the solution to the
problem indicate that the temperature of the conductor remains uniformly bounded.
Furthermore, the asymptotic stability of the global solution is obtained.
MSC: 35K20; 35K55; 35K65; 80M35
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1 Introduction
The original motivation for studying the problem in this paper comes from the plasma
Ohmic-heating process. The plasma is an electrical conductor and so it could be heated
by passing a current through it. This is called Ohmic heating and it is the same kind of
heating that occurs in thermistors.
First, we would like to address the work on the Ohmic-heating model with one conduc-

tor, which has been investigated intensively in [–] and references therein. The problem
with only one conductor can be formulated in terms of the following problem with differ-
ent boundary conditions:

ut =�
(
κ(u)

)
+

λf (u)
(
∫
�
f (u)dx)

, for x ∈ �, t > , ()

where � ⊂ R
 is an open, bounded domain, and κ(u) is the diffusion function. f (u) is the

electrical conductivity and the parameter λ is a positive constant, which depends upon
the electric current or potential difference and also upon the ‘size’ of the conductor.
For the linear diffusion problem κ(u) = u, Lacey etc. have shown that the blow-up cannot

take place if f is an increasing function (see [, ]). However, if f is a decreasing function,
with the aid of the comparison principle, global existence and asymptotic have been ob-
tained for some special function f , such as f (u) = e–u in []. Taking advantage of this fact,
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Figure 1 Electric current flows through two conductors.

Lacey [, ] and Tzanetis [] proved the occurrence of blow-up for a one-dimensional
model () and for the two-dimensional radially symmetric model ().
However, to avoid the occurrence of the singularity in finite time, Lacey introduced an

Ohmic-heating model with two conductors (see Figure ). In the electric circuit, the con-
ductor A is in series with another conductor B with constant electrical resistivity. Denote
u(x, t) and ρ(u) = /f (u) for the temperature and the electrical resistivity of the conduc-
tor A, respectively. The global existence and asymptotic behavior have been shown for
decreasing electrical conductivity function f (u) in [] by Du et al.
Furthermore, the problem with nonlinear diffusion has been investigated in [] recently

and similar results have been obtained. However, most previous results on asymptotic
behavior we mentioned before are restricted to the one-dimensional case.
Here, we suppose that the conductor A is a prismatic one, L and S represent its length

and cross-sectional area, respectively, and the length of the conductor B is L′. Moreover,
we assume that the diameter of the cross sectionD ismuch less than L and the temperature
u(x, t) is independent of the variable x. Suppose that the curved surface of the conduc-
tor A, � is thermal, namely

u =  on �.

Based on the derivation in [] (see also []), Du and Fan obtained the result that the
temperature u of the material satisfies the following problem with initial boundary-value
conditions:

ut –�
(
κ(u)

)
=

f (u)
(a + b

∫
D f (u)dx)

, x ∈D, t > , ()

where a = L
E , b =

ρ
E L

′ and f (u) = σ (u).
When f is decreasing, they proved that the comparison principle was valid and the so-

lution of the model was always global in time. Furthermore, if f is a decreasing exponen-
tial function, they proved that the solution of the problem converges asymptotically to the
unique steady state. See also [] and [] for some results on the asymptotic behavior of the
global solution in the one-dimensional case and axis-symmetry in the two-dimensional
case for the linear diffusion problem κ(u) = u, respectively.
In this paper, we assume conductorA is axis-symmetric, andwe focus on the problem ()

in the radially symmetric case. So, if we assume additionally that the cross section D be a
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unit disk and the initial data be radially and decreasing, i.e.

u(x) = u(r) and u′
(r) < ,

where r = |x| ∈ (, ). Thus, the problem in the axis-symmetric case can be formulated in
terms of the following non-local parabolic problem:

⎧⎪⎪⎨
⎪⎪⎩
ut = (κ(u))rr + (κ(u))r

r + f (u)
(a+πb

∫ 
 f (u)r dr)

, for  < r < , t > ,

u(, t) = u′(, t) = , for t > ,
u(r, ) = u(r), for ≤ r ≤ ,

()

where f is a continuous, positive, and decreasing function and the initial data u(r) is a
decreasing smooth positive function. The function κ(s) satisfies

κ(s) ∈ C(
R

+), κ(s) > , κ ′(s) > , κ ′′(s) > , for s > , ()

and

κ() = . ()

The boundary condition u(, t) =  represents the temperature on the boundary � is a
constant, while ur(, t) =  comes from the axis-symmetry of conductor A.
Moreover, it is easy to see that the axis-symmetric solution to the problem () is radially

decreasing (see []).
Inspired by the work above, we would like to show the asymptotic stability of the prob-

lem () with the generally deceasing function f (u).

Theorem . Assume that f satisfies

–sf ′(s) < f (s), s > , ()

the solution of the problem (), u(r, t), converges asymptotically to the unique steady state
ω(r), namely,

u(r, t) → ω(r), as t → +∞,

for  < r < .

Remark  The condition () is equivalent to (sf (s))′ > , which indicates f (s) is decreasing
lower than 

s , such as f (s) = s–p,  < p < . The condition () is structured to prove the
uniqueness of the steady state, which was firstly structured by Tzanetis in [].

Remark  When f (s) = e–κ(s), Du and Fan [] have proved that the solution of the prob-
lem () converges asymptotically to the unique steady state. If κ(s) additionally satisfies
sκ ′(s) < , then e–κ(s) is a special function of f (s), which satisfies ().
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Remark  The equations in models (), (), and () are quasi-linear parabolic equations
with non-local sources. There are many works focusing on the global existence and blow-
up of non-local parabolic equations (see [, –] and the references therein).

The analysis and techniques in this paper are based on the analysis for the ordinary
differential equations and on comparison arguments.

2 The asymptotic stability for the problem (3)
We start this section with introducing the comparison principle and the global existence
of the solution to (), which have been proved in [].

Proposition  (Comparison principle) Suppose that ū(r, t) satisfies

⎧⎪⎨
⎪⎩
ūt(r, t) ≥ (κ(ū(x, t)))rr + 

r (κ(u(r, t)))r +
f (ū(r,t))

(a+b
∫
� f (ū(r,t))dr) ,  < r < , t > ,

ū(r, t)≥ , r = , t > ,
ū(r, )≥ u(r),  < r < ,

()

and u(r, t) satisfies () with the inequalities reversed, where f (u) is monotonic decreasing
and positive continuous function. Then ū(r, t) ≥ u(r, t) for  < r < .

Proposition  If f (u) is a decreasing, positive, continuous function, then every nontrivial
positive classical solution of () exists globally in time for any nontrivial positive bounded
initial data. Furthermore, the solution u(r, t) of () remains uniformly bounded.

First, we consider the steady-state problem corresponding to (),

{
(κ(ω))rr(r;μ) + 

r (κ(ω))r(r;μ) +μf (ω(r;μ)) = ,  < r < ,
ω(;μ) = ωr(;μ) = ,

()

with the positive parameter

μ =


(a + πb
∫ 
 f (ω(r;μ))r dr)

, ()

and they give the uniqueness of the solution of the problem ().
Moreover, under the condition (), multiplying r and (κ(ω))r(r;μ) on both sides of the

equation in (), respectively, and integrating over [, ] yields

∫ 


f
(
ω(r;μ)

)
r dr = –

(κ(ω)(r;μ))r|r=
μ

, ()

and

((
κ(ω)(r;μ)

)
r|r=

) = μ
∫ κ(M(μ))


f
(
κ–(s)

)
ds – 

∫ 



((κ(ω))r(r;μ))

r
dr, ()

whereM(μ) = ω(;μ) =maxr∈[,] ω(r;μ) and κ– is the inverse function of κ .
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In view of the condition () and ω′(r;μ) <  for any r ∈ (, ), it thus follows from ()
that

(
κ(ω)(r;μ)

)
r|r= = –

√
μ

∫ κ(M(μ))


f
(
κ–(s)

)
ds – 

∫ 



((κ(ω))r(r;μ))

r
dr. ()

Combining this with () and () yields

 = μ

(
a + πb

∫ 


f
(
ω(r;μ)

)
r dr

)

= aμ +
πb((κ(ω)(r;μ))r|r=)

μ
– πab

(
κ(ω)(r;μ)

)
r|r=. ()

To show the uniqueness of the initial value problem () with (), it suffices to show that
there exists a unique root μ ∈ (, 

a ) of equation ().
Define

F(μ) := aμ +
πb((κ(ω)(r;μ))r|r=)

μ
– πab

(
κ(ω)(r;μ)

)
r|r= – , for μ > .

It is easy to see that the problem () does not possess nontrivial solution with the param-
eter μ = . That is, ω ≡  and M =  for μ = . Then multiplying 

μ
on both sides of ()

and taking the limit μ → + yield

lim
μ→+

((κ(ω)(r;μ))r|r=)
μ

= ,

since

((κ(ω)(r;μ))r|r=)
μ

and
∫ 



((κ(ω))r(r;μ))

r
dr

are both positive and

lim
μ→+

∫ κ(M(μ))


f
(
κ–(s)

)
ds = .

Thus, F(+) < . In view of F(/a) > , there exists at least one root μ ∈ (, /a) to equa-
tion ().
Due to the condition ωr(;μ) = , we can take an odd extension to the problem (), and

formulate the following problem:

{
(κ(ω))rr(r;μ) + 

r (κ(ω))r(r;μ) +μf (ω(r;μ)) = , – < r < ,
ω(±;μ) = .

()

We claim that the steady solution ω(r;μ) is increasing strictly with respect to the pa-
rameter μ, and it is always positive, namely, ωμ(r;μ) > , for any  ≤ r ≤ . In fact, differ-
entiating on both sides of equation () with respect to the parameter μ gives

–
(
κ(ω)

)
μrr(r;μ) –


r
(
κ(ω)

)
μr(r;μ) –

μf ′(ω(r;μ))
κ ′(ω(r;μ))

(
κ(ω)

)
μ
(r;μ) = f

(
ω(r;μ)

)
> . ()

http://www.boundaryvalueproblems.com/content/2014/1/40
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In view of (κ(ω))μ(±;μ) = , it follows from the standard comparison arguments
to equation () that we have (κ(ω))μ(r;μ) > , for any r ∈ [–, ]. Then (κ(M))μ(μ) =
(κ(ω))μ(;μ) > , and ωμ(r;μ) > , for any r ∈ [–, ], since κ ′(s) >  for all s > .
For convenience, we set

ϕ(μ) :=
((κ(ω)(r;μ))r|r=)

μ
=
μ

∫ κ(M(μ))
 f (κ–(s))ds – 

∫ 


((κ(ω))r(r;μ))
r dr

μ
.

Then, from (), we have

F(μ) = aμ + πbϕ(μ) + πab
√

μ
√

ϕ(μ) – , ()

where we have used the fact (κ(ω)(r;μ))r|r= < .
Denote α =√

μ, z(r;α) = κ(ω)(r;μ)
α

= κ(ω)(r;α)
α

; we can rewrite

ϕ(μ) =
(
zr

(
;α)).

Thanks to () and the boundary conditions of (), by a direct computation, we have
zα(;α) = zαr(;α) = z(;α) = zr(;α) and

zrr
(
r;α) + zr(r;α)

r
+ αf

(
ω

(
r;α)) = . ()

Differentiating on both sides of () with respect to the parameter α, we have

zαrr
(
r;α) + zαr(r;α)

r
+ αf ′(ω(

r;α))zα

(
r;α)

= –f
(
ω

(
r;α)) – f ′(ω(

r;α))ω(
r;α) < ,

where we have used the crucial assumption (). By the maximum principle and Hopf ’s
boundary lemma, we have

zα

(
r;α) >  and zαr

(
;α) < .

Thus,

ϕ′(μ) =

α

d
dα

(
zr

(
;α)) > ,

since zr(;α) = (κ(ω)(r;α))r |r=
α

< .
As a result of the above, by equation (), we obtain F ′(μ) > , for any μ ∈ (, /a).

Furthermore, equation () possesses a unique root μ∗ in (, /a), which shows that the
problem possesses a unique steady state ω(r,μ∗).
Next, we will show that the global solution of the problem () converges to its steady

state. Inspired by the form of the steady state ω(r;μ∗), we seek for the upper solution
decreasing in time of the form v̄(r, t) = ω(r; μ̄(t)) = ω̄, where the smooth function μ̄(t) will
be determined later.

http://www.boundaryvalueproblems.com/content/2014/1/40
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A series of computations yields

v̄t –
(
κ(v̄)

)
rr –


r
(
κ(v̄)

)
r –

f (v̄)
(a + πb

∫ 
 rf (v̄)dr)

= ω̄μ̄ · μ̄′(t) –
(
κ(ω̄)

)
rr –


r
(
κ(ω̄)

)
r –

f (ω̄)
(a + πb

∫ 
 rf (ω̄)dr)

= ω̄μ̄ · μ̄′(t) –
f (ω̄)

(a + πb
∫ 
 rf (ω̄)dr)

[
 – μ̄(t)

(
a + πb

∫ 


rf (ω̄)dr

)]

= ω̄μ̄

{
μ̄′(t) –

f (ω̄)
ω̄μ̄(a + πb

∫ 
 rf (ω̄)dr)

[
 – μ̄(t)

(
a + πb

∫ 


rf (ω̄)dr

)]}
. ()

Wewill seek a function μ̄(t) such that the right hand side of () is nonnegative for  < r < 
and t > . Since u(r) and u′

(r) are bounded in [, ], we can choose μ̄(), such that

v̄(r, ) = ω
(
r, μ̄()

) ≥ u(r).

Set

g
(
μ̄(t)

)
=

(
inf

r∈[,]
f (ω̄)
ω̄μ̄

)


(a + πb
∫ 
 rf (ω̄)dr)

[
μ̄(t)

(
a + πb

∫ 


rf (ω̄)dr

)

– 
]
.

Note that F(μ) is increasing with respect to μ, then g(μ̄(t)) ≥ , provided that μ̄(t) ≥ μ∗,
where μ∗ is the unique root of (). Thus, we can choose a decreasing function μ̄(t) such
that

 ≥ μ̄′(t) ≥ –g
(
μ̄(t)

)
and lim

t→∞ μ̄(t) = μ∗.

Then we have established an upper solution v(r, t) = ω(r; μ̄(t)) to the problem (), which
converges to the steady state, i.e.

v̄(r, t)→ ω
(
r;μ∗) = ω(r), as t → ∞.

Similarly, we can choose an increasing function μ(t), which tends to μ∗, as t → ∞, and
we construct a lower solution as v(r, t) = ω(r;μ(t)). Finally, by the comparison principle,
we obtain a pair of upper-lower solutions (v̄(r, t), v(r, t)), such that

v(r, t)≤ u(r, t) ≤ v̄(r, t), for r ∈ [, ] and t > ,

and taking the limit t → ∞, it completes the proof of Theorem ..
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