
Huang Boundary Value Problems 2014, 2014:45
http://www.boundaryvalueproblems.com/content/2014/1/45

RESEARCH Open Access

High-frequency asymptotics for the modified
Helmholtz equation in a half-plane
Min-Hai Huang*

*Correspondence:
hmh9520@sina.com
College of Mathematics and
Information Sciences, Zhaoqing
University, Zhaoqing, GuangDong
526061, China

Abstract
Based on the integral representations of the solution derived via Fokas’ transform
method, the high-frequency asymptotics for the solution of the modified Helmholtz
equation, in a half-plane and subject to the Dirichlet condition, is discussed. For the
case of piecewise constant boundary data, full asymptotic expansions of the solution
are obtained by using Watson’s lemma and the method of steepest descents for
definite integrals.
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1 Introduction
There is hugemathematical and engineering interest in acoustic and electromagneticwave
scattering problems, driven by many applications such as modeling radar, sonar, acoustic
noise barriers, atmospheric particle scattering, ultrasound, and VLSI []. Many problems
of scattering of time-harmonic acoustic or electromagnetic waves can be formulated as the
Helmholtz and modified Helmholtz equations, supplemented with appropriate boundary
conditions. Many efforts have been made to develop efficient numerical schemes and ap-
proximatemethods to deal with the problems of highwavenumbers (i.e., high frequencies)
[–]. It is noted in [, ] that a question yet to be fully resolved is to obtain accurate ap-
proximations of the solutions with a reasonable computational cost in the high-frequency
case. Therefore it seems desirable, and difficult, to consider the high-frequency asymp-
totics of the equation and its modified version. This is the main motive of the present
investigation. Applying the theory of asymptotic analysis [–], one may achieve a high
degree of accuracy with only a few leading terms in the asymptotic expansions of the so-
lution involved.
The objective of the present paper is to consider the following Dirichlet boundary value

problem of the modified Helmholtz equation in the upper half-plane �:

�q(z, z̄) – βq(z, z̄) = , z ∈ �, (.)

q = d(z), z ∈ �, (.)

where n is the outer normal vector, � = ∂

∂x + ∂

∂y =  ∂

∂z∂ z̄ is the usual Laplace operator,
z = x + iy and z̄ = x – iy, � = ∂� is the closed real line, d decays sufficiently fast at infinity
(e.g. d ∈ L(R+)∩ L(R+)).
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As a first step, we given the integral representation for the solution of the Dirichlet
boundary value problem (.)-(.) for general d(z) derived by Fokas’ transform method.
And then, by using Watson’s lemma and the method of steepest descents for definite

integrals, we focus on the high-frequency asymptotics with respect to specific Dirichlet
data, namely,

q = d(z) :=

{
D, z ∈ [a,b],
, z ∈ �\[a,b], (.)

where [a,b] refers to a finite interval and D is an arbitrary constant.

2 The integral representation for the solution
For the Dirichlet boundary value problem (.)-(.), by using Fokas’ transform method,
we have the following lemma.

Lemma  Assume that the function q(x, y) solves the modified Helmholtz equation (.) in
the upper half z-plane �, and that it satisfies the Dirichlet boundary conditions (.), then
the integral representation is valid:

q =
β

π

∫ ∞


eiβ(kz–

z̄
k )

(
k +


k

)
D(k)

dk
k
, (.)

where

D(k) =
∫ ∞

–∞
e–iβ(k–/k)sd(s)ds. (.)

The interested reader is referred to [, Ch. ] and [] for derived in detail. Accordingly,
when we specify (.) in accordance to the piecewise constant Dirichlet data (.), we have
the following lemma.

Lemma  Assume that the function q(x, y) solves the modified Helmholtz equation (.) in
the upper half z-plane �, and that it satisfies the Dirichlet boundary conditions (.), then
the integral representation is valid:

q(x, y) =
D
π i

∫
l
eiβ(kz–

z̄
k )

[
eiβa(


k –k) – eiβb(


k –k)

] k + 
k(k – )

dk, (.)

where l is an arbitrary ray in the first quadrant of the complex k-plane, oriented from the
origin to infinity, with an angle between l and the positive real axis less than π – arg(z– b).

3 Asymptotic approximations
Our goal in this section is to study the asymptotical behavior of the solution to the Dirich-
let problem of the modified Helmholtz equation, as the frequency, or, equivalently, the
wavenumber, approaches infinity. This large-β asymptotic analysis will be based on the
integral representation (.), and it will be carried out by using the method of steepest
descents.
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Figure 1 The steepest descent path �.

First we note that (.) can be expressed as the sum of two integrals of the form

I(β) =
D
π i

∫
l
eiβ[k(z+A)–


k (z+A)]

k + 
k(k – )

dk, (.)

where A = –a, –b, and the path l, the same as in (.), is initially chosen as a ray in the first
quadrant, emanating from the k-origin, with an open angle with the positive real line not
exceeding π – arg(z – b). We denote

ϕ(k) = i
[
k(z +A) –


k
(z +A)

]
, k = u + iv, z = x + iy, z +A = reiθ . (.)

The phase function ϕ(k) has a pair of saddle points k± = ±ie–iθ = ±ei(π/–θ ) determined
by ϕ′(k) = , lying symmetrically on the unit circle. For large positive β , the steepest de-
scent path passing through the saddle point k+ is simply the ray � starting from the origin
and passing through k+. We note that the steepest descent path is defined by requiring
Imϕ(k) = Imϕ(k+) and Reϕ(k) to decrease as k goes away from the saddle; cf. [–] for
the definition and for basic background of themethod of steepest descents. Also the steep-
est ascent path through k+ is the unit circle, and it ends at the other saddle k–; compare
Figure  for the paths.
Using Cauchy’s integral theorem, the integration path l can be deformed to the steepest

descent path�. Recalling that the argument θ may range over (,π ) and that the integrand
in (.) has a simple pole at k = , we divide our discussion into three cases, namely (i)  <
θ < π/, (ii) θ = π/, and (iii) π

 < θ < π . We deform the paths case by case.
Case (i). When  < θ < π/, the steepest descent path passing through k+ lies in the first

quadrant of the complex k-plane. We simply deform l into �, and we have

I(β) =
D
π i

∫
�

eiβ[k(z+A)–

k (z+A)]

k + 
k(k – )

dk. (.)

Case (ii). When θ = π/, the steepest descent path passing through k+ =  coincides
with the positive half real axis of the complex k-plane. Also k =  is a simple pole of the
integrand. The seemingly complicated situation turns out to be easily handled, since I(β)
can be explicitly given in this case:

I(β) =
D
π i

∫
�̃

e–βy(k+ 
k )

k + 
k(k – )

dk = –
D

e–yβ , (.)
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Figure 2 The regions I, II, and III in the complex half z-plane.

where the integration path �̃ consists of two segments [,  – ε] and [ + ε,∞) and a upper
half circle joining them, as illustrated in Figure . The last equality is obtained by using the
symmetry of the integral under the transformation k ↔ /k, picking up half of the residue
of the integrand at k = , and taking the limit as ε → .
Case (iii). When π/ < θ < π , the steepest descent path � emanating from the saddle

point k+ is in the fourth quadrant of the complex k-plane. To deform the original path l
to �, one has to pick up the residue from the simple pole at k = . Accordingly, we have

I(β) =
D

e–yβ +

D
π i

∫
�

eiβ[k(z+A)–

k (z+A)]

k + 
k(k – )

dk. (.)

We are now in a position to derive the asymptotic approximation for q(x, y) in (.) for
fixed z = x + iy ∈ �. We denote

z – a = reiθ , z – b = reiθ . (.)

Obviously we have  < θ < θ < π .We divide the half z-plane� into three regions, namely,
I, II, and III, defined by Re z ∈ (–∞,a), Re z ∈ (a,b) and Re z ∈ (b,∞), respectively; cf.
Figure . Then it is clear that when z ∈ III, θj ∈ (,π/) for j = , ; for z ∈ II, θ ∈ (π/,π )
and θ ∈ (,π/); and for z ∈ I, θ, θ ∈ (π/,π ). On the boundaries, when Re z = b, θ =
π/, while θ = π/ as Re z = a.
Now what remains is just a straightforward application of the method of steepest de-

scents (cf. [–]). To be precise, we employ the standard argument of Watson’s lemma.
Firstly, we introduce

τ := ϕ(k+) – ϕ(k) = –r – ir
(
keiθ –


k
e–iθ

)
= r

(
|k| –  +


|k|

)
, (.)

where k = |k|ie–iθ for k ∈ �. Obviously τ ∈ [,∞) on the steepest descent path, and for
each τ ∈ (,∞) there is a pair of points on �, say, k and k, satisfying (.). Indeed, we
may specify

k = ie–iθ
[
 +

τ

r
–

√(
 +

τ

r

)

– 
]
,

k = ie–iθ
[
 +

τ

r
+

√(
 +

τ

r

)

– 
]
.

(.)

Accordingly one obtains

D
π i

∫
�

eβϕ(k) k + 
k(k – )

dk =
D
π i

e–rβ
∫ ∞


�(τ )e–βτ dτ , (.)
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where

�(τ ) =
k + 

k(k – )
dk
dτ

–
k + 

k(k – )
dk
dτ

,

which can be expanded into a convergent series for small τ in the form

�(τ ) = τ–/
∞∑
l=

clτ l, τ ∈ (, δr), (.)

where δ is a positive constant, and the coefficients cl = cl(r, θ ) can be evaluated in view of
(.). Waston’s lemma implies that the whole contribution to the asymptotic behavior of
the integrals in (.) comes from the saddle k = k+. Substituting (.) into (.) yields the
full asymptotic expansion

D
π i

∫
�

eβϕ(k) k + 
k(k – )

dk ∼ D
π i

e–rβ
∞∑
l=

cl�(l + /)
β l+/ , β → +∞, (.)

where �(t) is the usual Gamma function. We summarize our discussion as follows.

Theorem  For large positive β (i.e., high frequencies and, equivalently, large wavenum-
bers), the following asymptotic expansions of the solution q(x, y) to the boundary value prob-
lem (.), (.) of the modified Helmholtz equation hold:

q(x, y) ∼ D
π i

∑
j=

(–)j+e–rjβ
∞∑
l=

cl(rj, θj)�(l + /)
β l+/

+
D

e–yβ ·

{
, z ∈ I∪ III;
, z ∈ II

(.)

as β → +∞, where rj and θj are defined in (.). Two exceptional cases are

q(x, y) ∼ –
D
π i

e–rβ
∞∑
l=

cl(r, θ)�(l + /)
β l+/ +

D

e–yβ , (.)

as β → +∞ and Re z = a, and

q(x, y) ∼ D
π i

e–rβ
∞∑
l=

cl(rj, θ)�(l + /)
β l+/ +

D

e–yβ , (.)

as β → +∞ and Re z = b.
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