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Abstract
We study the existence of bounded oscillatory solutions for a higher order differential
equation, considered as a perturbation of an associated linear equation. Jointly with
this, we study the nonexistence of solutions vanishing at infinity and, as an
application, we obtain in the linear case an asymptotic equivalency criterion.

1 Introduction
Consider the higher order nonlinear differential equation with a middle term

x(n)(t) + q(t)x(n–)(t) + r(t)f
(
x(t)

)
= , ()

where n≥  and t ≥ . Throughout the paper, we assume that f ∈ C(R) such that f (u)u > 
for u �= , q ∈ C[,∞), r ∈ C[,∞), and

q(t) ≥ q > ,
∫ ∞



∣∣q′(t)
∣∣dt <∞. (H)

Hence, q is bounded from above and limt→∞ q(t) = q∞ <∞. Note that the function r may
change sign.
By a solution of () we mean a function x differentiable up to order n which satisfies ()

on [Tx,∞), Tx ≥ . A solution of () is said to be proper if sup{|x(t)| : t ≥ T} >  for any
T ≥ Tx. As usual, a solution x of () is said to be oscillatory if x changes sign for large t.
The aim of this paper is to study () as a perturbation of the linear differential equation

y(n)(t) + q(t)y(n–)(t) = . ()

An important role in our approach is played by the relationship between solutions of ()
and those of the second order linear equation

h′′(t) + q(t)h(t) = . ()

This approach is mainly motivated by previous results, obtained by Kiguradze in [] for
the special case q(t)≡ , i.e., for the equation

x(n)(t) + x(n–)(t) + r(t)f
(
x(t)

)
= . ()
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It was shown in [] that, if r is positive and sufficient large in some sense, then for n even
every proper solution of () is oscillatory. Moreover, for n odd every proper solution of
() is oscillatory, or is vanishing at infinity together with its derivatives, or admits the
asymptotic representation

x(t) = c
(
 + sin(t – ϕ)

)
+ ε(t),

where c, ϕ are suitable constants and ε is a continuous function for t ≥  which vanishes
at infinity. According to [], in this case () is said to have property A′.
The existence of solutions vanishing at infinity, and the closely related problem on exis-

tence of bounded oscillatory solutions, has attracted the attention inmany papers, see, e.g.
the monograph [] and references therein. In particular, nonlinear equations with middle
term have been investigated in many directions, as a perturbation of an associated linear
equation. For third and fourth order equations, we refer especially to [–], in which the
property A, or its generalizations, has been studied and to [–] for oscillation problems.
In particular, in [] a good and detailed discussion of known oscillation criteria is given as
well.
The higher order equations of type () have been studied in [–]. More precisely, in

[, ] the general equation

x(n)(t) +
n–∑
j=

qj(t)x(j)(t) + r(t)
∣∣x(t)∣∣λ sgnx(t) = , λ > ,

has been considered. In [] sufficient conditions are obtained for the existence of solu-
tions, which are equivalent to a polynomial. In [] a criterion is given for existence of
nonoscillatory solutions with non-zero limit at infinity. Moreover, for n even, an oscilla-
tion result is obtained too. In [], () is studied as a perturbation of (), under the assump-
tion (H). Finally, the case of higher order equations with forcing term has been considered
in the recent papers [–], see also the last section.
Observe that if q is a positive constant, then () has oscillatory and bounded solutions

not vanishing at infinity. If q is not constant and (H) is satisfied, then these properties re-
main to hold for the second order equation (), see, e.g. [, Chapter ], or [, Theorem ].
Thus, it is natural to ask under which assumptions these properties are valid also for ()
(when q is not constant) and for the more general case ().
In this paper, we answer both these questions. In particular, our main result yields the

existence of oscillatory solutions of (), which are bounded and not vanishing at infinity.
Our results complete recent ones in [, Corollary , Corollary ], extend similar ones in
[, Theorem ., Theorem .], which are proved for (), and generalize ones in [, ],
which are stated for the particular cases n = ,.
In Section we study the problemof the nonexistence of solutions vanishing at infinity of

(). This result will be employed in Section  and Section , namely to prove the existence
of oscillatory solutions of () (Section ) and the uniqueness of solutions of (), which have
the same asymptotics as solutions of () (Section ).
We close the paper with an application that concerns the influence of the perturbing

term r on the change of the oscillatory character, passing from () to the linear equation

x(n)(t) + q(t)x(n–)(t) + r(t)x(t) = , n≥ . ()

http://www.boundaryvalueproblems.com/content/2014/1/48
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More precisely, we will give conditions under which () and () are asymptotically equiv-
alent. Some suggestions for further researches complete the paper.

2 Preliminaries
We start with some basic properties of solutions of (), which will be useful in the sequel.
Obviously, assumption q(t) ≥ q >  implies that () is oscillatory.Moreover, the following
holds.

Lemma  Let (H) hold and let u be a nontrivial solution of (). Then u is oscillatory and

 < lim sup
t→∞

∣∣u(t)∣∣ < ∞,  < lim sup
t→∞

∣∣u′(t)
∣∣ < ∞.

Proof Since q is of bounded variation for t ≥ , all solutions of () are bounded together
with their derivatives, see e.g. [, Theorem ]. Moreover, the function q can be repre-
sented as q(t) = a(t)/b(t), where a, b are positive nonincreasing and differentiable func-
tions such that limt→∞ a(t) >  and limt→∞ b(t) > , for details see [, Lemma ..].
Hence, taking t such that u′(t) =  and applying [, Lemma ], we get the assertion. �

Let u, v be two linearly independent solutions of () with Wronskian equal to . Set

w(s, t) = u(s)v(t) – u(t)v(s), ζ (s, t) =
∂

∂t
w(s, t). ()

Then w and ζ are bounded in [,∞)× [,∞).
Equations () and () are strictly related. When q(t) ≡ , a basis of the space of solutions

of () is given by

tj, j = , , . . . ,n – , sin t, cos t. ()

In the general case, that is, when q is not constant, it is easy to see that a basis of the space
of solutions of () is given by

tj, j = , , . . . ,n – , Γu, Γv, ()

where

Γu =
∫ t


(t – s)n–u(s)ds, Γv =

∫ t


(t – s)n–v(s)ds ()

and u, v are two independent solutions of (). The question whenever the sets () and ()
are, roughly speaking, close as t → ∞ is considered in Section .
We close this section by recalling the main result from [], which plays a crucial role in

our further consideration. Let

f̄ (u) =max
{∣∣f (v)∣∣ : –u≤ v ≤ u

}
.

The symbol g =O(g) as t → ∞ means, as usual, that there exists a constantM such that
in a neighborhood of infinity

∣∣g(t)∣∣ ≤M
∣∣g(t)∣∣.

The following holds.

http://www.boundaryvalueproblems.com/content/2014/1/48
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TheoremA ([, Theorem ]) Assume n≥ . Let for any positive constant μ and for some
j ∈ {, . . . ,n – }

∫ ∞


tn– f̄

(
μtj

)∣∣r(t)∣∣dt < ∞. ()

Then, for any solution y of () such that y(t) = O(tj) as t → ∞, there exists a solution x of
() such that for large t

x(i)(t) = y(i)(t) + εi(t), i = , . . . ,n – , ()

where εi are functions of bounded variation for large t and limt→∞ εi(t) = , i = , . . . ,n– .

Remark  If f satisfies in a neighborhood I of zero

∣∣f (u)∣∣ ≤ K |u| ()

for some K > , then every nontrivial solution of () is proper. This follows from [, The-
orem .] with h(t) = qmax +K |r(t)| and ω(u) = u for u ∈ I .

3 Solutions vanishing at infinity
Our main result in this section is concerned with the nonexistence of solutions vanishing
at infinity.

Theorem  Let n≥ , f ∈ C(R) and

∫ ∞


tn–

∣∣r(t)∣∣dt < ∞. ()

Then () does not have nontrivial solutions x (oscillatory or nonoscillatory) satisfying

lim
t→∞x(t) = . ()

To prove Theorem , some lemmas will be needed. The first result concerns the linear
nonhomogeneous equation

z(n)(t) + q(t)z(n–)(t) = F(t), ()

where F ∈ C[,∞).

Lemma  Assume n≥ . Let F ∈ C[,∞) satisfy

∫ ∞


tn–

∣∣F(t)∣∣dt < ∞. ()

Then

z(t) = (–)n
∫ ∞

t

∫ ∞

τn–

· · ·
∫ ∞

τ

w(s, τ)F(s)dsdτ · · · dτn–,
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where w is defined by (), is a solution of (). Moreover, there exists M >  such that for
t ≥ 

∣∣z(t)∣∣ ≤M
∫ ∞

t
sn–

∣∣F(s)∣∣ds. ()

Proof If F(t) ≡  for large t, then the assertion holds. Thus, assume that F �≡  for large t.
First, we prove that z is well defined. Choose t̄ large so that


q

∫ ∞

t̄

∣∣q′(s)
∣∣ds = 
 < . ()

Let m be a constant such that |w(s, τ )| ≤m, |ζ (s, τ )| ≤ m for s ≥ τ ≥ t̄. From () we have

∣∣∣∣
∫ ∞

t̄

∫ ∞

τn–

· · ·
∫ ∞

τ

w(s, τ)F(s)dsdτ · · · dτn–

∣∣∣∣
≤m

∫ ∞

t̄
· · ·

∫ ∞

τ

∣∣F(s)∣∣dsdτ · · · dτn– ≤m
∫ ∞

t̄
sn–

∣∣F(s)∣∣ds < ∞.

Hence, for fixed T > t̄ the function

α(t) = (–)n
∫ T

t

∫ ∞

τn–

· · ·
∫ ∞

τ

w(s, τ)F(s)dsdτ · · · dτn– ()

is well defined for t ≥ t̄. In particular, we have

α(n–)(t) =

{
–

∫ ∞
t

∫ ∞
r F(s)w(s, r)dsdr if n > ,

–
∫ T
t

∫ ∞
r F(s)w(s, r)dsdr if n = 

and for n≥ 

α(n–)(t) =
∫ ∞

t
F(s)w(s, t)ds,

α(n–)(t) =
∫ ∞

t
F(s)ζ (s, t)ds, ()

α(n)(t) = –F(t) – q(t)α(n–)(t).

Consider the function

γ (t) = α(n–)(t) + q(t)α(n–)(t), t̄ ≤ t. ()

Then

γ ′(t) = α(n)(t) + q(t)α(n–)(t) + q′(t)α(n–)(t) = –F(t) + q′(t)α(n–)(t).

Integrating this equality on (t,T), we get

γ (t) =
∫ T

t
F(s)ds –

∫ T

t
q′(s)α(n–)(s)ds + γ (T).

http://www.boundaryvalueproblems.com/content/2014/1/48
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From this, (), and (), we obtain

q(t)α(n–)(t) =
∫ T

t
F(s)ds –

∫ T

t
q′(s)α(n–)(s)ds –

∫ ∞

t
F(s)ζ (s, t)ds + γ (T)

or, from (),

∣∣α(n–)(t)
∣∣ ≤ 

q

(∫ T

t

∣∣F(s)∣∣ds +m
∫ ∞

t

∣∣F(s)∣∣ds + ∣∣γ (T)∣∣) + 
 max
t≤s≤T

∣∣α(n–)(s)
∣∣. ()

In view of (), we have |α(n–)(T)| =  or |α(n–)(T)| ≤ m
∫ ∞
T s|F(s)|ds according to n = 

or n > , respectively. Moreover,

∣∣α(n–)(T)
∣∣ ≤m

∫ ∞

T

∣∣F(s)∣∣ds for any n≥ .

Hence, from () we obtain

lim
T→∞

∣∣γ (T)∣∣ = , n≥ . ()

For n =  we have |α(T)| =  and

∣∣γ (T)∣∣ = ∣∣∣∣
∫ ∞

T
F(s)ζ (s, t)ds

∣∣∣∣ ≤m
∫ ∞

t

∣∣F(s)∣∣ds. ()

From (), in case n >  using () and letting T → ∞, and in case n =  using () we get

∣∣α(n–)(t)
∣∣ ≤ 


∫ ∞

t

∣∣F(s)∣∣ds + 
 sup
s≥t

∣∣α(n–)(s)
∣∣, n≥ ,

where 
 = ( + m)/q. Thus

∣∣α(n–)(t)
∣∣ ≤ sup

τ≥t

∣∣α(n–)(τ )
∣∣

≤ sup
τ≥t

(



∫ ∞

τ

∣∣F(s)∣∣ds + 
 sup
s≥τ

∣∣α(n–)(s)
∣∣)

≤ 


∫ ∞

t

∣∣F(s)∣∣ds + 
 sup
τ≥t

∣∣α(n–)(τ )
∣∣

or

( – 
) sup
s≥t

∣∣α(n–)(s)
∣∣ ≤ 


∫ ∞

t

∣∣F(s)∣∣ds,
that is

∣∣α(n–)(t)
∣∣ ≤ 


 – 


∫ ∞

t

∣∣F(s)∣∣ds. ()

When n > , since limt→∞ |α(i)(t)| =  for i = , . . . ,n – , using () we get

∣∣α(i)(t)
∣∣ ≤

∫ ∞

t

∣∣α(i+)(s)
∣∣ds≤ 


 – 


∫ ∞

t

(s – t)n––i

(n –  – i)!
∣∣F(s)∣∣ds.
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From this, taking into account α(T) = , we obtain

∣∣α(t)∣∣ = ∣∣∣∣
∫ T

t
α′(s)ds

∣∣∣∣ ≤M
∫ ∞

t
sn–

∣∣F(s)∣∣ds, ()

whereM = 
/( – 
)(n – )!. If n = , then () holds by ().
Now, for the sake of clarity, denote by α(t,T) the function α given in (). Fix t̃ ≥ t̄. In

virtue of α(t̃,T) = α(t̃,T) + α(T,T) we have

∣∣α(t̃,T) – α(t̃,T)
∣∣ = ∣∣α(T,T) – α(T,T)

∣∣,
where Ti ≥ t̃, i = , , . Thus for T large so that

M
∫ ∞

T
sn–

∣∣F(s)∣∣ds < ε



and from () we obtain

∣∣α(T,T) – α(T,T)
∣∣ ≤ ∣∣α(T,T)

∣∣ + ∣∣α(T,T)
∣∣ < ε

for any T > T, T > T. Using the Cauchy criterion, in virtue of (), there exists the finite
limit

lim
T→∞α(t̃,T) = α∞, |α∞| < ∞.

Hence, z is well defined. A direct computation shows that z is a solution of ().
It remains to prove that z satisfies the estimation (). Using () we have

∣∣z(t)∣∣ = lim
T→∞

∣∣α(t)∣∣ ≤M
∫ ∞

t
sn–

∣∣F(s)∣∣ds,
which yields (). �

Remark  Under the stronger assumption
∫ ∞
 tn–|F(t)|dt < ∞, Lemma  follows with a

standard calculation.

Lemma  Let n≥  and y ∈ C(n–)[T ,∞), T ≥ , be such that

lim
t→∞ y(t) =  and y(n–) is bounded on [T ,∞). ()

Then

lim
t→∞ y(i)(t) =  for i = , , . . . ,n – .

Proof Let b ∈ (T ,∞). Since y and y(n–) are bounded, we can apply [, Lemma .] with
m = n –  and we obtain

max
t∈[T ,b]

∣∣y(i)(t)∣∣ ≤ C

(b – T)i
max
t∈[T ,b]

∣∣y(t)∣∣ +C

(
max
t∈[T ,b]

∣∣y(t)∣∣) i
n–

(
max
t∈[T ,b]

∣∣y(n–)(t)∣∣) n––i
n– ,

http://www.boundaryvalueproblems.com/content/2014/1/48
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where i = , , . . . ,n –  and C, C are suitable positive constants. Passing b to ∞, there
exists a positive constant C such that

sup
t∈[T ,∞)

∣∣y(i)(t)∣∣ ≤ C

(
sup

t∈[T ,∞)

∣∣y(t)∣∣) i
n– ,

which gives the assertion, because limt→∞ y(t) = . �

The next auxiliary result is a Gronwall type lemma, which proof is elementary and so it
is omitted.

Lemma  Let g andΨ be nonnegative continuous functions for t ≥ t ≥  such thatΨ and
Ψ g belong to L[t,∞). If

g(t) ≤ A +
∫ ∞

t
Ψ (s)g(s)ds (t ≥ t)

for some nonnegative constant A, then

g(t) ≤ A exp

(∫ ∞

t
Ψ (s)ds

)
(t ≥ t).

In particular, if A = , then g(t) =  for each t ∈ [t,∞).

Proof of Theorem  Assume that there exists a nontrivial solution x of () defined on
[Tx,∞) and satisfying ().
Let u, v be linearly independent solutions of () with Wronskian . By Lemma ,

u, u′, v, v′ are bounded. ()

Hence, w(s, t), defined by (), is bounded. Put h(t) = x(n–)(t). Then h is a solution of the
second order equation

h′′(t) + q(t)h(t) = F(t), ()

where F(t) = –r(t)f (x(t)). Since r ∈ L[,∞), from () and (), we obtain

∫ ∞

Tx

∣∣u(s)F(s)∣∣ds < ∞,
∫ ∞

Tx

∣∣v(s)F(s)∣∣ds < ∞.

Taking into account (), () and using the variation constant formula, we have

h(t) = x(n–)(t) = Cu(t) +Cv(t) –
∫ ∞

t
w(s, t)F(s)ds, ()

where C, C are suitable constants.
Thus

x(n–)(t) = Cu′(t) +Cv′(t) –
∫ ∞

t
ζ (s, t)F(s)ds. ()

http://www.boundaryvalueproblems.com/content/2014/1/48
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From this and (), we see that x(n–) is bounded on [Tx,∞). By Lemma  we obtain

lim
t→∞x(i)(t) = , i = , , . . . ,n – . ()

Hence, from ()

lim
t→∞

[
Cu(t) +Cv(t)

]
= .

We claim that C = C = . Indeed, if C
 +C > , then Cu +Cv is nontrivial solution of

() and applying Lemma  we get a contradiction.
Therefore, () implies

x(n–)(t) = –
∫ ∞

t
w(s, t)F(s)ds.

Integrating n –  times and using (), we get

x(t) = (–)n–
∫ ∞

t

∫ ∞

τn–

· · ·
∫ ∞

τ

w(s, τ)F(s)dsdτ · · · dτn– ()

for t ≥ Tx. Since f ∈ C, in view of the mean value theorem, there exists a function ξ = ξ (s)
such that

f
(
x(s)

)
= f ′(ξ (s))x(s) ()

and  ≤ |ξ (s)| ≤ |x(s)|. We have for x(s) �= 

f ′(ξ (s)) = f (x(s))
x(s)

,

thus, because f ∈ C, the function f ′(ξ (s)) is continuous and there exists N >  such that

∣∣f ′(ξ (s))∣∣ ≤N . ()

Thus, from (), we obtain

∣∣x(t)∣∣ ≤
∣∣∣∣
∫ ∞

t

∫ ∞

τn–

· · ·
∫ ∞

τ

w(s, τ)r(s)f
(
x(s)

)
dsdτ · · · dτn–

∣∣∣∣
=

∣∣∣∣
∫ ∞

t

∫ ∞

τn–

· · ·
∫ ∞

τ

w(s, τ)r(s)f ′(ξ (s))x(s)dsdτ · · · dτn–

∣∣∣∣.
Hence, according to Lemma  with F(t) = r(t)f ′(ξ (t))x(t) we get for large t

∣∣x(t)∣∣ ≤MN
∫ ∞

t
sn–

∣∣r(s)∣∣∣∣x(s)∣∣ds.
By Lemma , we find that x is identically zero for large t. Since f ∈ C, () and () imply
(), by Remark  every nontrivial solution x of () is proper and so x is identically zero for
t ≥ Tx. The proof is complete. �
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Remark  If f (u) = |u|λ sgnu, λ ≥ , then the assumption f ∈ C(R) in Theorem  is satis-
fied. If λ < , then f /∈ C(R) and Theorem  is not valid. The following example illustrates
that assumptions of Theorem  are optimal.

Example  Consider the third order equation

x′′′(t) + x′(t) + r(t)
∣∣x(t)∣∣λ sgnx(t) = , t ≥ , ()

where r(t) = α(α + )(α + )(t + )αλ–α– + α(t + )αλ–α– and α > .
If λ < , then

∫ ∞
 r(t)dt < ∞, i.e. condition () is satisfied, however, we have f /∈ C(R).

If λ ≥ , condition () is not satisfied.
One can check that in both cases x(t) = (t+)–α is a solution vanishing at infinity of ().

This shows the strictness of both assumptions of Theorem , that is, f ∈ C(R) and ().

4 Oscillation in the linear case
In this section we prove the existence of oscillatory solutions of (), which are bounded
and not vanishing at infinity.

Theorem  Let n≥ , u be a nontrivial solution of () and

∫ ∞


sn–

∣∣q′(s)
∣∣ds <∞. ()

Then () has an oscillatory solution φ such that

φ(t) =

⎧⎨
⎩u′(t) + ε(t) for n odd,

u(t) + ε(t) for n even,

where ε is a continuous function on [,∞) and limt→∞ ε(t) = . In particular,

 < lim sup
t→∞

∣∣φ(t)∣∣ < ∞.

To prove this theorem, we give asymptotic expressions of the integrals in ().

Lemma  Let n ≥  and () hold. If u is a nontrivial (oscillatory) solution of (), then
there exist constants ci, i = , , . . . ,n – , cn– �= , and a function ε such that

Γu(t) =

⎧⎨
⎩

∑n–
i= citi + cn–u′(t) + ε(t) for n odd,∑n–
i= citi + cn–u(t) + ε(t) for n even,

where ε is a continuous function on [,∞) and limt→∞ ε(t) = .

Proof In view of (H), we have limt→∞ q(t) = q∞,  < q∞ < ∞. Let μ be an integer, μ ≥ .
Using () we get

∫ t



u(s)
qμ–(s)

ds = –
∫ t



u′′(s)
qμ(s)

ds = –
u′(t)
qμ(t)

+
u′()
qμ()

–μ

∫ t



q′(s)u′(s)
qμ(s)

ds

= α – (q∞)–μu′(t) + ε(t), ()
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where

α =
u′()
qμ()

–μ

∫ ∞



q′(s)u′(s)
qμ(s)

ds,

ε(t) = μ

∫ ∞

t

q′(s)
qμ(s)

ds +
(
(q∞)–μ –

(
q(t)

)–μ)
u′(t)

and limt→∞ ε(t) = .
Similarly, let ν be an integer, ν ≥ . Using () we have

∫ t



(t – s)u(s)
qν–(s)

ds = –
∫ t



(t – s)u′′(s)
qν(s)

ds

=
u′()
qν()

t –
u(t)
qν(t)

+
u()
qν()

– ν

∫ t



q′(s)u(s)
qν+(s)

ds

– ν

∫ t



(t – s)q′(s)u′(s)
qν+(s)

ds

= βt + γ – (q∞)–νu(t) + ε(t), ()

where

β =
u′()
qν()

– ν

∫ ∞



q′(s)u′(s)
qν+(s)

ds,

γ =
u()
qν()

+ ν

∫ ∞



q′(s)su′(s)
qν+(s)

ds – ν

∫ ∞



q′(s)u(s)
qν+(s)

ds,

ε(t) = ν

∫ ∞

t

q′(s)u(s)
qν+(s)

ds + ν

∫ ∞

t

q′(s)(t – s)u′(s)
qν+(s)

ds +
(
(q∞)–ν –

(
q(t)

)–ν)u(t)
and limt→∞ ε(t) = .
When n = , the assertion follows from () with μ = . Similarly, when n = , the asser-

tion follows from () with ν = .
Now, let n ≥ . Let j be an integer and n– ≥ j ≥ . Fixed k >  and integrating by parts,

we obtain
∫ t



(t – s)j

qk(s)
u(s)ds = –

∫ t



(t – s)ju′′(s)
qk+(s)

ds

=
u′()
qk+()

tj – j
∫ t



(t – s)j–u′(s)
qk+(s)

ds – (k + )
∫ t



(t – s)jq′(s)u′(s)
qk+(s)

ds.

Similarly
∫ t



(t – s)j–u′(s)
qk+(s)

ds =
–u()
qk+()

tj– + (j – )
∫ t



(t – s)j–u(s)
qk+(s)

ds.

Applying Lemma  and (), we have

∫ ∞



(t – s)j–q′(s)u(s)
qk+(s)

ds =
j–∑
m=

dmtm,

∫ ∞



(t – s)jq′(s)u′(s)
qk+(s)

ds =
j∑

m=

d̄mtm,
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where

dm = (–)j–m–
(
j – 
m

)∫ ∞



q′(s)
qk+(s)

sj–m–u(s)ds,

d̄m = (–)j–m
(
j
m

)∫ ∞



q′(s)
qk+(s)

sj–mu′(s)ds.

Hence

∫ t



(t – s)ju(s)
qk(s)

ds =
j∑

m=

Dmtm – j(j – )
∫ t



(t – s)j–u(s)
qk+(s)

ds +Hj(t), ()

where Dj are constants and

Hj(t) = (k + )
∫ ∞

t

(t – s)j–q′(s)
qk+(s)

(
ju(s) + (t – s)u′(s)

)
ds.

Since

∣∣Hj(t)
∣∣ ≤ (k + )

∫ ∞

t

sj–|q′(s)|
qk+(s)

(
j
∣∣u(s)∣∣ + s

∣∣u′(s)
∣∣)ds,

in virtue of Lemma  and (), we get limt→∞ Hj(t) = .
Let n be odd, n≥ . By using recursively () with

j = {, , , . . . ,n – } and k = (n –  – j)/,

we obtain the following estimation for the function Γu given by ():

Γu(t) =
n–∑
i=

citi – (n – )!
∫ t



u(s)
q(n–)/(s)

ds +K(t), ()

where ci are suitable constants and K is a continuous function on [,∞) and
limt→∞ K(t) = .
Choosing μ = (n + )/ in (), from () the assertion follows for n odd, n≥ .
Finally, let n be even, n ≥ . By using a similar argument to the one above given and

applying recursively () with

j = {, , , . . . ,n – } and k = (n –  – j)/,

we obtain the following estimation for the function Γu:

Γu(t) =
n–∑
i=

c̄iti – (n – )!
∫ t



(t – s)u(s)
qn/–(s)

ds +K(t), ()

where c̄i are suitable constants and K is a continuous function on [,∞) and
limt→∞ K(t) = .
Choosing ν = (n – )/ in (), from () the assertion follows. �
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Proof of Theorem  By Lemma , () has a solution u′(t)+ε(t) if n is odd, and u(t)+ε(t) if n
is even, where limt→∞ ε(t) = . According to Lemma  this solution is oscillatory, bounded,
and not vanishing at infinity. �

5 Oscillation in the nonlinear case
Our main results are given by the following.

Theorem  Let n≥  and u be a nontrivial solution of ().
Assume () and

∫ ∞


tn–

∣∣r(t)∣∣dt < ∞. ()

Then for any real numbers c, c, () has a solution x, defined on [Tx,∞), Tx ≥ , such that

x(t) =

⎧⎨
⎩c + cu′(t) + ε(t) for n odd,

c + cu(t) + ε(t) for n even,

where ε is a continuous function on [Tx,∞) and limt→∞ ε(t) = .
Consequently, () has oscillatory solutions x such that

 < lim sup
t→∞

∣∣x(t)∣∣ <∞.

Proof ByTheorem, () has an oscillatory solution φ, which is bounded and not vanishing
at infinity. Applying Theorem A with j = , () has a solution with the same asymptotic
properties as that one of (). �

Theorem  Let n ≥  and u, v be two linearly independent solutions of (). Assume ()
and for any positive constant μ

∫ ∞


tn– f̄

(
μtn–

)∣∣r(t)∣∣dt < ∞, ()

where the function f̄ is defined in the Preliminaries.
Then for any vector (c, c, . . . , cn–) ∈R

n there exists a solution x of (),defined on [Tx,∞),
Tx ≥ , such that

x(t) =

⎧⎨
⎩

∑n–
i= citi + cn–u′(t) + cn–v′(t) + ε(t) for n odd,∑n–
i= citi + cn–u(t) + cn–v(t) + ε(t) for n even,

()

where ε is a continuous function on [Tx,∞) and limt→∞ ε(t) = .
If, in addition, f ∈ C(R) and there exists M >  such that

∣∣f ′(u)
∣∣ ≤Mf̄ (u) for large |u|, ()

then the solution x given by () is unique.
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Proof Existence. As noticed above, the set () is a basis for the space of solutions of ().
Applying Theorem A with j = n –  and Theorem , () has a solution x satisfying ().
Uniqueness. For the sake of simplicity, let n be even. The case n odd follows in a simi-

lar way. Suppose, by contradiction, that for (c, c, . . . , cn–) ∈ R
n there exist two different

solutions x and x̄ of () satisfying (). Then for z̄(t) = x(t) – x̄(t) we have

lim
t→∞ z̄(t) =  ()

and

z̄(n)(t) + q(t)z̄(n–)(t) + r(t)
(
f
(
x(t)

)
– f

(
x̄(t)

))
= .

In view of the mean value theorem, there exists a function ξ = ξ (s) such that

f
(
x(t)

)
– f

(
x̄(t)

)
= f ′(ξ (t))(x(t) – x̄(t)

)
and

min
{
x(t), x̄(t)

} ≤ ξ (t) ≤max
{
x(t), x̄(t)

}
.

Then we have

∣∣ξ (t)∣∣ ≤Mtn–.

Therefore z̄ is a solution of

z(n)(t) + q(t)z(n–)(t) + R(t)z(t) = , ()

where R(t) = r(t)f ′(ξ (t)), for t ≥  and a suitable constantM > .
Let () hold for |u| ≥ u > . Then, in view of (), the condition () for () is satis-

fied, because
∫ ∞


tn–

∣∣R(t)∣∣dt ≤
∫ ∞


tn–

∣∣r(t)∣∣(M +Mf̄
(
Mtn–

))
dt < ∞,

whereM =max|v|≤u |f ′(v)|. Hence we can apply Theorem  to (), which gives a contra-
diction with (). �

Remark  Theorem  extends [, Theorem .] and Theorem  [, Theorem .] stated
for () with r(t) > .

An application of Theorems  and  is the following. Consider the Emden-Fowler type
equation

x(n)(t) + x(n–)(t) + r(t)
∣∣x(t)∣∣λ sgnx(t) = , ()

where λ > . Then () is satisfied for any λ >  and () reads

∫ ∞


t(n–)(λ+)

∣∣r(t)∣∣dt < ∞. ()
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Bartušek et al. Boundary Value Problems 2014, 2014:48 Page 15 of 18
http://www.boundaryvalueproblems.com/content/2014/1/48

Thus, according to Theorem , for a fixed vector (c, c, . . . , cn–) there exists a unique so-
lution of () which has the asymptotic representation ().
Now, consider (), where n is even, r(t) >  for t ≥  and λ �= . By [, Corollary .], if∫ ∞ tn–r(t)dt = ∞, then every solution of () is oscillatory. Obviously, condition () is

satisfied. Therefore, the condition () in Theorem  is optimal.
From this and Theorem  we get the following.

Corollary  Let λ > , n even, n ≥  and r(t) >  for t ≥ . Then () has oscillatory solu-
tions.

6 Asymptotic equivalence of linear equations
In this section we present another consequence of our results.
Consider the linear equation

x(n)(t) + q(t)x(n–)(t) + r(t)x(t) = , n≥ , ()

and denote by Sx and Sy the solution space of () and (), respectively.
We say that () and () are asymptotically equivalent, if there exists a map T : Sy → Sx

such that for every y ∈ Sy there exists a unique x ∈ Sx such that T(y) = x and

lim
t→∞

(
x(t) – y(t)

)
= .

Applying Theorem A and Theorem  we get the following.

Theorem  Assume n≥  and
∫ ∞


tn–

∣∣r(t)∣∣dt < ∞. ()

Then () and () are asymptotically equivalent.

Proof As we noticed above, functions tj, Γu and Γv are linearly independent solutions
of ().
By Theorem A, there exist functions ηj, j = , . . . ,n – , which tend to zero as t → ∞,

such that

xj(t) = tj + ηj(t), j = , . . . ,n – ,

xn–(t) = Γu(t) + ηn–(t),

xn–(t) = Γv(t) + ηn–(t)

are solutions of (). Hence, applying again Theorem A, we get

lim
t→∞η

(i)
j (t) = , i = , . . . ,n – . ()

We show that ηj are uniquely determined. Without loss of generality, assume by contra-
diction that there exist η and η̄ such that η �≡ η̄ and

x(t) =  + η(t), x̄(t) =  + η̄(t)
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are solutions of (). Then x̄ – x is also a solution of () and tends to zero as t → ∞. This
is a contradiction with Theorem . For j ∈ {, . . . ,n – } we proceed by the same way.
A standard argument shows that solutions xj, j = , . . . ,n – , are linearly independent.

Set

z(t) =
n–∑
j=

cjxj(t) ()

and let us prove that z(t) ≡  implies that (c, c, . . . , cn–) is the zero vector in R
n. From

() we obtain

 ≡ dn–

dtn–
z(t) = cn–u(t) + cn–v(t) + cn–η(n–)

n– (t) + cn–η(n–)
n– (t).

From this, () with i = n –  and Lemma , we get cn– = cn– = . Therefore,

z(t) =
n–∑
j=

cjxj(t).

Since

 ≡ dn–

dtn–
z(t) = cn– + η

(n–)
n– (t)

and limt→∞ η
(n–)
n– (t) = , we have cn– = . Proceeding in the same way we get ci =  for

i = , . . . ,n – .
Denote

S̄x =
{
xj(t), j = , . . . ,n – 

}
,

S̄y =
{
tj, j = , . . . ,n – ,Γu(t),Γv(t)

}
.

Since ηj are uniquely determined, there exists a - map between the sets S̄x and S̄y and so
the assertion follows. �

Remark  The assumption () is not needed in Theorem .

7 Open problems
() Does Corollary  hold for n even and λ ≤ ?
() Let q be bounded, but not of bounded variation on [,∞). Then () can have un-

bounded oscillatory solutions, see, e.g., [, Chapter VI-, Theorem ]. Similarly, if ()
is oscillatory and limt→∞ q(t) = , then () can have again unbounded oscillatory so-
lutions, as the Euler equation illustrates. In these cases, it should be interesting to find
conditions under which () has unbounded oscillatory solutions too.

() Let q be unbounded. Thus, as the Armellini-Tonelli-Sansone theorem shows, () can
have (oscillatory) solutions which tend to zero as t → ∞, see [] for a detailed survey
on this topic. In particular, in [, ] the boundedness and the existence of vanishing
at infinity solutions are investigated for second order linear equations with advanced
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arguments. As before, also in this situation, it should be an interesting problem studying
asymptotic properties of possible oscillatory solutions of (). Note that for ()with n = ,
conditions which ensure that all solutions are oscillatory, can be found in [, ] or in [,
Theorem ].

() Let g be a continuous function on R such that

lim|u|→∞

∫ u


g(σ )dσ =∞.

Under assumptions (H), any solution of the nonlinear equation

y′′(t) + q(t)g
(
y(t)

)
= 

is bounded together with its first derivative, see, e.g., [, Theorem ]. Thus, motivated
by the results here obtained, we can ask under which conditions the nonlinear equation

x(n)(t) + q(t)g
(
x(n–)(t)

)
+ r(t)f

(
x(t)

)
= 

has oscillatory bounded solutions.
() Recently, oscillation of equations with a forcing term have been studied. For example,

the boundedness of any solutions is studied in [] and the periodic case in []. More-
over, in [] a two-term equation with forcing term e has been considered and the oscil-
lation is studied under additional conditions on the function r. Thus, it seems interest-
ing to extend our study to the existence of oscillatory solutions and solutions vanishing
at infinity for the equation with the forcing term

x(n)(t) + q(t)x(n–)(t) + r(t)f
(
x(t)

)
= e(t).
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Republic. 2Department of Mathematics and Informatics ‘Ulisse Dini’, University of Florence, Florence, 50139, Italy.

Acknowledgements
The first and second authors were supported by the grant GAP201/11/0768 of the Czech Grant Agency. The authors
thank both referees for their valuable comments to the paper.

Received: 25 November 2013 Accepted: 12 February 2014 Published: 26 Feb 2014

References
1. Kiguradze, IT: An oscillation criterion for a class of ordinary differential equations. Differ. Uravn. 28, 201-214 (1992)
2. Kiguradze, IT, Chanturia, TA: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.

Kluwer Academic, Dordrecht (1993)
3. Bartušek, M, Cecchi, M, Došlá, Z, Marini, M: Oscillation for third-order nonlinear differential equations with deviating

argument. Abstr. Appl. Anal. 2010, Article ID 278962 (2010). doi:10.1155/2010/278962
4. Bartušek, M, Cecchi, M, Došlá, Z, Marini, M: Positive solutions of third order damped nonlinear differential equations.

Math. Bohem. 136, 205-213 (2011)
5. Graef, JR, Saker, SH: Oscillation theory of third-order nonlinear functional differential equations. Hiroshima Math. J. 43,

49-72 (2013)
6. Amara, JB: Oscillation criteria for fourth-order differential equations with middle term. Math. Nachr. 285, 42-46 (2012)

http://www.boundaryvalueproblems.com/content/2014/1/48
http://dx.doi.org/10.1155/2010/278962


Bartušek et al. Boundary Value Problems 2014, 2014:48 Page 18 of 18
http://www.boundaryvalueproblems.com/content/2014/1/48

7. Amara, JB: Comparison theorem for conjugate points of a fourth-order linear differential equation. Can. Math. Bull.
56, 39-43 (2013)

8. Bartušek, M, Došlá, Z: Asymptotic problems for fourth order nonlinear differential equations. Bound. Value Probl.
2013, 89 (2013). doi:10.1186/1687-2770-2013-89

9. Bartušek, M, Cecchi, M, Došlá, Z, Marini, M: Unbounded solutions of third order delayed differential equations with
damping term. Cent. Eur. J. Math. 9, 184-195 (2011)

10. Bartušek, M, Cecchi, M, Došlá, Z, Marini, M: On fourth order differential equation with deviating argument. Abstr. Appl.
Anal. 2012, Article ID 185242 (2012). doi:10.1155/2012/185242

11. Astashova, IV: On the asymptotic behavior at the infinity of solutions to quasi-linear differential equations. Math.
Bohem. 135, 373-382 (2010)

12. Astashova, IV: On existence of non-oscillatory solutions to quasi-linear differential equations. Georgian Math. J. 14,
223-238 (2007)

13. Bartušek, M, Cecchi, M, Došlá, Z, Marini, M: Asymptotics for higher order differential equations with a middle term.
J. Math. Anal. Appl. 388, 1130-1140 (2012)

14. Kiguradze, IT, Lomtatidze, A: Periodic solutions of nonautonomous ordinary differential equations. Monatshefte Math.
159, 235-252 (2010)

15. Perov, AI: On bounded solutions of n-order nonlinear ordinary differential equations. Differ. Uravn. 46, 1226-1244
(2010). Translation: Differ. Equ. 46, 1236-1252 (2010)

16. Sun, YG, Han, Z: On forced oscillation of higher-order functional differential equations. Appl. Math. Comput. 218,
6966-6971 (2012)

17. Bellman, R: Stability Theory of Differential Equations. McGraw-Hill, New York (1953)
18. Marini, M: Criteri di limitatezza per le soluzioni dell’equazione lineare del secondo ordine. Boll. Unione Mat. Ital. 11,

154-165 (1975)
19. Agarwal, RP, Grace, SR, O’Regan, D: Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear

Dynamic Equations. Kluwer Academic, Dordrecht (2003)
20. Došlá, Z, Kiguradze, IT: On vanishing at infinity solutions of second order linear differential equations with advanced

arguments. Funkc. Ekvacioj 41, 189-205 (1998)
21. Došlá, Z, Kiguradze, IT: On boundedness and stability of solutions of second order linear differential equations with

advanced arguments. Adv. Math. Sci. Appl. 9, 1-24 (1999)

10.1186/1687-2770-2014-48
Cite this article as: Bartušek et al.: Oscillation for higher order differential equations with a middle term. Boundary
Value Problems 2014, 2014:48

http://www.boundaryvalueproblems.com/content/2014/1/48
http://dx.doi.org/10.1186/1687-2770-2013-89
http://dx.doi.org/10.1155/2012/185242

	Oscillation for higher order differential equations with a middle term
	Abstract
	Introduction
	Preliminaries
	Solutions vanishing at inﬁnity
	Oscillation in the linear case
	Oscillation in the nonlinear case
	Asymptotic equivalence of linear equations
	Open problems
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


