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Abstract

We generalize the classical Ambrosetti-Rabinowitz mountain pass lemma with the
Palais-Smale condition for C'! functional to some singular case with the
Cerami-Palais-Smale condition and then we study the existence of new periodic
solutions with a fixed period for the singular second-order Hamiltonian systems with
a strong force potential.

MSC: 34C15;34C25; 58F

Keywords: Ambrosetti-Rabinowitz's mountain pass lemma; singular second-order
Hamiltonian systems; periodic solutions; Cerami-Palais-Smale condition

1 Introduction
Many authors [1-19] studied the existence of periodic solutions ¢ — x(¢) € 2, with a pre-
scribed period, of the following second-order differential equations:

X=-V'(t,x), (1.1)

where Q = RN — {0} (N e N, N >2) and V € C}(R x 2,R); V'(¢,-) denotes the gradient of
the function V (¢, -) defined on Q.

In 1975, Gordon [10] firstly used variational methods to study periodic solutions of pla-
nar 2-body type problems, he assumed the condition nowadays called Gordon’s strong
force condition.

Condition (V}): There exists a neighborhood A of 0 and a function U € C}(R,R) such
that:

(@) limy_o U(x) = —00;
(i) =V (tx) > |U'(x)|? for everyx € N — {0} and t € [0, T].
Moreover,

(iii) limy_ o V(t,x) = —0c0.

In the 1980s and 1990s, Ambsosetti-Coti Zelati, Bahri-Rabinowitz, Greco etc. [1-9, 11—
19] further studied 2-body type problems in RN (N > 2).

Suppose that V(¢,x) is T-periodic in £; as regards the behavior of V (¢, x) at infinity, they
suppose that one of the following conditions holds.

Condition (V3): limy -, V(£,%) = 0, limy—, o0 V'(£,%) = 0 (uniformly for £) and V'(¢,x) <
0 for everyt € [0,T], x € Q.
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Condition (V3): There exist ¢, My, R;, v > 0 such that, for every ¢ € [0, T] and x € RN
with |x| > R;:

(i) V(&%) < M

(i) V(t,x) = crlx]".

Condition (V4): There exist ¢;,R; > 0,6 > %, v > 1suchthat, forevery ¢ € [0, T], |x| > R;:

(i) oV'(t,x)x < V(t,x);

(ii) V(&%) > crlx|".

Setting K = {x € Q|V'(t,x) = 0 for every ¢ € [0, T}, they got the following results.

Theorem 1.1 (Greco [11]) If (V1) and one of (V3)-(V4) hold, and moreover K = (), then
there is at least one non-constant T-periodic C? solution.

Theorem 1.2 (Bahri-Rabinowitz [3], Greco [11]) Suppose that dV/dt = 0, so V(t,x) =
V (x); moreover suppose we have the following condition.

Condition (Vs): K is compact (or empty).

Then, if (V1) and one of (V3)-(Va4) hold, there exist infinitely many non-constant T -peri-
odic C? solutions.

In this paper, we prove the following new theorem.

Theorem 1.3 Suppose V € CL(R x Q,R) satisfies the conditions:
(V1) Forthegiven T >0, V(t+ T,x) = V(¢t, ).
(V2) V(t,x) e R x Q, V(t+ %,—x) = V(¢ x).
(V3) Thereisa >0, > 2 such that for any given € > 0 and

1

T)\? 1
Vt e [0, T], x| < <E) [(ba)(a+2) + 6],

we have

—-V(t,x) >

’

IR
where
b=al2m)* 7%,
(V4) There exists M > 0 such that V(t,x) € R x £,
3V(t,x) - V' (t,x)x <M.

(V5) V(t,x) — +00 as |x| — +oo uniformly for0 <t <T.
Then the system (1.1) has at least a non-constant T-periodic solution.

Corollary 1.1 Supposea >2,8>3,a>0,a' >0,V € C{(,R) and

1
T\? 1
Vx) =-alx|™, O<|x[<n= (ﬁ) [(ba) @D +€];
Vx)=d'|x’, x| =1 >y

then VT >0, (1.1) has at least a T-periodic solution.
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2 Afew lemmas
Lemma 2.1 (Sobolev-Rellich-Kondrachov [20]) We have

H'=W"(R/TZ,R") C C(R/ITZ,R")
and the embedding is compact.

Lemma 2.2 (Eberlein-Shmulyan [20]) A Banach space X is reflexive if and only if any
bounded sequence in X has a weakly convergent subsequence.

Lemma 2.3 ([21]) (i) Let g € WY2(R/ZT,RN) and fOT q(t) dt = 0, then we have Wirtinger’s
inequality:

T 2 T
/ol&z(t)lzdtz(z%> /0 lq()|” dt.

(ii) Let g € WY(R/ZT,RN) and fOT q(t) dt = 0, then we have Sobolev’s inequality:

TT.
M&SEAMWML

(iil) Let ¢ be a convex function on the real line; f : [a, b] — R is a non-negative real-valued
function which is Lebesgue-integrable, then

b 1 b
¢</; Sx) dx) =< m/a qﬁ((b—a)f(x)) dx.

Lemma 2.4 (Ekeland [8]) Let X be a Banach space; suppose that ® defined on X is
Gateaux-differentiable and lower semi-continuous and bounded from below. Then there
is a sequence {x,} such that

®(x,) — inf D,
(1 + llxall) | @' ()| = O.
Definition 2.1 (Palais and Smale [22]) Let X be a Banach space;f € C}(X, R),if {x,,} C X s.t.

f(xn) -G f/(xn) — 0,

and {x,} has a strongly convergent subsequence; then we say that f satisfies the (PS). con-
dition.

Cerami [23] presented a weaker compact condition than the above classical (PS), con-
dition.

Definition 2.2 ([8]) Let X be a Banach space, A C X, and suppose that ® is defined on A
is Gateaux-differentiable, if the sequence {x,,} is such that

P(xn) = ¢

1+ lxall) | @ x0)| — O,

then {x,} has a strongly convergent subsequence in A.


http://www.boundaryvalueproblems.com/content/2014/1/49

Li and Li Boundary Value Problems 2014, 2014:49 Page 4 of 7
http://www.boundaryvalueproblems.com/content/2014/1/49

Then we say that f satisfies the (CPS), condition.
We can give a weaker condition than the (CPS), condition.

Definition 2.3 Let X be a Banach space, A C X, and suppose that ® defined on A is
Gateaux-differentiable; if the sequence {x,} is such that

qD(xn) — G

(1 + ”xn”) H P’ (%) “ — 0,

and {x,} has a weakly convergent subsequence in A, then we say that f satisfies the
(WCPS), condition.

Lemma 2.5 (Ambrosetti-Rabinowitz [24], mountain pass lemma) Let X be a Banach
space, A C X, f € C}(A,R). We have

B, ={xe Alllxll < p},
S,=0B,NX, p>0.
If there are two points e, € B, —S,, ey € A — B, such that
fls,za>0
and
fler),f(e2) <0,

then C = infycr sup,c(o 1. f(#(t)) > o, where I' = {h(t) € CH([0,1], A), 1(0) = e, h(1) = ey}. If
f satisfies the (CPS)¢ condition on A C X, furthermore, if f(x,) — +00 as x, — 0A, then
C is a critical value for f .

3 The proof of Theorem 1.3
Let

H'= {q:R—> R'\qel*gel?q(t+T) :q(t)},
A= {q eHl,q<t + g) =—q(¢),q(¢t) :/O,Vt}.

Lemma 3.1 ([2, 25]) If V € C}(R x Q,R) satisfies the conditions (V1)-(V2), let

1 T T
fa@)= / Gl di - / Vibgdt, qe A,
0 0

then the critical point of f(q) on A is a T-periodic solution of (1.1).

Lemma 3.2 If V satisfies (V3), (V4) in Theorem 1.1, then f satisfies the Cerami-Palais-
Smale condition for any ¢ > 0, that is, for any {x,} C A:

fe)—c (L4 Ixall)f () = O, 3.1)

{x} has a strongly convergent subsequence and the limit is in A.
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Proof By the condition (V3), it is well known [10] that f(x,) — +00 as x, — dA. Since

f(x,) = ¢, we know that for any given € > 0, there exists N such that when n > N, we have

1" T
—/ |5Cn|2dt—/ Vix,)dt <c+e. (3.2)
2 0 0
By (1 + ||%x[1)f' (%) — O, we have
f'®n)x, — 0, (3.3)

T
S ) = 2f (%) + /0 [2V (&%) = V'(t, %0)%4 ] dE — 0. (3.4)

So by (V4) and (3.2) and (3.4), we have d > 0 such that when # large enough, we have
T
/ x> dt < d. (3.5)
0

So fOT |%,,|> dt is bounded. Then {x,} has a weakly convergence subsequence, and it is stan-
dard to further prove that this subsequence is strongly convergent in A.
Now we can prove our theorem.

In order to apply for Ambrosetti-Rabinowitz’s mountain pass lemma, we notice that
T
Vx € A, / x(t)dt=0
0

so by (V3) and Wirtinger’s inequality we have

1 T T
- / |%|2 dt — / V(%) dt (3.6)
2 Jo 0
1 T T
—/ |5c|2dt+a/ x| dt (3.7)
2 Jo 0
1 (7 o T 7
> —/ %2 + aT' 2 (/ |x|2dt) (3.8)
2 Jo 0
1 (T o T\ ([T 7
—/ %2 + aT' 2 (—) (/ |5c|2dt) (3.9)
2 0 2 0

%sz +bs™ = p(s), (3.10)

f(x)

v

v

where

T 1/2 N T —a N
s= (/ |2 dt) , b=aT2 (—) =a@n)* T2, (3.11)
0 21

It is easy to see that if s = (ba) 2, ¢ attains its infimum which is a positive number. Ve > 0,
we can take p =50 + ¢, take e;(£) # 0, ||€; || =50 <P, By Sobolev’s inequality, we know that
(fo %) dt) z ||x|| , 80 if [[x(£) ]| oo < ( ) [(ba) @D a+2 + €], then the above proofs hold.
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Let us choose e; = constant value vector in R”, €; = 0. Then by (V1) and (V5), we have
T
fley) = —/ V(t,ep) < —TominT|V(t, )| > —00  as|ex] =R — +oo. (3.12)
0 <t<

So if |e;| = R is large enough, we have

Sfley <0.

By Lemmas 2.5 and 3.2, f has a critical value C > 0, and the corresponding critical point
is a T-periodic solution of the system (1.1). Furthermore, we claim that the critical point
is non-constant; in fact, if otherwise, by the anti-7'/2 periodic property, we know that the
critical point must be constant zero, which is impossible since f(0) = +oo0. O
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