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Abstract
In the present paper we apply a sinc-Gaussian technique to compute approximate
values of the eigenvalues of discontinuous Dirac systems, which contain an
eigenvalue parameter in one boundary condition, with transmission conditions at the
point of discontinuity. The error of this method decays exponentially in terms of the
number of involved samples. Therefore the accuracy of the new technique is higher
than the classical sinc-method. Numerical worked examples with tables and
illustrative figures are given at the end of the paper showing that this method gives
us better results.
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1 Introduction
Consider the discontinuousDirac systemwhich consists of the system of differential equa-
tions(

y′
(x) – r(x)y(x)
y′
(x) + r(x)y(x)

)
=

(
λy(x)
–λy(x)

)
, x ∈ [–, )∪ (, ], (.)

with boundary conditions

U(y) := sinαy(–) – cosαy(–) = , (.)

U(y) := (a + λ sinβ)y() – (a + λ cosβ)y() =  (.)

and transmission conditions

U(y) := y
(
–

)
– δy

(
+

)
= , (.)

U(y) := y
(
–

)
– δy

(
+

)
= , (.)

where λ ∈ C; y =
( y
y

)
; the real-valued functions r(·) and r(·) are continuous in [–, )

and (, ], and have finite limits r(±) := limx→± r(x), r(±) := limx→± r(x); a,a, δ ∈
R, α,β ∈ [,π ); δ �=  and ρ := a cosβ – a sinβ > .The aim of the present work is to
compute the eigenvalues of (.)-(.) numerically by the sinc-Gaussian technique with
errors analysis, truncation error and amplitude error.
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Sampling theory is one of the most important mathematical tools used in communi-
cation engineering since it enables engineers to reconstruct signals from some of their
sampled data. A fundamental result in information theory is the Whittaker-Kotel’nikov-
Shannon (WKS) sampling theorem [–]. It states that any f ∈ B

σ , σ > ,

B
σ :=

{
f : f entire,

∣∣f (μ)∣∣ ≤ Ceσ |�μ|,
∫
R

∣∣f (μ)∣∣ dμ < ∞
}
,

can be reconstructed from its sampled values {f (nπ/σ ) : n ∈ Z} by the formula

f (λ) =
∑
n∈Z

f (nπ/σ ) sinc(σλ – nπ ), λ ∈C, (.)

where

sinc(λ) :=

{
sin(λ)

λ
, λ �= ,

, λ = .
(.)

Series (.) converges absolutely and uniformly on compact subsets of C, and uniformly
on R, cf. []. Expansion (.) is used in several approximation problems which are known
as sinc-methods; see, e.g., [–]. In particular the sinc-method is used to approximate
eigenvalues of boundary value problems; see, for example, [–]. The sinc-method has
a slow rate of decay at infinity, which is as slow as O(|λ–|). There have been several
attempts to improve the rate of decay. One of the interesting ways is to multiply the
sinc-function in (.) by a kernel function; see, e.g., [–]. Let h ∈ (,π/σ ] and γ ∈
(,π – hσ ). Assume that 
 ∈ B

γ such that 
() = , then for g ∈ B
σ we have the expan-

sion []

g(λ) =
∞∑

n=–∞
g(nh) sinc

(
h–πλ – nπ

)



(
h–λ – n

)
. (.)

The speed of convergence of the series in (.) is determined by the decay of |
(λ)|.
But the decay of an entire function of exponential type cannot be as fast as e–c|x| as
|x| → ∞ for some positive c []. In [], Qian has introduced the following regular-
ized sampling formula. For h ∈ (,π/σ ], N ∈ N and r > , Qian defined the opera-
tor []

(Gh,Ng)(λ) =
∑

n∈ZN (λ)

g(nh) sinc
(
h–πλ – nπ

)
G

(
λ – nh√

rh

)
, λ ∈R, (.)

where G(t) := exp(–t), which is called the Gaussian function, ZN (x) := {n ∈ Z : |[h–x] –
n| ≤ N} and [x] denotes the integer part of x ∈ R; see also [, ]. Qian also derived the
following error bound. If g ∈ B

σ , h ∈ (,π/σ ] and a :=min{r(π – hσ ), (N – )/r} ≥ , then
[, ]

∣∣g(λ) – (Gh,Ng)(λ)
∣∣ ≤ 

√
σπ‖g‖
πa

(√
πa + e/r

)
e–a

/, λ ∈R. (.)
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In [] Schmeisser and Stenger extended the operator (.) to the complex domain C. For
σ > , h ∈ (,π/σ ] and ω := (π – hσ )/, they defined the operator []

(Gh,Ng)(λ) :=
∑

n∈ZN (λ)

g(nh)Sn
(

πλ

h

)
G

(√
ω(λ – nh)√

Nh

)
, (.)

where ZN (λ) := {n ∈ Z : |[h–
λ + /] – n| ≤ N} and N ∈ N. Note that the summation
limits in (.) depend on the real part of λ. Schmeisser and Stenger [] proved that if g
is an entire function such that

∣∣g(ξ + iη)
∣∣ ≤ φ

(|ξ |)eσ |η|, ξ ,η ∈R, (.)

where φ is a non-decreasing, non-negative function on [,∞) and σ ≥ , then for
h ∈ (,π/σ ), ω := (π – hσ )/, N ∈N, |�λ| <N , we have

∣∣g(λ) – (Gh,Ng)(λ)
∣∣

≤ 
∣∣sin(h–πλ

)∣∣φ(|
λ| + h(N + )
) e–ωN
√

πωN
βN

(
h–�λ

)
, λ ∈C, (.)

where

βN (t) := cosh(ωt) +
eωt/N

√
πωN[ – (t/N)]

+



[
eωt

eπ (N–t) – 
+

e–ωt

eπ (N+t) – 

]
. (.)

The amplitude error arises when the exact values g(nh) of (.) are replaced by the ap-
proximations g̃(nh). We assume that g̃(nh) are close to g(nh), i.e., there is ε >  sufficiently
small such that

sup
n∈Zn(λ)

∣∣g(nh) – g̃(nh)
∣∣ < ε. (.)

Let h ∈ (,π/σ ), ω := (π – hσ )/ and N ∈N be fixed numbers. The authors in [] proved
that if (.) is held, then for |�λ| <N , we have

∣∣(Gh,Ng)(λ) – (Gh,N g̃)(λ)
∣∣ ≤ Aε,N (�λ), (.)

where

Aε,N (�λ) = εe–ω/N ( +
√
N/ωπ ) exp

(
(ω + π )h–|�λ|). (.)

Without eigenparameter appearing in any of boundary conditions, in [] and []
Tharwat et al. approximately computed the eigenvalues of the discontinuous Dirac sys-
temwhich is studied in themonographs of [] by Hermite interpolations and regularized
sinc-methods, respectively. In the regularized sinc-method, also the same in the Hermite
interpolations method, the basic idea is as follows: The eigenvalues are characterized as
the zeros of an analytic function F(λ) which can be written in the form F(λ) = f(λ) + f (λ),
where f(λ) is a known part. The ingenuity of the approach is in trying to choose the
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function F(λ) so that f (λ) ∈ B
σ (unknown part) and can be approximated by the WKS

sampling theorem if its values at some equally spaced points are known; see [–]. Re-
call that, in regularized sinc and Hermite interpolations methods, it is necessary that f (λ)
is an L-function. In this paper we will use the sinc-Gaussian sampling formula (.) to
compute eigenvalues of (.)-(.) numerically. As is expected, the new method reduced
the error bounds remarkably (see the examples in Section ). Also here, the basic idea is
to write the function of eigenvalues as the sum of two terms, one known and the other un-
known but an entire function of exponential type which satisfies (.). In other words, the
unknown term is not necessarily an L-function. Then we approximate the unknown part
using (.) and obtain better results. We would like to mention that the papers in com-
puting eigenvalues by the sinc-Gaussian method are few; see [, –]. In Sections , 
we derive the sinc-Gaussian technique to compute the eigenvalues of (.)-(.) with error
estimates. The last section involves some illustrative examples.

2 Preliminaries
In this section we derive approximate values of the eigenvalues of problem (.)-(.). Re-
call that problem (.)-(.) has a denumerable set of real and simple eigenvalues, cf. [];
see also [, –]. Let

y(·,λ) =
(
y(·,λ)
y(·,λ)

)
, yi(x,λ) =

{
yi(x,λ), x ∈ [–, ),
yi(x,λ), x ∈ (, ],

i = , , (.)

be the solution of (.) satisfying the following initial conditions:

(
y(–,λ) y(+,λ)
y(–,λ) y(+,λ)

)
=

(
cosα δ–y(–,λ)
sinα δ–y(–,λ)

)
. (.)

In [], Tharwat proved the existence and uniqueness of (.). Since y(·,λ) satisfies (.),
then the eigenvalues of problem (.)-(.) are the zeros of the function (see Lemma . of
[, p.])

�(λ) = δ
(
(a + λ sinβ)y(,λ) – (a + λ cosβ)y(,λ)

)
. (.)

Notice that both y(·,λ) and �(λ) are entire functions of λ, and y(·,λ) satisfies the system
of integral equations (cf. [])

y(x,λ) = cos
(
λ(x + ) + α

)
– S–,y(x,λ) – S̃–,y(x,λ), (.)

y(x,λ) = sin
(
λ(x + ) + α

)
+ S̃–,y(x,λ) – S–,y(x,λ), (.)

y(x,λ) =

δ
y

(
–,λ

)
cos(λx) –


δ
y

(
–,λ

)
sin(λx)

– S,y(x,λ) – S̃,y(x,λ), (.)

y(x,λ) =

δ
y

(
–,λ

)
sin(λx) +


δ
y

(
–,λ

)
cos(λx)

+ S̃,y(x,λ) – S,y(x,λ), (.)
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where S–,i, S̃–,i, S,i and S̃,i, i = , , are the Volterra integral operators defined by

S–,iϕ(x,λ) :=
∫ x

–
sinλ(x – t)ri(t)ϕ(t,λ)dt,

S̃–,iϕ(x,λ) :=
∫ x

–
cosλ(x – t)ri(t)ϕ(t,λ)dt,

S,iϕ(x,λ) :=
∫ x


sinλ(x – t)ri(t)ϕ(t,λ)dt,

S̃,iϕ(x,λ) :=
∫ x


cosλ(x – t)ri(t)ϕ(t,λ)dt.

For convenience, we define the constants

c :=
∫ 

–

[∣∣r(t)∣∣ + ∣∣r(t)∣∣]dt, c := c exp(c),

c :=
∫ 



[∣∣r(t)∣∣ + ∣∣r(t)∣∣]dt, c := c +

|δ| ( + c), (.)

c :=max
{|a| + |a|, | sinβ| + | cosβ|}.

Define z–,i(·,λ) and z,i(·,λ), i = , , to be

z–,(x,λ) := S–,y(x,λ) + S̃–,y(x,λ),

z–,(x,λ) := S̃–,y(x,λ) – S–,y(x,λ),
(.)

z,(x,λ) := S,y(x,λ) + S̃,y(x,λ),

z,(x,λ) := S̃,y(x,λ) – S,y(x,λ).
(.)

Lemma . The functions z–,(x,λ) and z–,(x,λ) are entire in λ for any fixed x ∈ [–, )
and satisfy the growth condition

∣∣z–,(x,λ)∣∣, ∣∣z–,(x,λ)∣∣ ≤ ce|�λ|(x+), λ ∈C. (.)

Proof Since z–,(x,λ) = S–,y(x,λ) + S̃–,y(x,λ), then from (.) and (.) we obtain

z–,(x,λ) = S–, cos
(
λ(x + ) + α

)
+ S̃–, sin

(
λ(x + ) + α

)
– S–,z–,(x,λ) + S̃–,z–,(x,λ).

Using the inequalities | sin z| ≤ e|�z| and | cos z| ≤ e|�z| for z ∈C leads for λ ∈C to

∣∣z–,(x,λ)∣∣ ≤ ∣∣S–, cos
(
λ(x + ) + α

)∣∣ + ∣∣S̃–, sin
(
λ(x + ) + α

)∣∣
+

∣∣S–,z–,(x,λ)
∣∣ + ∣∣S̃–,z–,(x,λ)

∣∣
≤ e|�λ|(x+)

∫ x

–

[∣∣r(t)∣∣∣∣z–,(t,λ)∣∣ + ∣∣r(t)∣∣∣∣z–,(t,λ)∣∣]e–|�λ|(t+) dt

+ e|�λ|(x+)
∫ x

–

[∣∣r(t)∣∣ + ∣∣r(t)∣∣]dt

http://www.boundaryvalueproblems.com/content/2014/1/51
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≤ ce|�λ|(x+)

+ e|�λ|(x+)
∫ x

–

[∣∣r(t)∣∣∣∣z–,(t,λ)∣∣ + ∣∣r(t)∣∣∣∣z–,(t,λ)∣∣]e–|�λ|(t+) dt.

The above inequality can be reduced to

e–|�λ|(x+)∣∣z–,(x,λ)∣∣
≤ c +

∫ x

–

[∣∣r(t)∣∣∣∣z–,(t,λ)∣∣ + ∣∣r(t)∣∣∣∣z–,(t,λ)∣∣]e–|�λ|(t+) dt. (.)

Similarly, we can prove that

e–|�λ|(x+)∣∣z–,(x,λ)∣∣
≤ c +

∫ x

–

[∣∣r(t)∣∣∣∣z–,(t,λ)∣∣ + ∣∣r(t)∣∣∣∣z–,(t,λ)∣∣]e–|�λ|(t+) dt. (.)

Then from (.), (.) and Lemma . of [, p.], we obtain (.). �

In a similar manner, we will prove the following lemma for z,(·,λ) and z,(·,λ).

Lemma . The functions z,(x,λ) and z,(x,λ) are entire in λ for any fixed x ∈ (, ] and
satisfy the growth condition

∣∣z,(x,λ)∣∣, ∣∣z,(x,λ)∣∣ ≤ cce|�λ|(x+), λ ∈C. (.)

Proof Since z,(x,λ) = S,y(x,λ) + S̃,y(x,λ), then from (.) and (.) we obtain

z,(x,λ) =

δ
y

(
–,λ

)
S, cos(λx) –


δ
y

(
–,λ

)
S, sin(λx) – S,z–,(x,λ)

+

δ
y

(
–,λ

)
S̃, sin(λx) +


δ
y

(
–,λ

)
S̃, cos(λx) + S̃,z–,(x,λ).

Then from (.) and (.) and Lemma ., we get

∣∣z,(x,λ)∣∣ ≤ 
|δ|

∣∣y(–,λ)∣∣∣∣S, cos(λx)
∣∣ + 

|δ|
∣∣y(–,λ)∣∣∣∣S, sin(λx)

∣∣
+

∣∣S,z–,(x,λ)
∣∣ + 

|δ|
∣∣y(–,λ)∣∣∣∣S̃, sin(λx)

∣∣
+


|δ|

∣∣y(–,λ)∣∣∣∣S̃, cos(λx)
∣∣ + ∣∣S̃,z–,(x,λ)

∣∣
≤ 

(
c +


|δ| ( + c)

)
ce|�λ|(x+)

= cce|�λ|(x+).

Similarly, we can prove that

∣∣z,(x,λ)∣∣ ≤ cce|�λ|(x+). �
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3 The numerical scheme
In this section we derive the method of computing eigenvalues of problem (.)-(.) nu-
merically. The basic idea of the scheme is to split �(λ) into two parts a known part K(λ)
and an unknown one U (λ). Then we approximate U (λ) using (.) to get the approxi-
mate �(λ) and then compute the approximate zeros. We first split �(λ) into two parts as
follows:

�(λ) :=K(λ) + U (λ), (.)

where U (λ) is the unknown part involving integral operators

U (λ) := δ
[
a sinλ – a cosλ + λ sin(λ – β)

]
z–,

(
–,λ

)
– δ

[
a sinλ + a cosλ + λ cos(λ – β)

]
z–,

(
–,λ

)
+ δ

[
–(a + λ sinβ)z,(,λ) + (a + λ cosβ)z,(,λ)

]
(.)

and K(λ) is the known part

K(λ) := δ
[
a cos(λ + α) – a sin(λ + α) – λ sin(λ + α – β)

]
. (.)

Then, from Lemma . and Lemma ., we have the following result.

Lemma . The function U (λ) is entire in λ and the following estimate holds:

∣∣U (λ)∣∣ ≤ φ(λ)e|�λ|, (.)

where

φ(λ) =:M
(
 + |λ|), M := |δ|c

(
c + |δ|cc

)
. (.)

Proof From (.) we have∣∣U (λ)∣∣ ≤ |δ|[|a|| sinλ| + |a|| cosλ| + |λ|∣∣sin(λ – β)
∣∣]∣∣z–,(–,λ)∣∣

+ |δ|[|a|| sinλ| + |a|| cosλ| + |λ|∣∣cos(λ – β)
∣∣]∣∣z–,(–,λ)∣∣

+ δ
[(|a| + |λ|| sinβ|)∣∣z,(,λ)∣∣ + (|a| + |λ|| cosβ|)∣∣z,(,λ)∣∣].

Using the inequalities | sinλ| ≤ e|�λ| and | cosλ| ≤ e|�λ| for λ ∈ C, Lemma . and Lem-
ma . imply (.). �

Thus U (λ) is an entire function of exponential type σ = . In the following we let λ ∈ R

since all eigenvalues are real. Now we approximate the function U (λ) using the operator
(.) where h ∈ (,π/) and ω := (π – h)/ and then, from (.), we obtain∣∣U (λ) – (Gh,NU )(λ)

∣∣ ≤ Th,N (λ), (.)

where

Th,N (λ) := 
∣∣sin(h–πλ

)∣∣φ(|
λ| + h(N + )
) e–ωN
√

πωN
βN (), λ ∈R. (.)

http://www.boundaryvalueproblems.com/content/2014/1/51
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The samples U (nh) = �(nh) –K(nh), n ∈ ZN (λ) cannot be computed explicitly in the gen-
eral case. We approximate these samples numerically by solving the initial value prob-
lems defined by (.) and (.) to obtain the approximate values Ũ (nh), n ∈ ZN (λ), i.e.,
Ũ (nh) = �̃(nh) –K(nh). Here we use the computer algebra system Mathematica to ob-
tain approximate solutions with the required accuracy. However, a separate study for the
effect of different numerical schemes and the computational costs would be interesting.
Accordingly, we have the explicit expansion

(Gh,N Ũ )(λ) :=
∑

n∈ZN (λ)

Ũ (nh) sinc
(
h–πλ – nπ

)
G

(√
ω(λ – nh)√

Nh

)
. (.)

Therefore we get (cf. (.))

∣∣(Gh,NU )(λ) – (Gh,N Ũ )(λ)
∣∣ ≤ Aε,N (), λ ∈ R. (.)

Now let �̃N (λ) :=K(λ) + (Gh,N Ũ )(λ). From (.) and (.) we obtain

∣∣�(λ) – �̃N (λ)
∣∣ ≤ Th,N (λ) +Aε,N (), λ ∈R. (.)

Let λ∗ be an eigenvalue and λN be its desired approximation, i.e., �(λ∗) =  and
�̃N (λN ) = . From (.) we have |�̃N (λ∗)| ≤ Th,N (λ∗) +Aε,N (). Define the curves

a±(λ) = �̃N (λ)± Th,N (λ) +Aε,N (). (.)

The curves a+(λ), a–(λ) enclose the curve of �(λ) for suitably large N . Hence the closure
interval is determined by solving a±(λ) = , which gives an interval

Iε,N := [a–,a+].

It is worthwhile to mention that the simplicity of the eigenvalues guarantees the existence
of approximate eigenvalues, i.e., the λN for which �̃N (λN ) = . Next we estimate the error
|λ∗ – λN | for the eigenvalue λ∗.

Theorem . Let λ∗ be an eigenvalue of (.)-(.) and let λN be its approximation. Then,
for λ ∈R, we have the following estimate:

∣∣λ∗ – λN
∣∣ < Th,N (λN ) +Aε,N ()

infζ∈Iε,N |�′(ζ )| , (.)

where the interval Iε,N is defined above.

Proof Replacing λ by λN in (.), we obtain

∣∣�(λN ) –�
(
λ∗)∣∣ < Th,N (λN ) +Aε,N (), (.)

where we have used �̃N (λN ) = �(λ∗) = . Using the mean value theorem yields that for
some ζ ∈ Jε,N := [min(λ∗,λN ),max(λ∗,λN )],∣∣(λ∗ – λN

)
�′(ζ )

∣∣ ≤ Th,N (λN ) +Aε,N (), ζ ∈ Jε,N ⊂ Iε,N . (.)

http://www.boundaryvalueproblems.com/content/2014/1/51
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Since λ∗ is simple and N is sufficiently large, then infζ∈Iε,N |�′(ζ )| >  and we get (.).
�

4 Numerical examples
This section includes two examples illustrating the sinc-Gaussianmethod. It is clearly seen
that the sinc-Gaussian method gives remarkably better results. We indicate in these two
examples the effect of the amplitude error in the method by determining enclosure inter-
vals for different values of ε. We also indicate the effect of N and h by several choices. We
would like to mention that Mathematica has been used to obtain the exact values for
these examples where eigenvalues cannot be computed concretely. Mathematica is also
used in rounding off the exact eigenvalues, which are square roots. Each example is pre-
sented via figures that accurately illustrate the procedure near some of the approximated
eigenvalues. More explanations are given below.

Example . Consider the system

y′
(x) – r(x)y(x) = λy(x), y′

(x) + r(x)y(x) = –λy(x), x ∈ [–, )∪ (, ], (.)

y(–) = , ( + λ)y() + y() = , (.)

y
(
–

)
– y

(
+

)
= , y

(
–

)
– y

(
+

)
= . (.)

Here

r(x) = r(x) = r(x) =

{
x, x ∈ [–, ),
x, (, ],

(.)

α = β = π
 , a = , a = – and δ = . Direct calculations give

K(λ) = 
(
cos[λ] – ( + λ) sin[λ]

)
(.)

and

�(λ) = 
(
cos

[


– λ

]
+ ( + λ) sin

[


– λ

])
. (.)

As is clearly seen, the eigenvalues cannot be computed explicitly. The following three ta-
bles (Tables , , ) indicate the application of our technique to this problem and the effect
of ε. By exact we mean the zeros of �(λ) computed by Mathematica.
Figures  and  illustrate the enclosure intervals dominating λ– for N = , h = . and

ε = –, ε = –, respectively. The middle curve represents �(λ), while the upper and

Table 1 The approximation λk,N and the exact solution λk for different choices of h and N

λk λ–2 λ–1 λ0 λ1

Exact λk –1.9050594725435388 –0.8005149927957496 0.3944055848645847 1.8242788740449205
λk,N h = 0.8,

ω = 0.7714
N = 10 –1.9050945328700728 –0.8005149844410676 0.3943794190610962 1.8242617833701285
N = 20 –1.9050594925575182 –0.8005149927903844 0.39440557044475477 1.8242788645444055

h = 0.2,
ω = 1.3714

N = 10 –1.9050594937724747 –0.8005149927866473 0.3944055855507727 1.8242788693330168
N = 20 –1.905059472543563 –0.8005149927957529 0.39440558486458616 1.824278874044914

http://www.boundaryvalueproblems.com/content/2014/1/51
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Table 2 Absolute error |λk – λk,N|
λk λ–2 λ–1 λ0 λ1

h = 0.8 N = 10 3.50603× 10–5 8.35468× 10–9 2.61658× 10–5 1.70907× 10–5

N = 20 2.0014× 10–8 5.36515× 10–12 1.44198× 10–8 9.50052× 10–9

h = 0.2 N = 10 2.12289× 10–8 9.10227× 10–12 6.86188× 10–10 4.7119× 10–9

N = 20 2.42029× 10–14 3.33067× 10–15 3.33067× 10–15 6.43929× 10–15

Table 3 For N = 20 and h = 0.2, the exact solutions λk are all inside the interval [a–,a+] for
different values of ε

λk λ–2 λ–1 λ0 λ1

Exact λk –1.9050594725435388 –0.8005149927957496 0.3944055848645847 1.8242788740449205
Iε,N , ε = 10–2 [–1.9270913, –1.8826416] [–0.8259079, –0.7752883] [0.3752245, 0.4132930] [1.8121593, 1.8363114]
Iε,N , ε = 10–5 [–1.9050816, –1.9050372] [–0.8005402, –0.8004897] [0.3944246, 0.3944055] [1.8242667, 1.8242909]

Figure 1 The enclosure interval dominating λ–2
for h = 0.2, N = 20 and ε = 10–2.

Figure 2 The enclosure interval dominating λ–2
for h = 0.2, N = 20 and ε = 10–5.

lower curves represent the curves of a+(λ), a–(λ), respectively. We notice that when ε =
–, the two curves are almost identical. Similarly, Figures  and  illustrate the enclosure
intervals dominating λ– for h = ., N =  and ε = –, ε = –, respectively.

Example . In this example we consider the system

y′
(x) – r(x)y(x) = λy(x), y′

(x) + r(x)y(x) = –λy(x), x ∈ [–, )∪ (, ], (.)

√
y(–) – y(–) = ,

(
 +



λ

)
y() –

(
 +

√



λ

)
y() = , (.)

y
(
–

)
– y

(
+

)
= , y

(
–

)
– y

(
+

)
= , (.)
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Figure 3 The enclosure interval dominating λ–1
for h = 0.2, N = 20 and ε = 10–2.

Figure 4 The enclosure interval dominating λ–1
for h = 0.2, N = 20 and ε = 10–5.

Table 4 The approximation λk,N and the exact solution λk for different choices of h and N

λk λ–2 λ–1 λ0 λ1

Exact λk –1.443241990338957 –0.5507950329405884 0.8894376317278696 2.427882996831557
λk,N h = 0.6,

ω = 0.9714
N = 10 –1.4432116741528003 –0.5507870771754422 0.8894392796056301 2.4278845029050586
N = 20 –1.4432419877352867 –0.5507950322921764 0.8894376316344037 2.427882996941257

h = 0.1,
ω = 1.4714

N = 10 –1.443241954240034 –0.5507950143369327 0.8894376262695777 2.4278830194325765
N = 20 –1.4432419903389377 –0.5507950329405837 0.88943763172786576 2.4278829968315647

where

r(x) = r(x) = r(x) =

{
x + , x ∈ [–, ),
x, (, ],

(.)

a = a = , α = π
 , β = π

 and δ = . Direct calculations give

K(λ) = 
[
cos

[
π


+ λ

]
– λ sin

[
π


+ λ

]
– sin

[
π


+ λ

]]
(.)

and

�(λ) = –


[
(– +

√
 + λ) cos[ + λ] + ( +

√
 +

√
λ) sin[ + λ]

]
. (.)

Tables , , give the exact eigenvalues {λk}k=– and their approximate ones for different
values of h, N , ε. In Table , we give the absolute error for different values of h and N .
Here Figures , , ,  illustrate the enclosure intervals dominating λ and λ for h = .,

N =  and ε = –, ε = –, respectively.
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Table 5 For N = 20 and h = 0.1, the exact solutions λk are all inside the interval [a–,a+] for
different values of ε

λk λ–2 λ–1 λ0 λ1

Exact λk –1.443241990338957 –0.5507950329405884 0.8894376317278696 2.427882996831557
Iε,N , ε = 10–2 [–1.4716489, –1.4144426] [–0.5736938, –0.5287366] [0.8789632, 0.8998212] [2.4214822, 2.4342626]
Iε,N , ε = 10–5 [–1.4432705, –1.4432134] [–0.5508174, –0.5507725] [0.8894272, 0.8894480] [2.4278766, 2.4278893]

Table 6 Absolute error |λk – λk,N|
λk λ–2 λ–1 λ0 λ1

h = 0.6 N = 10 3.03162× 10–5 7.95577× 10–6 1.64788× 10–6 1.50607× 10–6

N = 20 2.60367× 10–9 6.48412× 10–10 9.34659× 10–11 1.097× 10–10

h = 0.1 N = 10 3.60989× 10–8 1.86037× 10–8 5.45829× 10–9 2.2601× 10–8

N = 20 1.93179× 10–14 4.66294× 10–15 3.88578× 10–15 7.54952× 10–15

Figure 5 The enclosure interval dominating λ0
for h = 0.1, N = 20 and ε = 10–2.

Figure 6 The enclosure interval dominating λ0
for h = 0.1, N = 20 and ε = 10–5.

Figure 7 The enclosure interval dominating λ1
for h = 0.1, N = 20 and ε = 10–2.
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Figure 8 The enclosure interval dominating λ1
for h = 0.1, N = 20 and ε = 10–5.
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