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1 Introduction
On the rectangle D = [a, b] X [c, d] we consider the Darboux problem

Do) e (e, e ) e ), 0
u(t,c) =¢(t) fortela,bl, u(a,x) =y (x) forxelcd], (1.2)

where p,q: D — R are Lebesgue integrable functions, 7: D — [a,b] and u: D — [c,d]
are measurable functions, and ¢: [4,b] — R, ¥: [c,d] — R are absolutely continuous
functions such that ¢(a) = ¥ (c). By a solution to problem (1.1), (1.2) we mean a function
u: D — R absolutely continuous on D in the sense of Carathéodory® which satisfies equal-
ity (1.1) almost everywhere in D and verifies the initial conditions (1.2).

It is well known that theorems on differential inequalities (maximum principles in other
terminology) play an important role in the theory of both ordinary and partial differ-
ential equations. For example, theorems on hyperbolic differential inequalities dealing
with classical as well as Carathéodory solutions are studied in [1-8]. By using these state-
ments, in particular, the method of lower and upper functions and monotone iterative
techniques can be developed to derive solvability results for hyperbolic equations sub-
jected to various initial conditions (Darboux, Cauchy, Goursat, etc.) as is done, e.g, in
[4, 8-11].

In this paper we continue the study of theorems on linear hyperbolic differential in-

equalities initiated in [6], where a more general functional-differential equation with a
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linear operator £: C(D;R) — L(D;R) on the right-hand side is investigated and (1.1) is
considered as a particular case of it.
We have introduced the following definition in [6].

Definition 1.1 Let p: D — R be a Lebesgue integrable function and t: D — [a,b],
: D — [c,d] be measurable functions. We say that the principle on differential inequali-
ties (maximum principle) holds for (1.1) and we write (p, T, 1) € Sac(D) if for any function
u: D — R absolutely continuous on D in the sense of Carathéodory® satisfying the in-

equalities

8%u(t,x)
dat ox
du(t,c) du(a,x)

>0 forae. te(a,b],
ot 0x

zp(t,x)u(t(t,x),u(t,x)) fora.e. (t,x) € D,

>0 forae.x€lcd],

u(a,c) >0,
the relation

u(t,x) >0 for(t,x)eD 1.3)
holds.

It is also mentioned in [6] that under the assumption (p, 7, 1) € Sac(D), problem (1.1),
(1.2) has a unique (Carathéodory) solution and this solution satisfies (1.3) provided

q(t,x) >0 fora.e.(t,x) €D, ola)=v(c) >0,
¢'(t)>0 forae.tcla,b), ¥'(x) >0 forae. x€[cd].

Moreover, some efficient conditions are given in [6] for the validity of the inclusion
(p, 7, 1) € Sac(D) in the case, where

p(t,x) >0 forae. (t,x) € D. (1.4)

From those results it follows that, in the case (1.4), the hyperbolic equation (1.1) is similar
in a certain sense to first-order ordinary differential equations, which is already noted in
the book of Walter [2]. It is worth mentioning here that Definition 1.1 is in compliance with
the formulation of a theorem on differential inequalities given in [5, Theorem 1], where
the case (1.4) is also considered.

On the other hand, if

p(t,x) <0 forae. (t,x) €D, (1.5)

then the explanation of Walter that hyperbolic equations are ‘similar’ to first-order ordi-

nary differential equations does not hold because even for (1.1) with

T(t,x) :=t, u(t,x):=x for (t,x) € D, (1.6)
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oscillatory solutions may occur. In this case, the properties of hyperbolic equation (1.1) are
‘closer’ to properties of ordinary differential equations of the second order. In [6], we got
a general sufficient condition for the validity of the inclusion (p, 7, i) € Sac(D) in the case
(1.5) under the assumption that (1.1) is delayed in both arguments, i.e., if the inequalities

’p(t,x)‘ (r(t,x) - t) <0, |p(t,x)’(u(t,x) —x) <0 forae.(t,x)eD (1.7)

hold (see Lemma 3.3 below). Using that general result, we have also proved in [6] that if
P> 4, and 7 satisfy conditions (1.5) and (1.7), then (p, 7, ) € Sac(D) provided

// ‘p(t,x)’ dedx <1. (1.8)
D

Note that assumption (1.7) is not restrictive in the case (1.5) because it is necessary, as
is shown in [12]. Moreover, inequality (1.8) cannot, in general, be improved (see [6, Ex-
ample 6.2]). However, it does not mean that inequality (1.8) is necessary and cannot be
weakened in particular cases. In this paper, we give efficient criteria for the validity of the
inclusion (p, 7, ) € Syc(D) in the case when (1.5) holds optimally for equations which are
‘close’ to the equation without argument deviations,

9%u(t, x)
dt 0x

= p(t, x)u(t, x) + q(¢, x). (1.9)

It is well known that, without any additional assumptions, the Darboux problem (1.9), (1.2)
has a unique (Carathéodory) solution u (see [13, Existensatz, «(y) = 0] and [14, Remarks
(b), (c)]) and this solution admits the integral representation

u(t’ x) = Z(t’ X, a, C)‘/’(“)

t x
+/ Z(t,x,s,c)go’(s)ds+/ Z(t,x,a,n)¥’ (n)dn
+ /t/xZ(t,x,s,n)q(s,n)dnds for (t,x) € D (1.10)

(see [15, Theorem 8.1] and [16, Section 3.4] for continuous p, q), where Z are the Riemann
functions of the homogeneous equation

2
9 alf: (; ’x") = plt, x)ult, %). (111)

Recall that, for any (¢y,x0) € D, the Riemann function Z(#y, xo, -, -) is defined as a solution
to (1.11) satisfying the initial conditions

u(t,x9) =1 fort e [a,b], u(ty,x) =1 forx € [c,d].

Therefore, it follows from equality (1.10) and Definition 1.1 that a theorem on differential
inequalities holds for (1.9) if and only if

Z(t,x,5,m) >0 fora<s<t<bc<n<x<d. (1.12)
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Unfortunately, the Riemann functions can be explicitly written only in some simple cases.
In particular, for (1.9) with a constant non-positive coefficient p the following proposition
holds (see, e.g., [16, Section 3.4] or [15, Example 8.1]).

Proposition 1.1 Let k < 0, the functions t, |4 be defined by relations (1.6), and
p(t,x):=k for(t,x)eD. (1.13)

Then (p, T, L) € Sac(D) if and only if

2

Jo
k| < m, (1.14)

where jo denotes the first positive zero of the Bessel function J.

In Section 2, we consider the case (1.5) and we present new effective conditions for the
validity of the inclusion (p, 7, 1) € S,c(D) that are proved later in Section 3 by comparing
(1.1) with a linear hyperbolic equation without argument deviations.

2 Main results
For any v > -1, let /, denote the Bessel function of the first kind and order v and let j, be
the first positive zero of the function J,. Moreover, we put

E,(s):=

s’_"]v (s) fors> 0, 1)

1 _
2 ”m fors=0,

where T' is the standard gamma function.

Theorem 2.1 Letp: D — R bea Lebesgue integrable functionand t: D — [a,b], u: D —
[c, d] be measurable functions satisfying conditions (1.5) and (1.7). Moreover, let there exist
numbers A €10,1], a € [0,1[, and B € [0, ] such that the inequalities

1-1 A2 2
[(t —-a)(x - C)] |P(t¢x)| = 4 m, (2.2)

[(t-a)x- c)]l%( _a(2(T (&%), %)) — E_o (2(t,%))) |p(t, )|

o B =
< TmElia (z(t,x)), (23)

[(t - a)(x - C)]lix( -« (Z(t7 M(tr x))) - E—a (z(t,x))) |p(tr x)|

- VRICE:) 72,
- 2 [(b—a)(d-c)]

~E1_o(2(£,%)) (2.4)

are fulfilled a.e. on D, where

] ’ for (¢,x) € D. (2.5)

H6x) = |: (t- a;(x —¢)

(b-a)d-c)

Then the theorem on differential inequalities holds for (1.1), i.e., (p, T, u) € Sac(D).
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Remark 2.1 As we have mentioned above, assumption (1.7) in Theorem 2.1 is necessary
for the validity of the inclusion (p, 7, t) € S,c(D) in the case where inequality (1.5) holds
(see [12]).

Remark 2.2 Theorem 2.1 cannot be improved in the sense that assumption (2.2) cannot
be, in general, replaced by the assumption

(1+¢&)A2 72,
4 [(b-a)d-o))’

[t -a)x -] |p(t,0)] <

no matter how small ¢ > 0 is. Indeed, if p, T, and p are defined by (1.6) and (1.13) with
k < 0, then assumptions (2.3) and (2.4) of Theorem 2.1 hold with @ = 8 =0, A =1, and
inequality (2.2) takes the form (1.14), which is, in this case, necessary for the validity of the
inclusion (p, T, ) € S,c(D) as is stated in Proposition 1.1.

Remark 2.3 Observe that if 7(£,x) = ¢ for a.e. (¢,x) € D then the left-hand side of inequal-
ity (2.3) is equal to zero. Therefore, assumption (2.3) of Theorem 2.1 says how ‘close’ t (¢, x)
must be to ¢, and this ‘closeness’ is understood through the composition of the functions
E_, and z. Similarly, ‘closeness’ of j(t,x) to x is required in assumption (2.4).

The meaning of assumptions (2.3) and (2.4) of Theorem 2.1 is more transparent in the
following two corollaries.

Corollary 2.1 Let p: D — R be a Lebesgue integrable function and t: D — [a,b],
w: D — [c,d] be measurable functions satisfying conditions (1.5) and (1.7). Moreover, let
there exist numbers A €10,1], « € [0,1[, and B € [0, ] such that inequalities (2.2),

1A A 2 B
t-a) 2x-o)((t-a)? - (t(t,x) —a)?)|p(t,x)| < T;’ja, (2.6)
A A % 2(q —
(=)= (- 9% - (e -0) ) ple| < 8P, 27)
are fulfilled a.e. on D, where
s El—a (j—ot)
]—a T El,a(o) : (2.8)

Then (p, 7, 1) € Sac(D).

Remark 2.4 It follows from the proof of Corollary 2.1 that the number j*, on the right-
hand side of inequalities (2.6) and (2.7) can be replaced by

El—a (Z(t, x))

e“inf{ Era(e(c(62), )

:(t,x) € D}

and

E1-a(2(t,%))

e“i“f{ Era et 1(69)

:(t,x) € ’D},

respectively, where the function z is defined by (2.5).
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Corollary 2.2 Let p: D — R be a Lebesgue integrable function and t: D — [a,b],
w: D — [c,d] be measurable functions satisfying conditions (1.5) and (1.7). Moreover, let
there exist numbers a € [0,1] and B € [0,«] such that the inequalities

S
|p(t,x)| = m, (2.9)
@ —0o)(t-1(t%)|pEt,x)| < Bj*, (2.10)
(t - a)(x— u(t,x)|pt,x)| < (@-B)*, (2.11)

are fulfilled a.e. on D, where the number j* , is defined by formula (2.8). Then (p,t, 1) €
Sac(D).

Remark 2.5 Corollary 2.2 improves Corollary 2.1 with A = 1. Indeed, for a.e. (t,x) € D
such that p(t,x) # 0 we have

_ Jt—a
CVt—a+JTbx) -a

\/t—a(«/t—a—\/r(t,x)—a) (t—t(t,x))

> %(t - 1(t,%))

and thus inequality (2.6) with A =1 yields the validity of inequality (2.10). Analogously,
inequality (2.11) follows from inequality (2.7) with A = 1.

3 Proofs
The following notation is used throughout this section.
« The first-order partial derivatives of a function v: D — R at a point (t,x) € D are
denoted by

R () A

+ The second-order mixed partial derivative of a function v: D — R at a point (t,x) € D

is denoted by

3%v(t, x))

Vi (&%) (or o

To prove the main results stated in the previous section we need the next three lemmas.

Lemma 3.1 Letv > -1. Then the function E, defined by (2.1) has the following properties:
(i)
+00
(=1)"(3)*"
E,(s)=27" —_— >0.
s) gm!r(u+m+l) Jorsz
(i) E,(0) >0 and j, is the first positive zero of the function E,,.
(iii) E;(s) = =sE,4+1(s) for s> 0.

(IV) jv <ju+1~

Page 6 of 13
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(v) The function E?: [0, +00[ — R is continuous for i = 0,1,2.
(vi) S2E/(s) + (1 +2v)sE.(s) + s2E,(s) = 0 for s > 0.

Proof (i), (ii): It follows from (2.1), the definition of the function J, (see, e.g., [17, Chap-
ter III, Section 3.12]), and the fact that I'(x) > O for every x > 0.

(iii): Since the series in assertion (i) converges uniformly on every closed subinterval of
[0, +oo[, we can take its derivative term-by-term and thus assertion (iii) follows immedi-
ately from (i).

(iv): See [17, Chapter XV, Section 15.21].

(v): It follows from assertions (i) and (iii).

(vi): The function J, is a solution to the Bessel equation and thus we have
1 1 ! V2
L)+ =J(s)+ (1= — |Ju(s)=0 fors>0
s s

(see, e.g., [17, Chapter III, Section 3.12]). Consequently, by direct calculation we can check
that the function E, satisfies the desired equality for every s > 0. It remains to mention
that for s = 0, the validity of the desired equality is obvious. O

Lemma 3.2 ([18, Theorem 2.1]) The following three statements are equivalent:
(1) The function v: D — R is absolutely continuous on D in the sense of Carathéodory.
(2) ve C*(D;R), i.e., the function v: D — R admits the representation

v(t,x)=e+/tk(s)ds+/xl(n)dn+/t/xf(s,n)dnds for (t,x) € D,

wheree € R and k: [a,b] — R, l: [c,d] — R, and f: D — R are Lebesgue integrable
functions.
(3) The function v: D — R satisfies the conditions:
(a) the function v(-,x): [a,b] — R is absolutely continuous for every x € [c,d] and
the function v(a,-): [¢,d] — R is absolutely continuous;
(b) the function v’m(t, -): [¢,d] — R is absolutely continuous for almost all t € [a, b];
(c) the function vy ,: D — R is Lebesgue integrable.

Lemma 3.3 Let p: D — R be a Lebesgue integrable function and v: D — [a,b], u: D —
[c, d] be measurable functions satisfying conditions (1.5) and (1.7). Assume that there exists
a function® y € C*(D;R) such that

Yo (tx) < p(t, %)y (t(t, %), u(t,x))  for a.e. (¢,%) € D, (3.1)

Y(t,e) <0 forae.t€la,b], Yiy(a,x) <0 fora.e x € [cd] (3.2)
and

y(t,x)>0 for(t,x) € [a,b] x[c, dl. (3.3)

Then (p, 7, 1t) € Sac(D).

Page 7 of 13


http://www.boundaryvalueproblems.com/content/2014/1/52

Lomtatidze and Sremr Boundary Value Problems 2014, 2014:52 Page 8 of 13
http://www.boundaryvalueproblems.com/content/2014/1/52

Proof 1t follows from [6, Theorem 3.5] with the operator ¢ defined by the relation
LW)(t, %) := p(t,x)v(z (¢, %), u(t, %))
for a.e. (¢,x) € D and all continuous functions v: D — R. O
Proof of Theorem 2.1 Let
y(t,x) = E_y (z(t, x)) for (t,x) € D, (3.4)
where the functions E_, and z are defined by (2.1) and (2.5), respectively. It is clear that
0 <z(t,x)<jo for(t,x)eD\ {(b,d)},

and thus, in view of Lemma 3.1(ii), the function y satisfies inequalities (3.2) and (3.3). Since
the functions z(-,x) and z(¢, -) are absolutely continuous for every x € [¢,d] and ¢ € [a, b],
by virtue of Lemma 3.1(v), we conclude that the functions y (-, x) and y (¢, -) are absolutely
continuous for every x € [¢,d] and ¢ € [a, b], respectively. Moreover, we have

y[/l] (6,x)=E, (z(t, x))%zt(iz) for (¢,x) €la, b] x [c,d] (3.5)
and
, , A z(t,x)
Yy (&%) = E, (z(t,x)) = for (¢,x) € [a,b] x ]c, d]. (3.6)

2x-c¢

Now, in view of Lemma 3.1(v), it follows from (3.5) that the function V[,1] (¢,) is absolutely
continuous for every ¢ € ]a, b] and

2

Vi ot %) = Z [2(t,%)E”, (2(t, %)) + 2(t,%)E, (2(t, %)) ]

(t-a)x-c)

for every (t,x) €la, b]x ]c,d]. Therefore, by using equalities (2.5), (3.4)-(3.6), and Lem-
ma 3.1(vi), we get

” 2 2. 1
2162 = = G T d =T (- aw— o’ &Y
* %Vﬁ](t,x) + —M;x — ﬂﬁ) V(&%) for (¢,x) €la, bl x Je,d], (3.7)

which shows, in particular, that the function y;; ,,

quently, Lemma 3.2 guarantees that y € C*(D;RR). Moreover, by using Lemma 3.1(iii), (iv),

is Lebesgue integrable on D. Conse-

we get

Y &x) <0 for (t,x) €la, b] x [c,d], 68)
3.8
Yiyy(t:x) <0 for (¢,%) € [a,b]x ]c, d],

and thus (3.7) implies that

V[/l/,zl (t,x) <0 for (t,x) €la,b] x lc,d]. (3.9)
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Now, by virtue of Lemma 3.3, to prove the theorem it remains to show that the function
y satisfies differential inequality (3.1). For this purpose we put

_ (t _ a)l"\“
81(t,x) := T ) for (¢,x) € ]a, b] x ]c, d], (3.10)
_ (x _ C)l—ka
8o(t, %) := T @) for (t,x) € la, bl x |c,d] (3.11)
and
Q= &j‘—“l. (3.12)
2[(b-a)d-0)?

Observe that, in view of equalities (3.5), (3.10), and Lemma 3.1(iii), we have

R R )
2~ aphi_a(e(t,x)

8:1(¢, x)y[’l](t, x) = for (¢,x) € la, bl x ]c,d]

and thus, by using (2.1), (2.5), and (3.12), we get

2«
81(t,x)y[’u(t,x) = —% (%Q) (x—c)* for (¢,%) €la,b]x ]c,d].

Consequently,

the function 81(',x)y[’1](~,x): la, b] — R is constant for every x € ], d]. (3.13)
We can show in a similar manner that

the function 8,(¢, ~)y[’2] (¢,): ]lc,d] — R is constant for every ¢ € ]a, b]. (3.14)

On the other hand, in view of (2.1), (2.5) and (3.12), and Lemma 3.1(iii), it follows from
equality (3.10) that

1 2(t—a)* xz(tx)
8i1(t,x) A z2(tx) 2 t-a

2\RE (et )7 (4%)
__(X> Q2o — c)re

2(t, %) E1_q (2(£, %))

for (t,x) € la,b] x ]c,d],

whence we get

L ds (2)1‘2" 1 /f
=—( = _— E’,(z(s, %))z} (s,%) ds
/1:(t,x) 51(5’ x) A Q2 (x - C)Aa T(tx) ( ) .

_ (2 ) 2 E o (2(t(t, %), %)) — E_o(2(t, %))

Py Q2 (x — c)re

(3.15)

for a.e. (¢,x) € D because z(-,x) is an increasing absolutely continuous function for every
x € [c,d]. Similarly, we can show that

(3.16)

/x dn (2)12“E_a<z<t,u(t,x)>)—E_a(z(r,x))
"

(tx) 82t M) “\ Q2 (t — g)he

Page9of 13
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for a.e. (¢,x) € D. We have proved that y € C*(D;R) and therefore, by using Lemma 3.2,
we get

-y (r(t,x), /'L(t,x)) = —V(t»x)

t x
+/ y[/l](s,x)ds+/ Vi (&, m)dn

(tx) w(tx)

t X
- / / Vi (s,mdnds fora.e. (¢,x) € D.
T(tx) J u(tx)

Multiplying both sides of the latter equality by |p(¢,x)| and using inequalities (1.5), (1.7),
(3.9), and properties (3.13), (3.14), for a.e. (t,x) € D we obtain

Pty (t(6,%), u(t,%) = =|p(t, )|y (&%)

+ |p(t$x)|81(t7x)y[/1](t1x) /t ds
(6%) 01(5,%)
ey en [ 617)
2l n(tx) 62(t: 71)
Now, combining (2.3), (3.10), (3.15) and (2.4), (3.11), (3.16), we get
¢ ds A
’p(t,x)|81(t,x)/ <—— forae. (t,x)eD (3.18)
T(tx) 51 (Sr x) X—C
and
* d Ma -
|p(t,%)[ 828, %) / 1 _MeP) pae ) €D, (3.19)
u(tx) 82(tr 77) t—a

respectively. Finally, by virtue of inequalities (2.2), (3.3) and (3.8), (3.18), (3.19), it follows
from (3.7) and (3.17) that the function y satisfies also assumption (3.1) of Lemma 3.3 and
thus (p, T, 1) € Sac(D). O

Proof of Corollary 2.1 According to Lemma 3.1(iii) and (v), for any s1,s5 € [0,/_¢], 51 < $2,
there exists & € [s1,5;] such that

E_o(s2) = E_o(51) = (52 = S1)E_,(§) = =(52 — 51)6 E1_/(§)
and thus we get

E_o(s1) —E_a($2) < (52 —51)52E1-4(0) for0 <s1 <55 <j_q (3.20)
and

Eio(jo) <Eiq(s) for0<s<j, (3.21)

because the function E;_, is decreasing on [0,j_,] as follows from Lemma 3.1(iii), (iv).
Moreover, in view of assumption (1.7), for a.e. (£,x) € D such that p(¢,x) # 0 we have

z(t(6,%), %) < z(t,%),
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where the function z is defined by (2.5). Consequently, it follows from (2.6), (3.20), and
(3.21) that

[(t - )& - )] " (Ea(2(t(t %), %)) - E_ (28, %)) [p(t, %)

< [t - @)@ -] (2t %) - 2(x(t,%),%))2(t, ) E1_o (0) | p(t, %)

g R .
= Goaa—ogy -
2B J

T mEl_a (Z(t, x)) for a.e. (t,x) eD,

i.e., inequality (2.3) holds for a.e. (¢,x) € D. We can show in a similar manner that inequal-
ity (2.4) holds for a.e. (t,x) € D, where the function z is defined by (2.5). Therefore, the
assertion of the corollary follows from Theorem 2.1. O

Proof of Corollary 2.2 Let A =1 and the function z be defined by (2.5). For any x € [c, d]
we put

Sit) :=E_o(2(t,%)) forte [a,b].

Since the function z(-,x) is absolutely continuous for every x € [c,d], by using Lem-
ma 3.1(v), we conclude that the function f; is absolutely continuous for every x € [c,d],
as well. Moreover, by virtue of Lemma 3.1(iii), we get

fit) = EL, (2(t,%)) 2 (£, %)
22(t, %)

e o (z(t, x)) 2 —a)

for (t,x) € la,b] x [c,d]. (3.22)

It follows from Lemma 3.1(iii), (iv) that the function E;_, is decreasing on [0,/_,] and thus

we have
Era-e) < Era(2(t,%)) < Eia(0) for (6,2) € D. (3.23)

Now (3.22) and (3.23) yield

2
VAOESS: Jo 0 x—c) for(tx)€lab] x [cd].

(b-a)d-c)

Consequently, for any x € [¢,d] and &1, t; € [a,b], 1 < tp, we get

E-o (elt)) - Ea2lt12)) = fult2) ~filt1) = / Cf(s)ds

a

> _ma_a(oxx — o)t —tn). (3.24)

On the other hand, observe that, in view of assumption (1.7), for a.e. (¢,x) € D such that
p(t,x) #0 we have

a<t(t,x)<t<bh.


http://www.boundaryvalueproblems.com/content/2014/1/52

Lomtatidze and Sremr Boundary Value Problems 2014, 2014:52 Page 12 of 13
http://www.boundaryvalueproblems.com/content/2014/1/52

Therefore, by virtue of assumption (2.10) and condition (3.23), (3.24) shows that

(E_a (z(r (t,x), x)) -E_, (z(t, x))) }p(t, x)|

2
< maw{(oxx Ot - t(6,) [p(t, )
B Fa ,
= EWEI*(X(L&)
= éﬁ—aE (Z(t x)) fora.e. (t,x) € D
“20b-a)d-c) T et .

i.e., inequality (2.3) with A = 1 holds fora.e. (¢,x) € D. We can show in a similar manner that
inequality (2.4) with A =1 holds for a.e. (t,x) € D, as well. Consequently, all assumptions
of Theorem 2.1 with A =1 are satisfied and thus (p, T, ) € Sac(D). O
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Endnotes
@ This notion is introduced in [19] (see also [18] and Lemma 3.2).
b See Lemma 3.2.
€ This notion is introduced in [19] (see also [18]).
d See Lemma 3.2.
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