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1 Introduction
In this paperwe study the existence of extremal solutions of the first-order periodic bound-
ary value problem (PBVP for short)

Dx = f (t) + h(t,x), x() = x(T), (.)

where Dx stands for the distributional derivative of x ∈ C[,T],  < T < ∞, h : [,T] ×
C[,T] → C[,T] and f is a distribution (generalized function). More precisely, we study
the dependence of the extremal solutions of PBVP (.) on f and h.
It is known that the notion of a distributional derivative is very general, including, for

example, ordinary derivatives and approximate derivatives. The first-order PBVP of the
form

dx
dt

= h(t,x), x() = x(T), (.)

with ordinary derivatives dx
dt and h : [,T] × R

n → R
n has been studied extensively in

recent years; see, for example, [–]. In [], by using the distributional derivative, PBVP
(.) has been generalized to (.) in the casewhen h is continuouswith respect to x. Results
about the existence of solutions and the topological structure of the solution set are given.
In this paper, we study PBVP (.) in the case when h is monotone with respect to x and
obtain some extended results.
The outline of this paper is as follows. In Section wedefine the distributionalHenstock-

Kurzweil integral or briefly theDHK -integral.We say that a distribution f isDHK -integrable
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on [a,b] ⊂ R if there is a unique continuous function F on [a,b] with F(a) =  whose
distributional derivative is f . From the definition of the DHK -integral, we know that the
DHK -integral includes the Riemann, Lebesgue, Henstock-Kurzweil (briefly HK ), and wide
Denjoy integrals (for details, see [–]). Furthermore, the space of such integrable distri-
butions is a Banach space and has many basic properties; see [, ].
In Section , by using the DHK -integral and the distributional derivative, we generalize

PBVP (.) to (.). Our main tools are the method of upper and lower solutions and a
fixed point theorem. The main result is Theorem ., which extends some corresponding
results in [, ]. This section also contains an illustration of the results.

2 The distributional Henstock-Kurzweil integral
In this section, we present the definition and some basic properties of the distributional
Henstock-Kurzweil integral.
Define the space

C∞
c =

{
φ :R →R | φ ∈ C∞ and φ has compact support in R

}
,

where the support of a function φ is the closure of the set on which φ does not vanish,
denoted by supp(φ). A sequence {φn} ⊂ C∞

c converges to φ ∈ C∞
c if there is a compact set

K such that all φn have supports in K and for everym ∈ N the sequence ofmth derivatives
φ
(m)
n converges to φ(m) uniformly onK . LetC∞

c be endowedwith this convergence property
and denote it by D. Also, φ is called test function if φ ∈D. Distributions are defined to be
continuous linear functionals on D. The space of distributions is denoted by D′, which is
the dual space of D. That is, if f ∈ D′ then f :D → R is a linear functional and we write
〈f ,φ〉 ∈R for φ ∈D.
For all f ∈ D′, we recall that the distributional derivative Df of f is a distribution satis-

fying 〈Df ,φ〉 = –〈f ,φ′〉, where φ is a test function and φ′ is the ordinary derivative of φ.
With this definition, all distributions have derivatives of all orders and each derivative is a
distribution.
Let (a,b) be an open interval in R. We define

D(a,b) =
{
φ :R→R | φ ∈ C∞ and φ has compact support in (a,b)

}
.

Of course, D(a,b) is endowed with the above convergence property. The dual space of
D(a,b) is denoted by D′(a,b). In this case, if a = –∞, b = +∞, then D(a,b) = D and
D′(a,b) =D′.
Define C[a,b] to be the space of continuous functions on [a,b], and

BC =
{
F ∈ C[a,b] | F(a) = 

}
.

Note that BC is a Banach space with the uniform norm ‖F‖∞ =max[a,b] |F|.
We are now able to present the definition of the DHK -integral.

Definition . ([, Definition .]) A distribution f is distributionally Henstock-Kurzweil
integrable or briefly DHK -integrable on [a,b] if f is the distributional derivative of a con-
tinuous function F ∈ BC .
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The space of DHK -integrable distributions is defined by

DHK =
{
f ∈D′(a,b) | f =DF for some F ∈ BC

}
.

With this definition, if f ∈ DHK then, for all φ ∈D(a,b),

〈f ,φ〉 = 〈DF ,φ〉 = –
〈
F ,φ′〉 = –

∫ b

a
Fφ′. (.)

The second equality holds because F and φ are continuous on (a,b) and φ′ has compact
support in (a,b). The integral in the last equality exists as a Riemann integral for the same
reason.
For convenience, we write (DHK )

∫ b
a f = F(b), where F is called the primitive of f and

‘(DHK )
∫
’ denotes the DHK -integral. As usual, if F ∈ C[a,b] and (DHK )

∫ b
a f = F(b) – F(a),

then the function F is a primitive of f . Notice that if f ∈ DHK then f has many primitives
in C[a,b], all differing by a constant, but f has exactly one primitive in BC .

Remark . Integrals defined in the same way have also been proposed in other papers.
For example, Ang et al. [] defined it in the plane and called it the G-integral, and Talvila
[] defined the AC-integral on the extended real line. In that case of integration over one-
dimensional interval, these two integrals coincide.

The following result is known as the fundamental theorem of calculus.

Lemma . ([, Theorem ])
(a) Let f ∈ DHK and F(t) = (DHK )

∫ t
a f . Then F ∈ BC and DF = f .

(b) Let F ∈ C[a,b]. Then (DHK )
∫ t
a DF = F(t) – F(a) for all t ∈ [a,b].

For u, v ∈ C[a,b], we say that u ≤ v if and only if u(t) ≤ v(t) for all t ∈ [a,b]. Similarly, for
f , g ∈DHK , we say that f � g if and only if

(DHK )
∫
I
f ≤ (DHK )

∫
I
g for all I ⊂ [a,b]. (.)

The following lemma will be needed later.

Lemma . ([, Corollary ]) If f, f, f ∈ D′(a,b), f � f � f, and if f and f are DHK -
integrable, then f is also DHK -integrable.

Let f ∈DHK , F ∈ BC with DF = f . Then, under the Alexiewicz norm

‖f ‖ = ‖F‖∞ =max
[a,b]

|F|,

DHK is a Banach space (see [, Theorem ]).
We say that a sequence {fn} ⊂ DHK converges strongly to f ∈ DHK (or fn → f in DHK ) if

‖fn – f ‖ →  as n→ ∞. The following two convergence theorems hold.

Lemma . ([, Corollary , monotone convergence theorem]) Let {fn}∞n= be a sequence
in DHK such that f � f � · · · � fn � · · · , and that A = limn→∞(DHK )

∫ b
a fn. Then fn → f in

DHK and (DHK )
∫ b
a f = A.
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Lemma . ([, Corollary , dominated convergence theorem]) Let {fn}∞n= be a sequence
in DHK such that fn → f in D′. Suppose that there exist f–, f+ ∈ DHK satisfying f– � fn � f+,
∀n ∈N. Then f ∈DHK and limn→∞(DHK )

∫ b
a fn = (DHK )

∫ b
a f .

If g : [a,b]→R, its variation is Vg = sup
∑

n |g(tn) – g(sn)|, where the supremum is taken
over every sequence {(tn, sn)} of disjoint intervals in [a,b]. If Vg < ∞ then g is called a
function with bounded variation. Denote the set of functions with bounded variation by
BV . As it is known that the dual space of DHK is BV (see details in []), we have the next
result.

Lemma . ([, Definition , integration by parts]) Let f ∈ DHK and g ∈ BV . Define fg =
DH , where H(t) = F(t)g(t) –

∫ t
a F dg . Then fg ∈ DHK and

(DHK )
∫ b

a
fg = F(b)g(b) – (DHK )

∫ b

a
F dg.

Denote by L the space of Lebesgue integrable functions and by ‖ · ‖L the norm on L.

Definition . Let f ∈ DHK and g ∈ L. Let {gn} ⊂ BV such that ‖gn – g‖L → . Define fg
as the unique element in DHK such that ‖fgn – fg‖ → .

This definition, which is modified from [, Definition ], makes sense sinceBV is dense
in L. Moreover, the next statement holds.

Lemma . ([, Lemma .]) Let f , g be the distributional derivatives of F ,G, respectively,
where F ,G ∈ C[a,b]. Then

D(FG) = fG + Fg. (.)

3 Periodic boundary value problems
In this section, we shall study the first-order periodic boundary value problem

Dx = f (t) + h(t,x), x() = x(T), (.)

where Dx denotes the distributional derivative of x ∈ C[,T], h : [,T] × C[,T] →
C[,T] and f is a distribution on [,T]. Throughout this section, we denote by DHK (re-
spectively,HK , L) the space ofDHK (respectively,HK , Lebesgue)-integrable functions and
by ‘(∗) ∫ ’ the ∗-integral.
For convenience, let us list the following assumptions on the functions f and h.

(D) There exist y, z ∈ C[,T], cy, cz ∈DHK such that y≤ z and

Dy� f + h(·, y) – cy and Dz � f + h(·, z) + cz on [,T],

and there is p ∈HK such that p ≥  on [,T], P(T) �=  holds for the function

P(t) = (HK)
∫ t


p(s)ds,
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and the inequalities

y() – y(T) ≤ (DHK )
∫ T

t
eP(s)–P(T)cy(s)ds + (DHK )

∫ t


eP(s)cy(s)ds

and

z(T) – z() ≤ (DHK )
∫ T

t
eP(s)–P(T)cz(s)ds + (DHK )

∫ t


eP(s)cz(s)ds

are true for t ∈ [,T].
(D) h(·,x(·)) is Lebesgue integrable for every fixed x ∈ [y, z], and the distribution f isDHK -

integrable on [,T].
(D) h(t,x) + p(t)x is nondecreasing in x ∈ [y, z] for all t ∈ [,T].

We recall that [y, z] := {x ∈ C[,T] | y(t) ≤ x(t)≤ z(t) for all t ∈ [,T]}.
Before coming to the main results in this paper, we give a result following from

Lemma ., that is, PBVP (.) can be converted to an integral equation.

Lemma . Let f and h satisfy (D). A function x : [,T] → R is a solution of PBVP (.)
on [,T] if and only if the equality

x(t) = e–P̂(t)(DHK )
∫ t


eP̂(s)

(
f (s) + h

(
s,x(s)

)
+ p̂(s)x(s)

)
ds

+
e–P̂(t)

eP̂(T) – 
(DHK )

∫ T


eP̂(s)

(
f (s) + h

(
s,x(s)

)
+ p̂(s)x(s)

)
ds (.)

is true for any p̂ ∈HK such that p̂≥  on [,T] and

(HK )
∫ T


p̂(s)ds �= .

Remark . In view of Lemma ., the result eP̂(t) ∈ BV on [,T] implies that eP̂(t)(f (t) +
h(s,x(s)) + p̂(s)x(s)) is DHK -integrable on [,T], because f (t) + h(s,x(s)) + p̂(s)x(s) is DHK -
integrable on [,T] for all x ∈ [y, z].
As a matter of fact, the proof of Lemma . follows exactly the lines of [, Lemma .],

so we omit it here.

In what follows we recall a fixed point theorem for increasing mappings, which is an
important tool for proving the existence theorem.
Let E be an ordered Banach space,K be a nonempty subset of E. ThemappingA : K → E

is increasing if and only if Ax≤ Ay, whenever x, y ∈ K and x ≤ y.

Lemma . ([, Theorem ..]) Let y, z ∈ E with y < z and A : [y, z] → E be an
increasing mapping satisfying y ≤ Ay, Az ≤ z. If A[y, z] is relatively compact, then
A has a maximal fixed point x∗ and a minimal fixed point x∗ in [y, z].Moreover,

x∗ = lim
n→∞ yn, x∗ = lim

n→∞ zn, (.)
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where yn =Ayn– and zn =Azn– (n = , , , . . .),

y ≤ y ≤ · · · ≤ yn ≤ · · · ≤ x∗ ≤ x∗ ≤ · · · ≤ zn ≤ · · · ≤ z ≤ z. (.)

We are now ready to give the main results.

Theorem . Let the functions f and h in (.) satisfy the assumptions (D)-(D). Then the
extremal solutions of PBVP (.) exist in the ordering interval [y, z].

Proof Let

g(t,x) = h(t,x) + p(t)x, t ∈ [,T],x ∈ [y, z], (.)

where p(t) is given in (D). Then the hypotheses (D)-(D) imply, for all x ∈ [y, z], that
g(·,x(·)) is Lebesgue integrable and

Dy + cy + py � f + g(·,x) �Dz – cz + pz on [,T]. (.)

Define a mapping A on [y, z] by

Ax(t) = e–P(t)(DHK )
∫ t


eP(s)

(
f (s) + g

(
s,x(s)

))
ds

+
e–P(t)

eP(T) – 
(DHK )

∫ T


eP(s)

(
f (s) + g

(
s,x(s)

))
ds, t ∈ [,T]. (.)

It follows from (.) that, for each x ∈ [y, z],

D(Ax) = f + g(·,x) – pAx on [,T],

Ax() = Ax(T).
(.)

Let w =Ay – y. Then, by (D), (.) and (.), the inequalities

Dw + pw � cy (.)

and

w(T) –w() ≤ (DHK )
∫ T

t
eP(s)–P(T)cy(s)ds + (DHK )

∫ t


eP(s)cy(s)ds, t ∈ [,T] (.)

hold. It follows from (.) that

eP(t)w(t)≥ w() + (DHK )
∫ t


eP(s)cy(s)ds, t ∈ [,T]. (.)

Inequalities (.) and (.) imply, for each t ∈ [,T], that

w() + (DHK )
∫ t


eP(s)cy(s)ds≥ w(T) – (DHK )

∫ T

t
eP(s)–P(T)cy(s)ds

≥ e–P(T)w() + (DHK )
∫ t


eP(s)–P(T)cy(s)ds.

http://www.boundaryvalueproblems.com/content/2014/1/54


Liu et al. Boundary Value Problems 2014, 2014:54 Page 7 of 11
http://www.boundaryvalueproblems.com/content/2014/1/54

This result implies

w() + (DHK )
∫ t


eP(s)cy(s)ds≥ , t ∈ [,T]. (.)

In view of (.) and (.), we then have w = Ay – y ≥ , i.e., y ≤ Ay. We can similarly
verify that Az ≤ z.
It follows from (D) and (.) that g(t, ·) is nondecreasing on [y, z] for all t ∈ [,T].

Moreover, Ax ∈ C[,T] for each x ∈ [y, z], whence (.) defines a nondecreasing mapping
A : [y, z] → [y, z].
We now only need to prove that A[y, z] is relatively compact.
The properties of A imply that

y(t) ≤ Ax(t)≤ z(t), x ∈ [y, z], t ∈ [,T].

Since y, z ∈ C[,T] are bounded, there exists N >  such that

∣∣Ax(t)
∣∣ <N , x ∈ [y, z], t ∈ [,T]. (.)

This implies that A[y, z] is uniformly bounded.
Let t, t ∈ [,T]. Then, by (.), for each x ∈ [y, z],

Ax(t) –Ax(t) = e–P(t)(DHK )
∫ t

t
eP(s)

(
f (s) + g

(
s,x(s)

))
ds

+
(
eP(t)–P(t) – 

)
Ax(t). (.)

Since p ∈ HK and p(t) ≥  on [,T], P(t) = (HK)
∫ t
 p(s)ds is continuous and so it is uni-

formly continuous on [,T]. Then, for any ε > , there exists δ >  such that

∣∣eP(t)–P(t) – 
∣∣ ≤ ε, whenever t, t ∈ [,T] and |t – t| ≤ δ. (.)

Moreover, the continuity of eP(t) on [,T] implies that there existsM >  such that


M

< eP(t) <M, t ∈ [,T]. (.)

On the other hand, the monotonicity of g(t, ·) on [y, z] for all t ∈ [,T] and (.) implies
that

(DHK )
∫ t

t
eP(s)

(
f (s) + g

(
s, y(s)

))
ds ≤ (DHK )

∫ t

t
eP(s)

(
f (s) + g

(
s,x(s)

))
ds

≤ (DHK )
∫ t

t
eP(s)

(
f (s) + g

(
s, z(s)

))
ds.

This result, (.), (.), (.) and (.) imply that

∣∣Ax(t) –Ax(t)
∣∣

≤M
∣∣∣∣(DHK )

∫ t

t
eP(s)

(
f (s) + g

(
s,x(s)

))
ds

∣∣∣∣ +Nε
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≤M
(∣∣∣∣(DHK )

∫ t

t
eP(s)

(
f (s) + g

(
s, y(s)

))
ds

∣∣∣∣
+

∣∣∣∣(DHK )
∫ t

t
eP(s)

(
f (s) + g

(
s, z(s)

))
ds

∣∣∣∣
)
+Nε. (.)

Since eP(t)(f (t) + g(t, y(t))) and eP(t)(f (t) + g(t, z(t))) are DHK -integrable on [,T], the prim-
itives of them are continuous and so they are uniformly continuous on [,T]. Hence, by
inequality (.), A[y, z] is equiuniformly continuous on [,T] for all x ∈ [y, z]. In view of
the Ascoli-Arzelà theorem, A[y, z] is relatively compact. Thus, A satisfies the hypotheses
of Lemma ., whence A has the minimal fixed point x∗ and the maximal fixed point x∗.
From the definitions of g and A and Lemma . it follows that x∗ and x∗ are also solutions
of PBVP (.) in [y, z]. Moreover, (.) and (.) hold with y, z replaced by y, z.
If x is any solution of PBVP (.) in [y, z], then it is, by Lemma ., a fixed point of A,

whence x∗ ≤ x≤ x∗. Thus x∗ and x∗ are the minimal and maximal solutions of PBVP (.)
in [y, z], respectively. �

Remark . Let p(t) ≡ M, cy = Mry and cz = Mrz , where M is a positive constant, ry =
(y() – y(T)) eP(T)

eP(T)– �=  and rz = (z(T) – z()) eP(T)
eP(T)– �= . Then (D) is reduced to

(D′
) There exist y, z ∈ C[,T], y ≤ z, such that Dy� f + h(·, y) –Mry, Dz � f + h(·, z) +Mrz

on [,T], y() > y(T) and z() < z(T).

If cy = cz =  in (D), then we obtain

(D′′
 ) There exist y, z ∈ C[,T], y ≤ z, such thatDy� f +h(·, y) andDz � f +h(·, z) on [,T],

y() ≤ y(T) and z() ≥ z(T).

Further, theDHK -integral includes the Lebesgue integral, and the distributional derivative
contains the ordinary derivative. Thus, we can see that Theorem . is a proper general-
ization of [, Theorem .] if f ≡  on [,T].

Corollary . Given a function g , assume that g(t, ·) is nondecreasing on C[,T] for all
t ∈ [,T], g(·,x(·)) is Lebesgue integrable on [,T] for every fixed x ∈ C[,T], and there
exist g± ∈ DHK such that, for all x ∈ C[,T],

g– � g(·,x)� g+ on [,T]. (.)

If p ∈ HK on [,T], p(t) ≥  with P(t) = (HK)
∫ t
 p(s)ds nonzero at t = T and f is a distri-

bution on [,T], then the PBVP

Dx + p(t)x = f (t) + g(t,x), x() = x(T) (.)

has the extremal solutions.

Proof Let y be a solution of the PBVP

Dy + p(t)y = f + g–, y() = y(T) (.)

http://www.boundaryvalueproblems.com/content/2014/1/54
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and z a solution of the PBVP

Dz + p(t)z = f + g+, z() = z(T). (.)

According to Lemma ., it is easy to see that y, z are unique.
By choosing h(t,x) = g(t,x) –p(t)x, t ∈ [,T], x ∈ C[,T], we have that the following two

inequalities

Dy� f + h(·, y), Dz � f + h(·, z)

hold if y, z are given as above. Thus, the conditions (D)-(D) are satisfied and, by The-
orem ., PBVP (.) has the extremal solutions x∗ and x∗ in [y, z]. Moreover, if x is any
solution of PBVP (.), it follows from Lemma . that for each t ∈ [,T],

x(t) = e–P(t)(DHK )
∫ t


eP(s)

(
f (s) + g

(
s,x(s)

))
ds

+
e–P(t)

eP(T) – 
(DHK )

∫ T


eP(s)

(
f (s) + g

(
s,x(s)

))
ds.

This result, (.), (.) and (.) imply that each solution of PBVP (.) belongs to
[y, z], whence x∗ and x∗ are the minimal and maximal solutions of PBVP (.). �

We now give an example to illustrate the main results.

Example . Consider the PBVP given by

Dx + x =Dr + arctanx, x() = x(), (.)

where Dr is the distributional derivative of

r(t) =
∞∑
n=

sinnπ t
n

. (.)

Then PBVP (.) has extremal solutions.

Proof PBVP (.) can be regard as a PBVP of the form (.), where

p(t) ≡ , f =Dr, g(t,x) = arctanx, t ∈ [, ],x ∈ C[, ].

It is easy to see that  ≤ p(t) ∈ HK and (HK)
∫ 
 p(s)ds =  > . Choose g±(t) = ±π

 , then
g± ∈DHK and (.) holds. This result and g(t, ·) is nondecreasing imply that the hypothe-
ses of Corollary . are satisfied. The proof is therefore completed. �

It is well known that the function r(t) in (.) given by Riemann and proved by Hardy
[] is continuous but pointwise differentiable nowhere on R. Then, by [, Example .],
the distributional derivative Dr is neither HK-integrable nor Lebesgue integrable. Hence,
[, Theorem .] is not applicable in this case, which implies that the main results in this
paper are more general.
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The following result shows the dependence of the extremal solutions of PBVP (.) on f
and h.

Proposition . If the hypotheses of Theorem . hold, then the extremal solutions of PBVP
(.) in [y, z] are nondecreasing with respect to f and h.

Proof Let f , f̂ , h and ĥ satisfy, for all x ∈ C[,T],

f + h(·,x)� f̂ + ĥ(·,x) on [,T]. (.)

Assume that the hypotheses of Theorem . hold for f , h and f̂ , ĥ with the same fixed
functions y, z, cy, cz and p. Let x∗ be the minimal solution of PBVP (.) in [y, z], x̂∗ the
minimal solution of the PBVP

Dx = f̂ (t) + ĥ(t,x), x() = x(T) (.)

in [y, z]. Let A : [y, z] → [y, z] be defined by (.), where g is given by (.). By Lemma .,
one has

x̂∗(t) = e–P(t)(DHK )
∫ t


eP(s)

(
f̂ (s) + ĝ

(
s, x̂∗(s)

))
ds

+
e–P(t)

eP(T) – 
(DHK )

∫ T


eP(s)

(
f̂ (s) + ĝ

(
s, x̂∗(s)

))
ds, t ∈ [,T], (.)

where

ĝ(t,x) = ĥ(t,x) + p(t)x, t ∈ [,T],x ∈ [y, z]. (.)

It follows from (.), (.) and (.) that for all x ∈ [y, z],

f + g(·,x)� f̂ + ĝ(·,x) on [,T],

whence (.) and (.) imply that Ax̂∗ ≤ x̂∗, yet Lemma . holds with y = y, z = x̂∗.
Indeed, by (.), x∗ is also the minimal fixed point of A in [y, x̂∗]. This and (.) imply that
x∗ ≤ x̂∗.
Similarly, it is easy to verify that x∗ ≤ x̂∗, where x∗ denotes themaximal solution of PBVP

(.) in [y, z] and x̂∗ is the maximal solution of PBVP (.) in [y, z]. �
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