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1 Introduction

Fractional differential equations arise in many engineering and scientific disciplines as
the mathematical modeling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis
of feedback amplifiers, capacitor theory, electrical circuits, electron-analytical chemistry,
biology, control theory, fitting of experimental data, and so forth, and involves derivatives
of fractional order. Fractional derivatives provide an excellent tool for the description of
memory and hereditary properties of various materials and processes. This is the main
advantage of fractional differential equations in comparison with classical integer-order
models. An excellent account in the study of fractional differential equations can be found
in [1-5]. For the basic theory and recent development of the subject, we refer to a text by
Lakshmikantham et al. [6]. For more details and examples, see [7—23] and the references
therein.

Integer-order impulsive differential equations have become important in recent years as
mathematical models of phenomena in both physical and social sciences. There has been a
significant development in impulsive theory especially in the area of impulsive differential
equations with fixed moments; see, for instance, [24—26]. Recently, the boundary value
problems of impulsive differential equations of integer order have been studied extensively
in the literature (see [27-36]).

On the other hand, impulsive differential equations of fractional order play an impor-
tant role in theory and applications, see [37—46] and the references therein. However, as

pointed out in [38, 39], the fractional impulsive differential equations have not been ad-
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dressed so extensively and many aspects of these problems are yet to be explored. For
example, the theory using Green’s function to express the solution of fractional impul-
sive differential equations has not been investigated till now. Now, in this paper, we shall
study the expression of the solution of fractional impulsive differential equations by using
Green’s function.

Consider the following nonlinear boundary value problem of fractional impulsive dif-

ferential equations:

‘DE x(t) = 0@)f (£, %), %' (), 1<q<2,tefi=]\{tn,tor-.. tu}s
Ax't:tk = Ik(x(tk))r Ax,'t:tk = u7k(x(tk))» tr € (0» 1)’ k= L2,...,n (11)
a1x(0) — B1x'(0) = 0, aox(1) + Box'(1) = 0,

where °D{, is the Caputo fractional derivative, J = [0,1], ®(t) : ] — R+ is a continuous
function, f : ] x R x R — R is a continuous function, Z, Jk : R — R are continuous func-
tions, ay, o, B, B2 € R and ajay + a1 By + aafi # 0. Axli—y = x(&f) — x(t;) with x(£]) =
limy_ o+ x(tx + h), x(£;) = limyo-x(& + h), k=1,2,...,m, 0 =ty <t < -+ <ty <ty =1L
Ax'|;—y, has a similar meaning for x/(z).

Some special cases of (1.1) have been investigated. For example, Bai and Lii [13] consid-
ered problem (1.1) with Z; = 0 and Ji = 0. By using the fixed point theorem in cones, they
proved some existence and multiplicity results of positive solutions of problem (1.1).

At the end of this section, it is worth mentioning that it is an important method to ex-
press the solution of differential equations by Green’s function. According to the previous
work, we find that the solution of impulsive differential equations with integer order can be
expressed by Green’s function of the case without impulse. For example, Green’s function

of the following boundary value problem

-x"(t)=0o(t), te(0,1),
(O =0, e W)
x(0)=x(1)=0
can be expressed by
1-¢), 0<s<t<],
Gt - |07 0=s=t=
t(l-s), 0<t<s<l],
where o € C[0,1]. The solution of problem (1.2) can be expressed by
1
x(t) = / G(t,s)o(s) ds.
0
If we consider impulsive differential equations
_x”(t) = G(t)r te (O) l)rt #th
Ax|t=tk :Ik(x(tk))x k = 1, 2,...,71, (1.3)

Ax,|t=tk = _L:k(x(tk))y k: 1,2,...,1’[,
x(0) =x(1) =0,
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then the solution of problem (1.3) can be expressed by

1 n n
x(t) = / Gt,s)o(s)ds + Y Glt,te) Lrlxy) + Y Gi(t, ti) Ty ),
0

k=1 k=1

where 7y, L € C[0,1], k=1,2,...,n.
Naturally, one wishes to know whether or not the same result holds for the fractional

order case. We first study the fractional order differential equations with Caputo deriva-

tives

{—CDgﬁx(t) =o(t), te(0,1),1<q=<2, 19
x(0) =x(1) =0,

where °D{, is the Caputo fractional derivative. Then

x(t) = /1 G(t,s)o (s)ds,
0

where

G(t,8) = —
(63) [(g) |t -9, 0<t<s<l.

1 it(l—s)ql —(t-s)1, 0<s<t<1,
Then we study whether the solution of fractional order impulsive differential equations

with Caputo derivatives

_CDg+x(t) = G(t)’ te (0;1)’1 <q= 2,
Ax|t=tk :Ik(x(tk)), k= 1: 27'-'1’7’
Ax/|t=tk = _Lk(‘x(tk))’ k:1,2,...,l’l,
x(0)=x(1)=0

(1.5)

can be expressed by

1 n n
x(t) = /o G(t,s)o(s)ds + Y Glt,te) Lilxy) + Y Gult, ti) Ty ).

k=1 k=1

Thus, it is an interesting problem, and so it is worthwhile to study. We will give the
answers in the following sections.

The organization of this paper is as follows. In Section 2, we present the expression and
properties of Green’s function associated with problem (1.1). In Section 3, we give some
preliminaries about the operator and the fixed point theorem. In Section 4, we get some
existence results for problem (1.1) by means of some standard fixed point theorems. The

final section of the paper contains two examples to illustrate our main results.
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2 Expression and properties of Green’s function
Consider the following fractional impulsive boundary value problem:

cDg+x(t):0(t): 1<q52’t€]1:]\{tl’tz;'nrtn}r
Axlt:tk :Ik(x(tk))’ Ax/|t=t]< = t7k(x(tk))) tk € (01 1);/( = 17 2)"-;;’17 (2'1)
o1x(0) — B14'(0) = 0, ax(1) + Box’'(1) = 0,

where ”Dg , is the Caputo fractional derivative, o(¢) € C[0,1], Zx, Jx : R — R are con-
tinuous functions, ay,0, 81, B2 € R and ayay + o1y + aafy # 0. Axlp—y, = x(£]) — x(t;)
with x(£f) = limy_o+ x(t& + k), (&) = limyo-x(tx + 1), k=1,2,...,n, 0=ty < <--- <
tu <ty = 1. AX'|;, has a similar meaning for x'(¢).

Theorem 2.1 The solution of problem (2.1) can be expressed by

-9 S (tl—s)
x(t) = /tk ) S)dS+ZG15 & t) / o(s)ds

_ZGl(t t)/ r( a(s)ds+ZGls(tt)I( (t:))

lie i=1
- ZGl(t¢ ti)s%(x(ti))v te (tk¢ tk+1]¢k= Or 1) 2,...,n, tO = 0’ tn+1 = 1, (22)
i=1
where
1 t - , [<s,
Gi(ts) = —~ (Br+art)(ag + Bo —azs), t<s 2.3)
(B +a1s)(az + B2 —aat), t=s,
and
n =000+ 0[1,32 + 012,31. (24')

Proof Suppose that x is a solution of (2.1). Then, for some constants by, b; € R, we have

x(8) = Il 0 (8) — by — byt = ft wo(s) ds—by-bit, tel0,4]. (2.5)

o TI'(g)

It follows from (2.5) that

t -2
x'(t)z/ ¢ o — 9 T o=
TG

If t € (1, £5], then, for some constants cg, ¢; € R, we can write
t -1
t—s)1
x(t) = / (Fi)a(s) ds—co—ci(t—t),

SN
x(t)—/t1 Fig- )o(s)ds
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Using the impulse conditions Ax|..y, = Z;(x(t1)) and Ax'|;—, = J1(x(%1)), we find that

151 _\gq-1
—co = [0 (tlr(;)) o(s)ds—by — bty +Il(x(t1)):

t _ -2
¢ = / (?(qs)ql) o(s)ds — by + Ji(x(1r)).
o _

Thus
t - hosir a2 .
o= [ e [ (S s
—bo—bit + T (x(t)) (¢ — &) + Th (x(1r)),

t _ -2 t _ -2
x'(t) = f (;“(qsqu) o(s)ds+ /0 (?(qs_)ql) o (s)ds — by + Ji(x(11)).

If t € (tk, tk+1], repeating the above procedure, we obtain

- [ ey [ (S

— by — byt + Z Ti(x(@))(t - ;) + ZL (x(8). (2.6)

i=1 i=1

It follows that x(0) = —by, x'(0) = —b; and

(1- Dt —s)12 (t;—s)T
x(1):ftn a(s dS+Z/t,1< F(q TR @ )cr(s)ds

n

—bo—by + Z Ti(x(t) A - 1) + ZL(x(ti)):

i=1 i=1

2 —
(1) = (l(sq o () ds + Z/ G s -+ 3 Ti(w(e).

i=1

By the boundary conditions, we have

1 _ g1
et 2

(A=)t -T2 (t—s)T!
+Z/t;_1< I'(g-1) * T'(q) )U(s)ds

i=1

+ZJ (x())(1 - t)+ZI (x(1)) } +ﬁ1ﬁz[/ (i(‘qzl) o (s)ds

5[ (- )12
+> P s)ds+Z$x(t “ (2.7)

i=1 v ti-1

1 Ti-s)rt (A=) -T2 (-1
b1=;{a10¢2|: . T@ a(s)ds+;/til< Tq-D + ) )G(S)ds
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+ Z Ti(x))a-t;) + iz.(x(t.)) + a1 1 wa(s) ds
- i i i - () i . r(q _ 1)

1

n G o(f G2 n
+ Z ﬂo(s) ds + Z Z(x(ti)):| }, (2.8)
i1

i=1 ti1 F(q - 1)

where 7 is defined in (2.4).
Substituting (2.7), (2.8) into (2.6), we obtain (2.2). This completes the proof. (I

Remark 2.1 It is clear that G;(t,s) is Green’s function of the boundary value problem

Remark 2.2 The expression of the solution of problem (2.1) is simpler than that of [37-
46].

From (2.3), we can prove the following results.

Proposition 2.1 Forallt,s €], we have

2(|praa| + laraal) + |B1Bal + |y Bal

(2.9)
0]

|G1(t,S)| =

Proposition 2.2 Forallt,s €], we have

o + oo o + 2|
|Gis(t,s)|§max{| 2811 + laron| a1l + 2oy 2|}’

Inl ' Inl
o + 2| o + oo
’Git(t,s)|§max{| 182] + 2|y 2|’| 2B81] + oy 2|}
nl nl
and
’ |OllO[2|
|Gist(t,S)|= |7]| 3
where
1 |-« +aqt), t<s,
Gis(t,S)Z—— 2(,31 1) =
n |ailog + Bo —art), t=s,
1 |aq(og + Br —ans), t<s,
Gtrs) = —~ o + fo—aas), t=
n |-aa(fr +a1s), t>s,
and

(05104
Gl (ts) = —2.
n
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For the sake of convenience, let

o = 2(|pro2| + lenezl) + 1B1B2| + laa ol
1=

’

7]
(2.10)
{ loa 1] + lanaa| o Bal + 2|aas] } loaa |
C) =M » C3 =
n] 7] nl
Then it follows from (2.9) and (2.10) that
’Gl(t, s)‘ <q, ‘Git(t, s)‘ <y, ’Gis(t, s)’ <cy, |G’lst(t, s)‘ <cs. (2.11)

From the proof of Theorem 2.1 we have the following results.

Proposition 2.3 The solution of fractional impulsive differential equations can be ex-
pressed by Green’s function, and it is not Green’s function of the corresponding fractional
differential equations, but Green’s function of the corresponding integer order differential
equations.

3 Preliminaries
In this section, we give some preliminaries for discussing the solvability of problem (1.1)
as follows.
LetJ' = [0,1]\{¢1, 2,...,¢t,} and
PC[],R] = {x :J—> Rx € C((tk, tk+1),R),x(t,;’) and x(t,:) exist with x(t,;) = x(t),
k=12,...,n},
PCYJ,R] = {x/ € PC[],R];x/(t,j),x(t,:) exist and «’ is left continuous at %,

k=1,2,...,n}.

Then PC[J], R] is a Banach space with the norm

’

ll]l pc = sup|x(z)
te]

PC[J,R] is a Banach space with the norm

llxll pc1 = max{llxllpc, x/”PC}'

Definition 3.1 A function x € PC'[J,R] N C?[J’,R] with its Caputo derivative of order g
existing on J is a solution of problem (1.1) if it satisfies (1.1).
We give the following hypotheses:

(H1) w:J — [0,+00) is a continuous function, and there exists £y € J such that w(ty) > 0;
(H2) f:J x R x R— R is a continuous function;

(H3) Zi, Jx : R — R are continuous functions.

It follows from Theorem 2.1 that:

Page 7 of 21
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Lemma 3.1 If(H,)-(H3) hold, then a function x € PC'[J, RN C2[J', R] is a solution of prob-
lem (1.1) ifand only ifx € PC[J, R] is a solution of the impulsive fractional integral equation

t _\g-1
x(t) = / (tr(S;) w(s)f (s,x(s),%'(s)) ds
Tk

n+l

+Y Gt t) / i a)(s)f(s x(s),%/(s)) ds
i=1

_ ZGl(t t)/ (6~ a)(s)f(s,x(s) ®/'(s)) ds

+3 GG ZGl(t t) Ji (x(8:))
i=1 i=1
te (tk, tk+1],/( =0,1,2,...,m,ty=0,t,,1 = 1. (31)

Define T : PC'[J,R] — PC'[J,R] b

t _ g1
mo-= [ F(S;) ($)f (52, %'(5)) ds

n+l

+ FZI Glls(t, tl’) '/t:tll %w(sy(s’x(sxx/(s)) ds

_ Z Gy, t)/ I'( w($)f (s,%(s), %' (s)) ds

ti-1

+ Y Gt 8)Ti(x(t)) ZGl(t 1) T (%(),
i=1

i=1

te (tk, tk+1],k =0,1,2,...,mty=0,t,,1 =1 (32)

Using Lemma 3.1, problem (1.1) reduces to a fixed point problem x = Tx, where T is given
by (3.2). Thus problem (1.1) has a solution if and only if the operator T has a fixed point.

From (3.2) and Lemma 3.1, it is easy to obtain the following result.

Lemma 3.2 Assume that (H)-(H3) hold. Then T : PC'[J, R] — PC'[], R] is completely con-
tinuous.

Proof Note that the continuity of f, ®, Z; and Ji together with G (¢, s) and Gj(Z, s) ensures
the continuity of T

Let Q C PC[J,R] be bounded. Then there exist positive constants ji;, it and u3 such
that |[f (¢, x(2), %' (£))] < w1, |Ze(x)| < o and | Ji(x)| < s, Yx € Q. Thus, Vx € Q, we have

t _ \gq-1
(Tx)(0)| < / (tF(S;) w(5)|f (5,%(5),/(s)) | ds

- i (- s)T! :
+ Z‘Gls t,t;) | Ww(s)V(s,x(s),x (s))!ds
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+Z|G1(tt)|/

ti1

F( a)(s) [f(s,x(s) x s)) | ds

D16 e+ 21660 x0)

i=1
Y yu -
1 1 1 1
< — t—s)1" ds+ G (Lt / t;i—s) ds
F()tk( ) Z]l( )| [ ti-s)

yl"l‘l - ti 2
G t,t; ti—s 9= ds
i e MLJ( )

n

+ U2 Z|Gis(t’ tl‘)| + U3 Z|Gl(t) ti)|

i=1 i=1

n+l

- rh V“ Vﬂl ‘

+ 1o Z|Gls(t )|+ us Z|Gl L)

= i=1

1 1 1
1 -
EV“{rw+n+rm+DM+)”+rmW“]
+n(caply + C143) := 4, 3.3)
where
y = max w(t). (3.4)

te]

Furthermore, for any ¢ € (¢, tx,1], 0 < k < n, we obtain

[(Tx) (0)] < / (rt,( D a)(s)[f(s,x(s) x/(s))| ds
tk

n+l 4 o 1
+ ;|Gi/st(t, ti)}/til (tzF(Sq))q w(s)V(s,x(s),x/(s))|ds

+Z‘G tt)‘/ (6~ a)(s (s,x(s),x’(s))|ds

- 366 )| [Ze) ZIG (t,:)[| 7 (x(2)|

i=1

L
< Y ( — 5T 2ds+ Vﬂl Z‘Glst(t ti)}/ (t;—s)" " ds
I(g-1) 4% tio1

Y K1 ) b L —2
* Tl 1)Z|Gt(t,t,)|/til(tl )12 ds

n
+MZZ\G;;t<t, )|+ 13 )| Glu(t, 1)

i=1 i=1
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n+l

_VMI Y " Y 1 , 4
e D) 2 Z|Gm t6)| + o ;!Gu(t,tlﬂ

n n
tpa Y |Gt )] + s ) |Gl(6 )|
2

i=1 i=1

! ! (m+1)cs + ! + + =l (3.5)
=yuw F(q) Tg+1) n C3 F(q)i’lcz nezfly + nNCy 3 = (. .

On the other hand, from (3.5), for 1, t, € (¢, tx,1] with £ < £, we have

|(Tx) () - (T0) (1) < / Ty (9) s < it — 1), (3.6)

5}

It follows from (3.3), (3.5) and (3.6) that T is equicontinuous on all subintervals (¢, tx41],
k=1,2,...,n. Thus, by the Arzela-Ascoli theorem, the operator T : PC'[J,R] — PC'[J,R]
is completely continuous. O

To prove our main results, we also need the following two lemmas.

Lemma 3.3 (See [47, 48]) (Schauder fixed point theorem) Let D be a nonempty, closed,
bounded, convex subset of a B-space X, and suppose that T : D — D is a completely con-
tinuous operator. Then T has a fixed point x € D.

Lemma 3.4 (See [47, 48]) (Leray-Schauder fixed point theorem) Let X be a real Banach
space and T : X — X be a completely continuous operator. If

{fx:xeX,x=ATx,0< X <1}
is bounded, then T has a fixed point x* € Q, where
= {x:xeX, 1l 51}, [=sup{x:xe X,x=ATx,0< A <1}.

4 Existence of solutions

In this section, we apply Lemma 3.3, Lemma 3.4 and the contraction mapping principle
to establish the existence of solutions of problem (1.1). Let us begin by introducing some
notation. Define

- t ,
E= lim <m .y >
ey co\ 1] ] + |y]

&= lim Tx (x)] &= i | T ()]

oo |x| oo x|

, k=12,...,n.

Theorem 4.1 Assume that (Hy)-(Hs) hold. Suppose further that
8§ = max{d;, 85} <1, (4.1)

where

5 [25(1 +(n+1)cy) 2Enc
| =

Tg+1) + r'Q ] +n(&cy + &201)

Page 10 of 21
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and

[25(1 +ncy) 25(m+1)cs
=y

M@ = Tg+D ] +n(&ic3 +6:02),

here y is defined in (3.4). Then problem (1.1) has at least one solution x € PC'[J,R] N
C*[J',R].

Proof We shall use Schauder’s fixed point theorem to prove that T has a fixed point. First,
recall that the operator T : PC'[J,R] — PC'[J, R] is completely continuous (see the proof
of Lemma 3.2).

On account of (4.1), we can choose £’ > &, & > & and & > &, such that

5 = 28"+ (m+1)cy) 2&'nq
[ Mg+ T(@

] +n(&cr +850) <1 (4.2)

and

, |:2§’(1 +ncy) 28 (m+1)cs
5 =

I = T(g+1) :| +n(g/e3 +£,0) <L 43)

By the definition of &, there exists / > 0 such that
[f(t,x,y)‘ <&(lxl+yl), Vte],lxl+Iyl>1
S0
[f(t,x,y)| <&(lxl+yl)+M, Vie],xyeR, (4.4)
where

M= max t,x, < +00.
tel,\x\ﬂylsllf( y)|

Similarly, we have
|Ti(x)| < &lx| + My, VxeRk=12,...,n, (4.5)
and
| T <&laxl + My, VxeRk=12,...,n, (4.6)

where My, My are positive constants.
It follows from (3.2) and (4.4)-(4.6) that

(T < f «

n+l

—s)t!
e w(s)V(s,x(s),y(s)) | ds
it —s)T!

+ ;‘Gis(t; tl)‘ - F(q) CU(S)V(S,x(S),y(S)) ‘ ds
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+Z|G1(tt)|/

ti1

T ( a)(s) [f(s, x(s), y(s)) | ds

n

D16 e+ 21660 x0)

i=1

t (t _ S)q—l

<y (& (1%l + ) +M)/t

ds

- “(t— )T

) M G (4.t d
+y (&' (Jxl + Iyl) + );| 15(””_/;.1 rg)

/ n t; (tl,_s)q—2
+y (€' (Il + 1y1) +M);‘Gl(t’”)| f T

n n

+ (&l + M) Y |Gt )| + (&lxl + M) D |Gal )|

i=1 i=1
- (& (x| + |y) + M &'(Jx| + |y]) + M &' (x| + [yl) + M
<y i Fig+1) + Fig+1) (n+1)cy + —F(q) ncl]

(&llx] + My )ney + (Eplx| + My )ney

+

<y [ 28" |x] pcr + M N 28 || x|l pca +M(n i1y + 28 || x| pc +Mnc1]
L T(@g+1) I'g+1) '(q)

+ (&1llxllpcr + Mi)nes + (& l1xll per + M) nex

=8|l pcr + MY, (4.7)

where §] is defined by (4.2) and M® is defined by

MIA+(n+1)cy) Mng
+
(g +1) I'(q)

MO = y|: ] + n(ca My + c1My).

Similarly, from (3.2) and (4.4)-(4.6), we get

|(Tx)/(t)| < / (rt,( D a)(s)[f(s x(s), «’ s))|ds
tk

n+l

+Z| G/
i-1

s)[f(s,x(s) x (s)) | ds

+ ;‘G;t(t, ﬁ)‘ tl: (lt_t‘(;s_)ql)z a)(S) lf(s’x(s)’x/(s)) | ds

+ |61 61| T (1) ZIG (t,:)[| 7 (x(2)|
i=1

_g)a2
<y (&' (1l + ) + M) (ﬁ(qszl) s
n+l t (tl'—S)

ey (€l + i) + 2) 3J Gl [
i=1 tiy
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, N i (8 - )17
y (' (1l + 191) + M) ;|G1z(t’ t:)| / Ta-D

i-1

n n

+ (&Il + Me) |Gl (e8| + (&5l + M) D |G (6. 8:)|

i=1 i=1

_s)q 2

<y (28 5]l pcs + M) / Lkl
173

n+l t;
+y (2€ %]l pcr + M) Z|G1sz(t ti)|/ t
ti-1
n —2
V(2$/||x||PC1+M)Z|Gt(tt)‘f (t S)
i=1 ti-

+ (Elllxllper + My Z|Gm(t t)| + (& Ixllpcr + M) Y| G5, 1)

i=1 i=1

3 [zswxnpa +M 2l + M 28 et + M mz]
I'(q) I'(g+1) I'(q)

+ (&%l pcr + M) nes + (&3 11l per + My )ncy

= 8[|l pct + M, (4.8)

where §] is defined by (4.3) and M® is defined by

MO - [M(l +nc) (m+1)esM

) + T+ D) ] + n(Mpycs + Mycy).

It follows from (4.7) and (4.8) that
I Txllpct < &8'llxllpcr + M',  ¥x € PC'[], E,
where
8 =max{8{,8§} <1, M’:maX{M(D,M@)}.
Hence, we can choose a sufficiently large r > 0 such that T'(B,) C B,, where
B, ={xePC":|xllpa <r}.

Consequently, Lemma 3.3 implies that 7 has a fixed point in B,, and the proof is com-
plete. d

Remark 4.1 Condition (4.1) is certainly satisfied if |[f(¢,x,y)|/|x| + |y| = O uniformly in
t €] as |x| + |yl > +o00o, | Zr(x)|/|x| — 0 as |x| - +oo and | Jk(x)|/|x] — O as |x] = +oo
(k=1,2,...,n).

Theorem 4.2 Assume that (H;)-(Hs) hold. In addition, let f, Ty and Jy satisfy the following
conditions:
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(Ha) There exists a nonnegative function v,(t) € C[0,1] with vi(£) > 0 on a subinterval of
[0,1] such that

[ft, x| <6, Y(txy) €] xRxR.
(Hs) There exist constants vy, v3 > 0 such that
|Tc@)| <va, | Tk()| < v3

forallxeR k=1,2,...,n
Then problem (1.1) has at least one solution.
Proof 1t follows from Lemma 3.2 that the operator T : PC'[J,R] — PC'[], R] is completely

continuous.
Next, we show that the set

V={xePC'(J,R)|x=1Tx,0 <A <1}

is bounded.
Letx e V. Then x = ATx for 0 < A < 1. For any ¢ € ], we have

L(t—s)1! ,
x(t) = A|: . T@ a)(s)f(s,x(s),x (s)) ds

n+l

. ZGls(t £) / Ui w(s)f(s,x(s) %(s)) ds
_ ZGl(t t)/ (t a)(s)f(s x(s),4(s)) ds

+ ZGIS 6 )I; ZGl (t, ) T (x(t; ))] (4.9)

i=1

It follows from (Hy), (Hs), (3.2) and (4.9) that

’x(t)| = )\‘(Tx)(t)|

= [kt ’ ;(Sq):_l w(S)V(s’x(S)’y(S)) | ds

n+l

+Z‘Glstt / (t S)V(s,x(s y(s)‘ds

T Z|G1 ®e)| | w(s)y(s,x(s) y(s))| ds

+Z\Glstt [1Zi(( ZIGMHHZ(W )|

i=1

Page 14 of 21
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n+l t o 1
§yt/tk (- ds+ytZ|G (t,ti)|‘/t“%ds
+ytZ|Gltt / (tl_s)q

tia

n n
0 Y |Gt )]+ vs Y |Gile )|
i=1 i=1

1 1 1
= 1 ’ 4.10
_yt[l“(q+1)+l“(q+1)(n+ )Cz+r(q)nc1]+v2ncz+v3ncl (4.10)

where

T = max vy (¢).
te]

It follows from (4.10) that

l+cy+nc, nq
+
I'g+1) T

lxllpc < J/T[ ] +n(vacy + v3cp). (4.11)

Furthermore, for any ¢ € (¢, tx41], 0 < k < n, we obtain

& (0)] = 1|(T) ()]

Y
< (It,( " w(s)|f (s,x(s), %' (s))| ds

Lk

n+l

+ Z|Gf“(t )| / s)[f(s,x(s) x(s))| ds

+ Z|Glt & t) / -9 g 1) )[f(s,x(s),x’(s))|ds

i1

1G] + Y16 6] [T x)
i=1

i=1

u—mz ok (g - s)i!
<yt ds+yr Gstt / ———ds
7% ( Z| st ‘ ti-q1 F(@)

ryT Y |G t,)|/ F( ds+sz| Gl (t,8:)| +v3 Y |G (61|
i=1 i=1

ti1

[ 1 1 (n+1) 1 }
<yt n+1)C3 + ——HNCy | + VaHC3 + V3HC),
Cl@) Tlg+D I'(q)

which, for any ¢ € J, yields

, l+ncy, (m+1)cs
[ pc =¥

) + T+ D) ] +n(vacs3 + v3¢o). (4.12)

It follows from (4.11) and (4.12) that

l%llpct <¢,  VxePC'(J,R), (4.13)

Page 15 of 21
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where ¢ < max{{y, (>}, here

1+cy+ncy na
Gy [ Cg+D  T(g)
l1+nc, (n+1)cs
[ M@ = T+D

] +n(vycy + v301),

b=

} + n(vycs + v363).

So it follows from (4.13) that the set V is bounded. Thus, as a consequence of Lemma 3.4,
the operator T has at least one fixed point. Consequently, the problem (1.1) has at least one
solution. This finishes the proof. O

Finally we consider the existence of a unique solution for problem (1.1) by applying the
contraction mapping principle.

Theorem 4.3 Assume that (H:1)-(Hs) hold. In addition, let f, Ty and Jy satisfy the following
conditions:

(H¢) There exists a constant Ly > 0 such that

If(t.2%,9) —f(%5)| < Ly(Ix =&l + |y - 71)

foreacht €] and all x,y,%,y € R.
(H;) There exist constants Ly, L3 > 0 such that

|Zi () - Ze )| < Lolx -y, |Tk(®) = Zi ()] < Lslx -y

forallx,ye R, k=1,2,...,n.

If
A <max{Ai, Ay} <1, (4.14)
where
2011 + ¢1 + ncy) 2L1nc; (L L)
1= Y+ Y +nlCaly + C1L3),
I(g+1) I'(q)
2L:(1 + 2L (n+1
Ay = 11+ 1) 1+ Lics v +n(csly + coLs),

rg " T+

here c; and cy are defined in (2.10), then problem (1.1) has a unique solution.

Proof Let x,y € PC'[J,R]. Then, for each ¢ € J, it follows from (Hg), (H7) and (3.2) that

|(Tx)(8) = (Ty)(2)|

< /J% w(s)|f (s,%(s), %(s)) = f (5, 7(5), ¥(s)) | ds

- i (= )T

+ |G 8)| ) () |f (5, %(5), %(s)) — £ (5,(5), 7(s)) | ds
i=1 li-1
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+ Z|Gl t, t)|/ F( a)(s)[f(s,x(s) x(s)) f(s,y(s),&(s))!ds

ti-1

n

+ Z|Gls (&, 8)| | Zi (x(5:)) - Zi(v(t)) | + Z|Gl(t1 0)|| Ti(%(t) = Ti(v(8) |

i=1

n+l

2L 1% = yllpcr ol 2Lylx = yllpct s
=TT ‘A“ $)Tds + T T EJGﬁfﬂf (t; —s)"ds

4 X = Yllect 2L1||9C J’”Pc1 Z|Gis t,t) |/ (t; —s)7 ' ds

+ Lol —yllpcr Y| Giy(t,8)] + Lallx = yllpcr Y |Gu(t, 1)

i=1 i=1

2L ||x — 2L ||x — 2L ||x —
- 11x = yllpct v+ 1% =yl pcr y(n+ 1)y + 1l = yllpct
['(g+1) I'(g+1) I'(g)

+ncyLy|lx = yllper + naLsllx =yl par

~ |:2L1(1 + 01+ 10) 2L1nc

L L -
Fg+1) v+ r@ v +n(cals + ¢ 3)]”96 Yllpct

and

(72 (0) ~ (1) ()
< ft: (ﬁ( QM )| (5,460, 5(5) = (5.5(6),59)) s

n+l

t . _ )1
+ Z‘Glst &t /t._ %w(s)[f(s,x(s),ic(s)) —f(s,¥(5),5(5))| ds

+ Z |G, (¢, tl)lf F( w(s)[f(s,x(s) x(s)) f(s,y(s),)_/(s))|ds

ti-1

(At Z!GuttHJl 1) = 7 (@)

i=1

iw /(t— 0T 2ds+ 2L1||x y”PCl ZiG (¢, tl)|/ (t; —s)T ' ds
I'(g-1) tk

2L -
+ 71”96 Ylpct Gt t) |/ (¢ —s)12ds
I'(g-1)

n n
+ Lyllx=yllpcr Y| Gyt )| + Lallx = ylipcr Y _|Gr(, )]

i=1 i=1
2L — 2L - 2L -
2 2Lillx=ylpar v+ 112 = yllpcr y(n+1)cs + 112 =yl pcr
I'(g) I'(g+1) I'(q)
+ncsLa|lx = yllper + neaLs|lx = yliper
|:2L1(1 + 1cy) 2L1(n+1)c3
I'(q) I'(g+1)

y +n(csly + C2L3)} lx = ylipct-
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Consequently, we have || Tx — Ty|pc1 < Allx — y|lpct, where A is defined by (4.14). As
A <1, therefore T is a contraction. Thus, the conclusion of the theorem follows by the
contraction mapping principle. The proof is complete. d

5 Examples
To illustrate how our main results can be used in practice, we present two examples.

Example 5.1 Letg = %, n = 1. We consider the following boundary value problem:

D2 x(t) = dot [dy St = x+x——ﬂr—dﬂM1+x%L tel,t 41,
Axly 1 =15%5(3),  A¥ g =ga(3), (5.1)
x(0) =x(1) =0,

where dy, di, d, and d3 are positive real numbers.

Conclusion Problem (5.1) has at least one solution in PC'[J,R] N C?[J',R], where J' =
[0, U311

Proof 1t follows from (5.1) that
o(t) = di3,
1
ftx,x) =div/dot —x+ 5 - %x’ —d3In(1+4%), (5.2)

1 1
) Il(x) = Ex, \71(9(3) = gx: (5'3)

N -

=
Ol12052:1, ﬂ1=,82:0.

From the definition of w, f, Z; and 73, it is easy to see that (H;)-(Hs) hold.
On the other hand, it follows from (5.2) and (5.3) that

1
[f(t,x,9)| <diy/da + x| + |yl + %|y| +d3In(1 + |x|?)

and

1 1
Ti(x)| = 0% |Fix)| = o5 VielxyeR.

Gy, (8 s) =

sQ-2), 0<s<t<l, s, 0<s<t<l,
tl-s), 0<t<s<l, s—1, 0<t=<s<l,

, t—-1, 0<s<t<l, ,
) = ) =1
Gy,(L,5) {t, 0<t<s<l G (t8)

Therefore, ¢; = i, ¢y = c3 = 1, and therefore (4.1) is satisfied because

9 11 oo 13 4 5
+—, +—,
20 /7 = 240 =30 7 15 = 30Vf‘

A

+—<1

8 <

Thus, our conclusion follows from Theorem 4.1. O
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, n =1. We consider the following boundary value problem:

Example 5.2 Let g = %

2 . t 202
cD(z)Ler(t):(Smt_,,l)(d‘le”lS)(d—B*t"M, te],t#%,

dg+t2+x2 +y2
_ g ,—x2(3) 2201
Axl, 1 =d7e™ 5 + dgsin” x(3), -
AX|, 1 = dg+dipx®(3) ’
h=3 ~ 1+x2(%) ’

x(0) =x(1) =0,
where dy, ds, dg, d7, ds, do and dyy are positive real numbers with dyy > ds.

Conclusion Problem (5.4) has at least one solution in PC'[J,R] N C*[J',R], where ] =
[0, U311

Proof 1t follows from (5.4) that

w(t) =sint +1,

dg + tx® sin® x

f(t:x,y) = (dae’ +ds) (5.5)

de + 12 + 5% + 92’

dg + d10x2

. L) =de™ +dgsin’x,  Ji(x) = (5.6)

1+x2

From the definition of w, f, Z; and J;, we can obtain that (H;)-(Hs) hold.
On the other hand, from (5.5) and (5.6) we have

[f (t,%,9)| < dae’ +ds := vi(2),

and
|Il(x)| < % +ds, |ﬁ(x)| <dw, Vte],x,yeR.

Therefore, the conditions (H,4) and (Hs) of Theorem 4.2 are satisfied. Thus, Theorem 4.2
gives our conclusion. O
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