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Abstract

We treat the nonhomogeneous boundary value problems with ¢-Laplacian operator
(W) =-ft,ul®),u®),t€©,T),u=A¢W @) =tul)+ Z/-k:1 Tu(;), where

¢ :(-a,a) > (-b,b) (0 < ag,b < +00) is an increasing homeomorphism such that
¢0)=0,7,17€R, e€(07),i=12,....K, A=0,andf:[0,TI x Rx R — Ris
continuous. We will show that even if some of the T and t; are negative, the
boundary value problem with singular ¢-Laplacian operator is always solvable, and
the problem with a bounded ¢-Laplacian operator has at least one positive solution.
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1 Introduction
We are concerned with the nonhomogeneous boundary value problem with ¢-Laplacian
operator

(@' @) =~ u@),u'(®), te(0,T),

(1.1)
w0)=4A,  ¢@/(T)=7u(T) + Y1, (&),

where ¢ : (-a,a) — (=b,b) (0 < a,b < +00) is an increasing homeomorphism such that
¢0)=0,7,7;€R,;€(0,7),i=1,2,...,k,A>0,and f : [0, T] x R x R — R is continuous.
According to the related literature [1-5], a ¢-Laplacian operator is said to be singular
when the domain of ¢ is finite (i.e., a < +00), on the contrary the operator is called reg-
ular. On the other hand, we say that ¢ is bounded if its range is finite (i.e., b < +00) and
unbounded in other case. There are three paradigmatic models in this context:
(1) a=b =+00 (regular unbounded): The p-Laplacian operator

¢p(x) = lx[P~2x,  withp>1.

(2) a<+00, b= +0oo (singular unbounded): The relativistic operator

(3) a=+00, b < +00 (regular bounded): The one dimensional mean curvature operator

x
V1+a2
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The study of the ¢-Laplacian equations is a classical topic that has attracted the atten-
tion of many experts because of its interest in applications. Since 2004, in a number of
papers, Bereanu and Mawhin have considered such problems with Dirichlet, Neumann
or periodic boundary conditions (see, for example, [1-3] and the references therein). In
these papers, the various boundary value problems are reduced to the search for fixed
point of some nonlinear operators defined on Banach spaces. In particular, they have also
considered some boundary value problems with nonhomogeneous boundary conditions,
and they obtained the existence of solutions by the use of the Schauder fixed point theo-
rem (see [2, 3]). Recently, Torres [4] proved the existence of a solution of a forced Liénard
differential equation with ¢-Laplacian by means of Schauder fixed point theorem.

We note here that many nonlinear differential problems require the search of positive,
meaningful, solutions. The existence of positive solutions for ordinary differential equa-
tions and p-Laplacian equations have been studied by several authors and many interest-
ing results has been obtained (only to mention some of them; see [5-7], and the references
therein). If the coefficient occurring in the boundary conditions takes a negative value,
then the existence of a positive solution for a BVP with ¢-Laplacian operator is less con-
sidered because it is sometimes difficult to construct a corresponding cone for applying
the fixed point theorem.

The purpose of this paper is to study the nonhomogeneous boundary value problem
(1.1) with ¢-Laplacian operator even in the case where some of the t and t; are negative.
Firstly, we show that the problem with singular ¢-Laplacian operator is always solvable
by the use of Schauder fixed point theorem. Secondly, we prove that the problem with
bounded ¢-Laplacian operator has at least one positive solution by means of a change of
variable and the Krasnosel’skii fixed point theorem. As we will see, the interesting points
of the paper are the following:

(1) Some of the T and t; coefficients in (1.1) are allowed to take a negative value.

(2) In order to obtain a positive solution of the problem (1.1), we make a change of
variable and generate two first-order differential equations and the corresponding
nonlinear operator B. The new method can be used for the differential domains and
ranges of ¢! and give an a priori estimate of the solution.

This paper is organized as follows. In Section 2, we give some preliminaries and lem-

mas. In Section 3, we show some theorems on the existence of (positive) solutions of the
differential equations (1.1). Moreover, an example is given to illustrate our results.

2 Preliminaries and lemmas
Firstly, we consider the following ¢-Laplacian differential equation:

(@'®)) =-h(®), t€(0,7),

. (2.1)
u@0)=A4, ¢/ (T)=1u(T)+ )i tu(Z),
where h € L1[0, T].
Next we make the change of variable
x(t) = ¢(u/ (2)), (2.2)

u'(t) = 7 (x(2)). (2.3)
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Together with (2.1), we get the following two first-order differential equations:

u'(t) = o7 (x(t)), (2.4)
u(0) = A '
and
x'(t) = —h(t), (2.5)
x(T) = TM(T) + Zz 1 Tid (;l)
Integration in (2.4) yields
u(t) =A + /tqﬁ_l (x(s)) ds. (2.6)
0

Then we get

T Gi
u(T)=A+ /0 ot (x(s)) ds, u(lt)=A+ /o ¢>_1(x(s)) ds

Thus, together with the boundary condition in (2.5), we obtain

k
HT) = Tu(T) + Y wu(zy)

i=1

k+1 k+1

—AZ‘Q Zt,/ ¢! x(s) ds,

where we denote 7,1 := T and x,1 := T. Thus (2.5) can be rewritten as follows:

x'(t) = =h(t),
x(T)=A Zf”ll T+ k+1 LT[y @7 x(s)) ds.

Integration leads to

T
x(t):x(T)+/ h(s)ds

k+1 k+1

—AZ'C, ZT,/ x(s ds+/Th(s)ds.

Now, we define two nonlinear operators B and S, respectively, by

k+1 k+1

AZQ Zrl/ _1

+ /t f(s,A + /OS ¢! (x(t)) dr, ¢t (x(s))) ds (2.7)

Page 3 of 9
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and
(Su)(t) =A + /0 d)‘l((Bx)(s)) ds. (2.8)

Remark 2.1 From the deduction of (2.2)-(2.7), we find that if ¢! (x) is well defined and x
is a fixed point of the nonlinear operator B, then u(¢) in (2.6) is a solution of the problem
(1.1).

To such a continuous function f, we associate its Nemytskii operator Ny : C' — C de-
fined by

N)(©) = (6w, w'(0), te[0,T]. (2.9)
It is easy to verify that Ny is continuous and takes bounded sets into bounded sets.

Lemma 2.1 (See [8]) Let X be a Banach space and P C X a cone. Suppose that 21 and 2,
are bounded open sets contained in X such that 0 € Q, and Q, C Q. Suppose further that
S:PN(Q\Q1) — P is a completely continuous operator. If either

(i) ISull < \ull for u e PNy and ||Sul| > ||ul| for u e PN 382, or

(i) ||Su|l = ||ull for u e PN 32 and ||Su| < ||u|| for u € PN 3y,
then S has at least one fixed point in PN (2\ Q).

3 The main result
Let X be the Banach space C([0, T']) with the maximum norm ||x|| = max;e[o,7] |%(£)|. Define
a cone by

P= {x € C([O, T]) 1x(t) > 0}.

For the sake of convenience, we give the following conditions:
(i) The nonlinearity f:[0,T] x [A —aT,A +aT] x (-a,a) — R* satisfies

0<f(t,u,v) <M

for any (¢,u,v) € [0,T] x [A —aT,A + aT] x (-a,a);
(i) A=AY >0
(iii) There exists a positive constant r such that

A+ )+ MT <r<b, (3.1)

where A =), 75, I ={i:1; > 0};
(iv) ming<yep Y T [y 67 (v(s)) ds > 0.

Remark 3.1
(1) If ;> 0,foralli=1,2,...,k + 1, then the condition (iv) clearly holds.
(2) IfA =0, instead of conditions (i) and (ii), we assume that for any
(tu,v)€[0,T] x [A-aT,A +aT] x (—-a,a), the following inequalities hold:

Ml Ef(tx u, V) EMZ)
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where 0 < M; < M, are two constants. Also, the condition (3.1) is replaced by
2o Hr) + M T <r<b.
Case 1. Singular ¢-Laplacian operator: ¢ : (-a,a) — (—00, +00) (0 < a < +00).
Theorem 3.1 Iff is continuous, then the problem (1.1) has at least one solution.

Proof Define a set by
Qi={u,u eX:|ul <A+aT,|u| <a}.

From the definition of ¢! : (—00, +00) — (-a,a), (2.2), (2.7), and (2.8), we get, for any
ue,

[[Sull = max |(Su)()|
tel0,T]

= max
te0,T]

<A+aT

A+ /thb_l ((Bx)(s)) ds

and
[(Su)| = max |(Su) @)] = max | ((B2))| < a.

Thus S : @ — Q. Utilizing (2.9) and Arzela-Ascoli theorem, it is easy to verify that the non-
linear operator S is a completely continuous operator. Therefore, the nonlinear operator
S has at least one fixed point by Schauder fixed point theorem.

From the definition of S in (2.8), we have

(Su)(0) = 4,

(Su)'(2) = ¢~ ((Bu)(2)),

o((Sw)' (1)) = (Bu)(t).

Then we obtain

¢((Su)(T)) = Bu)(T)

k+1 k+1

:AZQ + Zri/Q u'(s)ds
i=1 =1 Y0

k+1

k
=tu(T) + Z T;u(L;) + Z ti[u(O) —A]

i=1 i=1
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and

(@ ((Su) (@) = ~f (& (), u'(2).
Consequently, we conclude that the fixed point of S is a solution of the problem (1.1). O

Remark 3.2 Theorem 3.1 shows that if ¢ is singular (@ < co0) and f is continuous on
[0, T] x R?, then the problem (1.1) is always solvable.

Case 1. Bounded ¢-Laplacian operator: ¢ : (—a,a) — (-b,b), 0 < b < +oo.

Theorem 3.2 Ifthe conditions (i)-(iv) hold, then the nonlinear operator B defined by (2.7)

has at least one fixed point. Further, the problem (1.1) has at least one positive solution.

Proof Define a set by
Q= {x e X: x| <b}.

From the conditions (ii) and (iv), we obtain, for any x € P N €,

k+1

BR)(t) = A+ ) 1 / ’ ¢~ (x(s)) ds
i=1 0
T s
LA - dr,¢™! d
+/¢ f(s +/0 ¢ (x(r)) T,¢ (x(s))) s
> 0.

Clearly, the nonlinear operator B: P N 2, — P is well defined.
The condition (iii) implies that we find a constant r, such that

A+2p7 ) + MT <1y <b.
Define a set by
Q= {x eX:|x| < 7‘2}.
In virtue of the increasing property of ¢ 1, we get, for any x € PN 3R,

1Bxll = (Bx)(0)

T s

A -1 dr,¢! >d

+/(; f<s +/o¢ (x(x)) dz, 97 (x(s)) | ds
< A+rpV () + MT

=ry=x|.
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Thus, for any x € P N 92, we have
1Bx|l < Ilx]l.

We choose a small positive constant r; such that r; < min{A, %2} and define Q1 := {x €
X ¢ |l%|| < r1}. Then for any x € PN 923, we find

1Bx|| = (Bx)(0)

Thus, for any x € PN 92, we get
1Bx[l = llx].

In addition, a standard argument involving the Arzela-Ascoli theorem implies that B :
PN (R\Q1) — P is a completely continuous operator. Therefore, the nonlinear operator
B has at least one fixed point by the use of Lemma 2.1. Let x € PN (£2,\£21) be a fixed point
of B, then, from (2.6), we obtain

ult)=A+ /t¢‘1 (%(s)) ds.
0

Consequently, we get from Remark 2.1 that the problem (1.1) has a positive solution u(¢).
|

Remark 3.3 In order to prove the existence of a positive solution of the problem (1.1), we
make a change of variable and introduce a first-order differential equation, and investigate
the existence of a fixed point of the corresponding nonlinear operator B. The technique
can be used for the different domains and ranges of ¢! and give an a priori estimate of
the solution.

Theorem 3.3 If 1y =1y =--- = 7¢ = T = 0 and f satisfies the condition

|f(t,u,v)| < ;

forany (t,u,v) € [0,T] x [A—aT,A +aT] X (—a,a), then the problem (1.1) has at least one
solution.

Proof Adopting a similar technique to (2.2)-(2.6), we define a nonlinear operator 5 by

T s
(Bx)(t) ::/ f<s,A +/0 ¢_1(x(t)) dr, ¢~ (x(s))> ds.
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Then we get, for any x € 2y,

Bl = max |(Bx)(2)|
tel0,T]

< /0 TP(S,A R /0 "7 (1) dr, 7! (x(s)))
<b.

ds

Then the operator 5 : Q;, — 2, has at least one fixed point by the use of Schauder fixed
point theorem. Applying expression (2.6), we conclude that the problem (1.1) has at least

one solution. O

Remark 3.4 Observe that the solution provided by Theorem 3.3 could be trivial or neg-

ative.

Theorem 3.4 Ifthe conditions (ii) and (iv) hold and f satisfies the condition

b
tu,v)> — 3.2
fewn)= - 32
forany (t,u,v) € [0,T] X [A —aT,A +aT] x (-a,a), then problem (1.1) has no solution.

Proof Taking arbitrarily x € €2, we get from (3.2)

k+1

Si
Bx)0) = A+ 7 f ¢ (x(s)) ds
= 70

" /OTf <S»A + /0 Sdfl(x(r)) dr,¢>‘1(x(s))> ds
> _/OTf<S’A + /(;Sqﬁ_l(x(r)) dt,dfl(x(s))) ds

> b.

Thus, it implies that there exists a neighborhood Nj = [0, 8) such that (Bx)(t) > b for any
t € [0,6). This implies that the nonlinear operator (Su)(¢) = A + fot ¢~1((Bx)(s)) ds is not well
defined, since the domain of ¢! is the interval (-b, b) and thus a solution of (1.1) cannot

exist. O

Example 3.1 We consider the following nonhomogeneous boundary value problem with

¢-Laplacian operator:

(@@ @) =~ u@),u' (1), te€(0,1),

(3.3)
WO)=1,  P() = hult) + bu(F) - Luld),

where
b(x) = 5
V25 + 22

t .
flt,u,v) = §|s1nu| + t| cosv|.
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It is easy to see that the nonlinearity f satisfies the condition (i), that is,

3
OSf(t,M,V) = 5

for any (t,u,v) € [0,1] x (00, +00) X (—00, +00). Computation yields

and there exists a positive constant 3 < r < 4.683 such that the following inequalities hold:

Lo Lie 3 pes
—+=¢'(N+=<r
275 g ="

and

3 Gi
min 1:,'/ ot (v(s)) ds > 0.
7 Jo

0=<v(t)<5 <«
i=

Then conditions (ii)-(iv) also hold. Therefore, we find from Theorem 3.2 that the differ-
ential equation (3.3) has at least one positive solution.
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