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Abstract
We apply iterative methods to three-component diffusion equations and study their
convergence in L2 and in the Sobolev spaceW1,∞. The system is parabolic and
mass-conservative. Newton’s method converges very fast and its iterations do not
leave the set of admissible functions.
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1 Introduction
Since its discovery and later analysis byDarken [], the Kirkendall effect [] has been found
in various alloy systems, and studies on lattice defects and diffusion developed signifi-
cantly. The Danielewski-Holly method [] extends the Darken standard theory of interdif-
fusion and describes the process in the boundedmixture showing constant concentration.
Under certain regularity assumptions and quantitative condition Danielewski and Holly
proved the existence and uniqueness of solution to PDE describing the interdiffusion phe-
nomena. Further developments have been presented in numerous articles; e.g. [, ].
In the paper we apply Newton’s method (see [–]) to three-component diffusion equa-

tions and study the convergence in L and Sobolev space W ,∞. The system of equations
is strongly coupled, however, the maximum principle presented in Section  confirms its
parabolic type. Parabolicity is additionally confirmed by our convergence result for itera-
tive methods. This falsifies the nonparabolicity hypothesis by Danielewski and Holly [],
where they construct an initial concentration whose L norm increases in time, at least
on some interval. The Newton method, known as quasilinearization method, is very use-
ful in modern numerical methods for solving PDE’s; see []. We apply this method to
strongly coupled parabolic systems describing diffusing mixtures. This strong parabol-
icity might have caused weird phenomena, but we have discovered a kind of maximum
principle and some conservation laws in this system, hence the iterative methods pro-
posed here behave very well. Our result is very useful in numerical simulations when one
wants to construct reliable and fast convergent approximations. Since Newton’s method
produces linear PDE’s satisfyingmaximum principles and a priori estimates of the respec-
tive Green functions or Cauchy kernels, one can find errors estimates much better than
those obtained from the Newton-Kantorovich theorem, cf. [, ].
Consider a mixture composed of three different components. Let t ≥ , x ∈ [–L,L],

vi : [,∞) × [–L,L] → R denote the velocity field of the ith component and ci : [,∞) ×
[–L,L] → R its molar density or molar concentration. It is a measure of the number of
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particles contained in any volume, c + c + c ≡ const. The component diffusion flux is a
Fickian flow:

Jdi (t,x) := –Di grad ci,

where Di is the intrinsic diffusitivity of the ith component which we assume to satisfy
D >D >D > . Denote D′

i :=Di –D for i = , . The overall ith component flux is a sum
of diffusion and convection fluxes:

Ji := Jdi + civD,

where vD stands for a drift velocity. By the mass conservation law:

∂ci
∂t

= –div Ji

and upon denoting u = c, v = c, w = c we arrive at the following system of equations:

ut =Duxx –
(
u
[
D′

ux +D′
vx

])
x,

vt =Dvxx –
(
v
[
D′

ux +D′
vx

])
x,

wt =Dwxx –
(
w

[
D′

ux +D′
vx

])
x

(.)

with the initial condition

u(,x) = u(x), v(,x) = v(x), w(,x) = w(x) =  – u(x) – v(x) (.)

for x ∈ [–L,L] and the Neumann boundary condition

∂u
∂n

= ,
∂v
∂n

= ,
∂w
∂n

=  for t ≥ ,x ∈ {–L,L}. (.)

Let X denote the space consisting of triples of functions (u, v,w) satisfying
u, v,w ∈ C,,
ux, uxx, vx, vxx are bounded,
u≥ , v ≥ , w ≥  for t ≥ , x ∈ [–L,L],
u + v +w =  for t ≥ , x ∈ [–L,L],
u, v, w obey the Neumann boundary condition.

Remark . If (u, v,w) ∈ X then the third equation of (.) is not necessary, since w =  –
u– v. However, we keep it for a more convenient analysis of some properties of solutions.

Remark . We call

vD =D′
ux +D′

vx =Dux +Dvx +Dwx

the drift velocity; it describes the marker position.
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Lemma . (Mass conservation) If (u, v,w) ∈X satisfy (.), (.) then

∫ L

–L
udx = const.,

∫ L

–L
vdx = const.,

∫ L

–L
wdx = const.

Proof The relation

d
dt

∫ L

–L
udx = 

can be shown by means of the Neumann boundary condition. �

Lemma . (Maximum principle) Suppose that u(, ·), v(, ·),w(, ·) ∈ C and

u(,x)≥ , v(,x)≥ , w(,x) ≥ , u(,x) + v(,x) +w(,x) = 

for x ∈ [–L,L]. If (u, v,w) satisfy (.)-(.) then (u, v,w) ∈ X .

Proof Let ũ = u + εeλt , ṽ = v + εeλt , w̃ = w + εeλt for ε > . We have

ũt = ut + ελeλt , ũx = ux, ũxx = uxx,

ṽt = vt + ελeλt , ṽx = vx, ṽxx = vxx.

There exists λ ∈R (sufficiently large) such that we have strong differential inequalities:

ũt >Dũxx – ũ
[
D′

ũxx +D′
ṽxx

]
– ũx

[
D′

ũx +D′
ṽx

]
,

ṽt >Dṽxx – ṽ
[
D′

ũxx +D′
ṽxx

]
– ṽx

[
D′

ũx +D′
ṽx

]
,

w̃t >Dw̃xx – w̃
[
D′

ũxx +D′
ṽxx

]
– w̃x

[
D′

ũx +D′
ṽx

]
.

We claim that ũ > , ṽ > , w̃ >  in the whole domain. Suppose that this is not true
and take the smallest t∗ >  such that ũ(t∗,x∗) = , or ṽ(t∗,x∗) = , or w̃(t∗,x∗) =  for
some x∗ ∈ [–L,L]. Without loss of generality we assume ũ(t∗,x∗) = . Since ũ(t∗,x∗) =
min{t≤t∗ ,x∈[–L,L]} ũ(t,x) we have ũx(t∗,x∗) = , ũt(t∗,x∗) ≤  and ũxx(t∗,x∗) ≥ . Hence

 ≥ ũt
(
t∗,x∗) >Dũxx

(
t∗,x∗) – ũ

(
t∗,x∗)[D′

ũxx
(
t∗,x∗) +D′

ṽxx
(
t∗,x∗)]

– ũx
(
t∗,x∗)[D′

ũx
(
t∗,x∗) +D′

ṽx
(
t∗,x∗)] ≥ ,

which is a contradiction. Thus ũ >  for t ≥ , x ∈ [–L,L]. If ε → + then ũ → u. Hence
u > . Similarly, v(t,x)≥  and w(t,x)≥  for t ≥ , x ∈ [–L,L]. �

2 Uniqueness
Let X̄ be the closure of X w.r.t. the L norm. The existence and uniqueness of solutions
to problem (.)-(.) in X w.r.t. the Sobolev norm W , is given in []. The following
proposition concerns the uniqueness of solutions in L. Since the set of C-functions is
dense in L, the proof is carried out in X . The uniqueness is obtained for weak solutions.
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Proposition . Assume that (–
√
)D ≤D ≤ (+

√
)D and (u, v,w) ∈ X̄ .Then

a weak solution (u, v,w) ∈ X̄ to problem (.)-(.) is unique in L.

Proof Since every L-function can be approximated by a sequence of X -functions, it
suffices to show the uniqueness of X -solutions w.r.t. the L-norm. Let (u, v,w) ∈ X and
(ū, v̄, w̄) ∈X be solutions to (.)-(.). Denote

�u = u – ū, �v = v – v̄, �w = w – w̄

and observe that

�ut =D�uxx –
(
�u

[
D′

ux +D′
vx

])
x –

(
ū
[
D′

�ux +D′
�vx

])
x,

�vt =D�vxx –
(
�v

[
D′

ux +D′
vx

])
x –

(
v̄
[
D′

�ux +D′
�vx

])
x,

�wt =D�wxx –
(
�w

[
D′

ux +D′
vx

])
x –

(
w̄

[
D′

�ux +D′
�vx

])
x.

We have

∫ L

–L
�u�ut dx = D

∫ L

–L
�u�uxx dx –

∫ L

–L
�u

(
�u

[
D′

ux +D′
vx

])
x dx

–
∫ L

–L
�u

(
ū
[
D′

�ux +D′
�vx

])
x dx.

Using integration by parts we obtain

D

∫ L

–L
�u�uxx dx = –D

∫ L

–L
(�ux) dx,


∫ L

–L
�u

(
�u

[
D′

ux +D′
vx

])
x dx =

∫ L

–L
(�u)

[
D′

uxx +D′
vxx

]
dx,


∫ L

–L
�u

(
ū
[
D′

�ux +D′
�vx

])
x dx = –

∫ L

–L
�uxū

[
D′

�ux +D′
�vx

]
dx.

Hence

d
dt

∫ L

–L

[
(�u) + (�v) + (�w)

]
dx

= 
∫ L

–L
(�u�ut +�v�vt +�w�wt)dx

= –
∫ L

–L

(
D(�ux) +D(�vx) +D(�wx)

)
dx

–
∫ L

–L

(
(�u) + (�v) + (�w)

)[
D′

uxx +D′
vxx

]
dx

+ 
∫ L

–L
(�uxū +�vxv̄ +�wxw̄)

[
D′

�ux +D′
�vx

]
dx.
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By the fact that �wx = –�ux –�vx we obtain


∫ L

–L
(�u�ut +�v�vt +�w�wt)dx

= –
∫ L

–L

(
(�u) + (�v) + (�w)

)[
D′

uxx +D′
vxx

]
dx

– 
∫ L

–L

(
D +D –D′

(ū – w̄)
)
(�ux) dx

– 
∫ L

–L

(
D +D –D′

(v̄ – w̄)
)
(�vx) dx

– 
∫ L

–L

(
D –D′

(v̄ – w̄) –D′
(ū – w̄)

)
�ux�vx dx.

We examine the nonnegative definiteness of the matrix:

A =

[
D +D –D′

(ū – w̄) D – 
D

′
(v̄ – w̄) – 

D
′
(ū – w̄)

D – 
D

′
(v̄ – w̄) – 

D
′
(ū – w̄) D +D –D′

(v̄ – w̄)

]

i.e.

D +D –D′
(ū – w̄) ≥ , D +D –D′

(v̄ – w̄) ≥ , and det(A) ≥ .

The first two inequalities are true due to the relations:

– ≤ ū – w̄≤ , – ≤ v̄ – w̄ ≤ , D >D >D > .

The condition

( – 
√
)D ≤D ≤ ( + 

√
)D

implies det(A) ≥  for all admissible ū, w̄. �

3 Iterative methods
Recall that

D′
ux +D′

vx =Dux +Dvx +Dwx,

D′
uxx +D′

vxx =Duxx +Dvxx +Dwxx.

Assume that (u(), v(),w()) coincides with (u, v,w) at t =  and formulate an iterative
method for (.)-(.):

u(k+)t =Du(k+)xx –
(
u(k)

[
Du(k+)x +Dv(k+)x +Dw(k+)

x
])

x,

v(k+)t =Dv(k+)xx –
(
v(k)

[
Du(k+)x +Dv(k+)x +Dw(k+)

x
])

x,

w(k+)
t =Dw(k+)

xx –
(
w(k)[Du(k+)x +Dv(k+)x +Dw(k+)

x
])

x,

(.)
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with the initial condition

u(k+)(,x) = u(x), v(k+)(,x) = v(x), w(k+)(,x) = w(x) (.)

for x ∈ [–L,L] and the Neumann boundary condition. Moreover, assume that

u(x) + v(x) +w(x) =  (.)

for x ∈ [–L,L]. Denote

�u(k) = u(k+) – u(k), �v(k) = v(k+) – v(k), �w(k) = w(k+) –w(k).

Lemma . Assume u, v,w ∈ X , (u(), v(),w()) = (u, v,w) at t =  and u() + v() +
w() = . If (u(k), v(k),w(k)) fulfills (.) with (.), the Neumann boundary condition and
(.), then u(k) + v(k) +w(k) = .

Proof It suffices to show u(k) + v(k) + w(k) =  ⇒ u(k+) + v(k+) + w(k+) = . We assume the
induction hypothesis u(k) + v(k) +w(k) = . Thus

u(k+)t + v(k+)t +w(k+)
t

=Du(k+)xx +Dv(k+)xx +Dw(k+)
xx

–
(
u(k)x + v(k)x +w(k)

x
)[
Du(k+)x +Dv(k+)x +Dw(k+)

x
]

–
(
u(k) + v(k) +w(k))[Du(k+)xx +Dv(k+)xx +Dw(k+)

xx
] ≡ .

Hence the statement is proved. �

The following theorem establishes a convergence of the iterative method (.)-(.).

Theorem. Suppose (u, v,w) ∈X and (u(), v(),w()) = (u, v,w) at t = . If u(k)x , v(k)x ,
w(k)
x are C and

 ≤ u(k) ≤ , ≤ v(k) ≤ ,  ≤ w(k) ≤  for k = , , . . .

then the sequence (u(k), v(k),w(k)) defined by (.), (.) converges to the solution (u, v,w) of
(.), (.) in the Sobolev space W ,∞.

Proof As in the previous section denote the increments�u(k) = u(k+) –u(k),�v(k) = v(k+) –
v(k), �w(k) = w(k+) –w(k). From (.) we have the following differential equations:

�u(k+)t =D�u(k+)xx –
(
u(k+)

[
D′

�u(k+)x +D′
�v(k+)x

])
x

–
(
�u(k)

[
D′

u
(k+)
x +D′

v
(k+)
x

])
x,

�v(k+)t =D�v(k+)xx –
(
v(k+)

[
D′

�u(k+)x +D′
�v(k+)x

])
x

–
(
�v(k)

[
Du(k+)x +Dv(k+)x +Dw(k+)

x
])

x.
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Using the Green functions G,k , G,k corresponding to the differential operators
[

∂
∂t –D

∂

∂x + u(k+)D′


∂

∂x D′


∂

∂x

D′


∂

∂x
∂
∂t –D

∂

∂x + v(k+)D′


∂

∂x

]
(.)

we have[
�u(k+)(t,x)
�v(k+)(t,x)

]
=

∫ t



∫ L

–L

[
G,k(t, s,x, y)P,k(s, y)
G,k(t, s,x, y)P,k(s, y)

]
dyds,

[
�u(k+)x (t,x)
�v(k+)x (t,x)

]
=

∫ t



∫ L

–L

[
G,k

x (t, s,x, y)P,k(s, y)
G,k

x (t, s,x, y)P,k(s, y)

]
dyds,

where Pi,k(s, y) depend on �u(k), �v(k), �u(k)x , �v(k)x , �u(k+)x , �v(k+)x for i = , . The Green
functions Gi,k depend on u(k), v(k) and have the uniform estimates

∫ L

–L

∣∣Gi,k(t, s,x, y)
∣∣dy≤ C,

∫ L

–L

∣∣Gi,k
x (t, s,x, y)

∣∣dy ≤ C√
t – s

, (.)

with some generic constant C not depending on k. By Lemma . there existsM ≥  such
that

∥∥u(k+)x (t, ·)∥∥L∞ ≤M,
∥∥v(k+)x (t, ·)∥∥L∞ ≤M,∥∥u(k+)xx (t, ·)∥∥L∞ ≤M,
∥∥v(k+)xx (t, ·)∥∥L∞ ≤M.

(.)

Since

∥∥P,k(t, ·)∥∥L∞ ≤ M
(
D′

 +D′

)∥∥�u(k)(t, ·)∥∥L∞ +M

(
D′

 +D′

)∥∥�u(k)x (t, ·)∥∥L∞

+MD′

∥∥�u(k+)x (t, ·)∥∥L∞ +MD′


∥∥�v(k+)x (t, ·)∥∥L∞

we get

∥∥(
�u(k+),�v(k+)

)
(t, ·)∥∥W ,∞ :=

∥∥�u(k+)(t, ·)∥∥W ,∞ +
∥∥�v(k+)(t, ·)∥∥W ,∞

≤
∫ t



C√
t – s

∥∥(
�u(k),�v(k)

)
(s, ·)∥∥W ,∞ ds

+
∫ t



C√
t – s

∥∥(
�u(k+),�v(k+)

)
(s, ·)∥∥W ,∞ ds.

Applying Lemma A. we have ‖(�u(),�v())(t, ·)‖W ,∞ ≤ K and by induction: ‖(�u(k),
�v(k))(t, ·)‖W ,∞ ≤ Kkt

k
 for k = , , . . . . Hence

Kk+ = Kk
C

 – CT /

∫ 



θ k
√
 – θ

dθ .

Notice that

Kk+

Kk
=

C
 – CT /

∫ 



θ k
√
 – θ

dθ →  as k → ∞.

By the d’Alembert’s ratio test the convergence radius is +∞. �
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We give sufficient conditions for the successive approximations to remain in X .

Proposition . Assume that u, v ∈ C,  < ε ≤ u(x) ≤  – ε < ,  < ε ≤ v(x) ≤
 – ε <  and the sequence (u(k), v(k),w(k)) defined by (.) with the first element given by

u()(t,x) = u(x) + tku(x) and v()(t,x) = v(x) + tkv(x),

where ku,kv ∈X are of the form

ku(x) =Du′′
(x) –

(
u(x)

[
D′

u
′
(x) +D′

v
′
(x)

])
x,

kv(x) =Dv′′
(x) –

(
v(x)

[
D′

u
′
(x) +D′

v
′
(x)

])
x,

converges to the solution (u, v,w) of (.), (.) in the Sobolev space W ,∞. If

∞∑
k=

Kktk/ ≤ ε, where Kk = Kk–
C

 – CT /

∫ 



θ k–
√
 – θ

dθ ,

then  ≤ u(k)(t,x)≤  and  ≤ v(k)(t,x)≤ , k = , , . . . .

Proof We have

u()t (t,x) = ku(x), u()x (t,x) = u′
(x) + tk′

u(x), u()xx (t,x) = u′′
(x) + tk′′

u(x).

Hence

ku(x) =Du′′
(x) – u′

(x)
[
D′

u
′
(x) +D′

v
′
(x)

]
– u(x)

[
D′

u
′′
(x) +D′

v
′′
(x)

]
=D

(
u()xx (t,x) – tk′′

u(x)
)

–
(
u()x (t,x) – tk′

u(x)
)[
D′

u
()
x +D′

v
()
x – t

(
D′

k
′
u(x) +D′

k
′
v(x)

)]
–

(
u()(t,x) – tku(x)

)[
D′

u
()
xx +D′

v
()
xx – t

(
D′

k
′′
u(x) +D′

k
′′
v (x)

)]
.

Thus we get

�u()t (t,x) = u()t (t,x) – u()t (t,x)

= Du()xx (t,x) – u()x (t,x)
[
D′

u
()
x (t,x) +D′

v
()
x (t,x)

]
– u()(t,x)

[
D′

u
()
xx (t,x) +D′

v
()
xx (t,x)

]
– ku(x)

= D�u()xx (t,x) –
(
u()(t,x)

[
D′

�u()x (t,x) +D′
�v()x (t,x)

])
x

+ tR(x) + tR(x),

where

R(x) :=Dk′′
u(x) – u()x (t,x)

(
D′

k
′
u(x) +D′

k
′
v(x)

)
– k′

u(x)
[
D′

u
()
x (t,x) +D′

v
()
x (t,x)

]
– u()(t,x)

(
D′

k
′′
u(x) +D′

k
′′
v (x)

)
– ku(x)

[
D′

u
()
xx (t,x) +D′

v
()
xx (t,x)

]
,

R(x) := k′
u(x)

(
D′

k
′
u(x) +D′

k
′
v(x)

)
+ ku(x)

(
D′

k
′′
u(x) +D′

k
′′
v (x)

)
.
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For  ≤ t ≤ T we have

‖R‖L∞ =
∥∥tR + tR

∥∥
L∞ ≤ T

(‖R‖L∞ + T‖R‖L∞
)
=: K.

Thus

∥∥(
�u(),�v()

)
(t, ·)∥∥W ,∞ ≤

∫ t



C√
t – s

[∥∥(
�u(),�v()

)
(s, ·)∥∥W ,∞ +K

]
ds.

Applying Lemma A. we have

∥∥(
�u(),�v()

)
(t, ·)∥∥W ,∞ ≤ Kt/

and by induction ‖(�u(k),�v(k))(t, ·)‖W ,∞ ≤ Kk+t
k+
 for k = , , . . . . Hence

Kk+ = Kk
C

 – CT /

∫ 



θ k
√
 – θ

dθ . �

Remark . The functions ku,kv ∈X can be slightly perturbed near the lateral boundary
in order to fulfill the Neumann boundary condition.

4 Convergence of the Newtonmethod
As in the previous section denote

�u(k) = u(k+) – u(k), �v(k) = v(k+) – v(k), �w(k) = w(k+) –w(k).

We assume that (u(), v(),w()) = (u, v,w) at t =  and formulate the Newton method
for (.)-(.):

u(k+)t =Du(k+)xx –
(
u(k)

[
D′

u
(k)
x +D′

v
(k)
x

])
x

–
(
�u(k)

[
D′

u
(k)
x +D′

v
(k)
x

])
x –

(
u(k)

[
D′

�u(k)x +D′
�v(k)x

])
x,

v(k+)t =Dv(k+)xx –
(
v(k)

[
D′

u
(k)
x +D′

v
(k)
x

])
x

–
(
�v(k)

[
D′

u
(k)
x +D′

v
(k)
x

])
x –

(
v(k)

[
D′

�u(k)x +D′
�v(k)x

])
x,

w(k+)
t =Dw(k+)

xx –
(
w(k)[D′

u
(k)
x +D′

v
(k)
x

])
x

–
(
�w(k)[D′

u
(k)
x +D′

v
(k)
x

])
x –

(
w(k)[D′

�u(k)x +D′
�v(k)x

])
x,

(.)

with the initial condition (.) and the Neumann boundary condition.

Lemma . Assume u, v,w ∈ X , (u(), v(),w()) = (u, v,w) at t =  and u() + v() +
w() = . If (u(k), v(k),w(k)) fulfills (.) with (.) and the Neumann boundary condition,
then u(k) + v(k) +w(k) = .
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Proof We show u(k) + v(k) + w(k) =  ⇒ u(k+) + v(k+) + w(k+) = . The only solution to the
differential equation

u(k+)t + v(k+)t +w(k+)
t

= –
(
u(k+)x + v(k+)x +w(k+)

x
)[
Du(k)x +Dv(k)x +Dw(k)

x
]

–
(
u(k+) + v(k+) +w(k+) – 

)[
Du(k)xx +Dv(k)xx +Dw(k)

xx
]

is u(k+) + v(k+) +w(k+) ≡ . �

The following theorem establishes the convergence of the Newton method.

Theorem. Suppose (u, v,w) ∈X and (u(), v(),w()) = (u, v,w) at t = . If u(k)x , v(k)x ,
w(k)
x are C and

 ≤ u(k) ≤ , ≤ v(k) ≤ ,  ≤ w(k) ≤  for k = , , . . . ,

then the sequence (u(k), v(k),w(k)) defined by (.), (.) converges to the solution (u, v,w) of
(.)-(.) with respect to the norms in the Sobolev space W ,∞.

Proof We have the following differential equations:

�u(k+)t =D�u(k+)xx –
(
�u(k)

[
D′

�u(k)x +D′
�v(k)x

])
x

–
(
�u(k+)

[
D′

u
(k+)
x +D′

v
(k+)
x

])
x –

(
u(k+)

[
D′

�u(k+)x +D′
�v(k+)x

])
x,

�v(k+)t =D�v(k+)xx –
(
�v(k)

[
D′

�u(k)x +D′
�v(k)x

])
x

–
(
�v(k+)

[
D′

u
(k+)
x +D′

v
(k+)
x

])
x –

(
v(k+)

[
D′

�u(k+)x +D′
�v(k+)x

])
x,

�w(k+)
t =D�w(k+)

xx –
(
�w(k)[D′

�u(k)x +D′
�v(k)x

])
x

–
(
�w(k+)[D′

u
(k+)
x +D′

v
(k+)
x

])
x –

(
w(k+)[D′

�u(k+)x +D′
�v(k+)x

])
x.

By the Green functions G,k , G,k :

�u(k+)(t,x) =
∫ t



∫ L

–L
G,k(t, s,x, y)

(
�u(k)(s, y)

[
D′

�u(k)y (s, y) +D′
�v(k)y (s, y)

])
y dyds

+
∫ t



∫ L

–L
G,k(t, s,x, y)�u(k+)y (s, y)

[
D′

u
(k+)
y (s, y) +D′

v
(k+)
y (s, y)

]
dyds

+
∫ t



∫ L

–L
G,k(t, s,x, y)�u(k+)(s, y)

[
D′

u
(k+)
yy (s, y) +D′

v
(k+)
yy (s, y)

]
dyds

+
∫ t



∫ L

–L
G,k(t, s,x, y)u(k+)y (s, y)

[
D′

�u(k+)y (s, y) +D′
�v(k+)y (s, y)

]
dyds.

Using the integration by parts we get

∫ t



∫ L

–L
G,k(t, s,x, y)

(
�u(k)(s, y)

[
D′

�u(k)y (s, y) +D′
�v(k)y (s, y)

])
y dyds

= –
∫ t



∫ L

–L
G,k

y (t, s,x, y)�u(k)(s, y)
[
D′

�u(k)y (s, y) +D′
�v(k)y (s, y)

]
dyds.
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From the following property:

∫ L

–L

∣∣Gi,k
y (t, s,x, y)

∣∣dy≤ C√
t – s

,

estimates like (.), (.), and xy ≤ 
 (x

 + y) we obtain

∥∥�u(k+)(t, ·)∥∥L∞ ≤
∫ t



C


√
t – s

Q,k(s)ds,

where

Q,k(s) =
∥∥�u(k)(s, ·)∥∥

L∞ +
∥∥�u(k)y (s, ·)∥∥

L∞ +
∥∥�v(k)y (s, ·)∥∥

L∞ +
∥∥�u(k+)y (s, ·)∥∥L∞

+
∥∥�u(k+)(s, ·)∥∥L∞ ds +

∥∥�u(k+)y (s, ·)∥∥L∞ +
∥∥�v(k+)y (s, ·)∥∥L∞ .

Similarly

∥∥�v(k+)(t, ·)∥∥L∞ ≤
∫ t



C


√
t – s

Q,k(s)ds,

where

Q,k(s) =
∥∥�v(k)(s, ·)∥∥

L∞ +
∥∥�u(k)y (s, ·)∥∥

L∞ +
∥∥�v(k)y (s, ·)∥∥

L∞ +
∥∥�v(k+)y (s, ·)∥∥L∞

+
∥∥�v(k+)(s, ·)∥∥L∞ +

∥∥�u(k+)y (s, ·)∥∥L∞ +
∥∥�v(k+)y (s, ·)∥∥L∞ .

We have

�u(k+)x (t,x)

=
∫ t



∫ L

–L
G,k

x (t, s,x, y)
(
�u(k)(s, y)

[
D′

�u(k)y (s, y) +D′
�v(k)y (s, y)

])
y dyds

+
∫ t



∫ L

–L
G,k

x (t, s,x, y)�u(k+)y (s, y)
[
D′

u
(k+)
y (s, y) +D′

v
(k+)
y (s, y)

]
dyds

+
∫ t



∫ L

–L
G,k

x (t, s,x, y)�u(k+)(s, y)
[
D′

u
(k+)
yy (s, y) +D′

v
(k+)
yy (s, y)

]
dyds

+
∫ t



∫ L

–L
G,k

x (t, s,x, y)u(k+)y (s, y)
[
D′

�u(k+)y (s, y) +D′
�v(k+)y (s, y)

]
dyds.

By integration by parts:

∫ t



∫ L

–L
G,k

x (t, s,x, y)
(
�u(k)(s, y)

[
D′

�u(k)y (s, y) +D′
�v(k)y (s, y)

])
y dyds

= –
∫ t



∫ L

–L
G,k

xy (t, s,x, y)�u(k)(s, y)
[
D′

�u(k)y (s, y) +D′
�v(k)y (s, y)

]
dyds.
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Since �u(k)(s, y), �u(k)y (s, y), �v(k)y (s, y) satisfy the Lipschitz condition, we have the esti-
mates (see [])

∫ L

–L

∣∣Gi,k
xy (t, s,x, y)�u(k)(s, y)�u(k)y (s, y)

∣∣dy
≤

∫ t



C

(t – s)/
∥∥�u(k)(s, ·)∥∥L∞

∥∥�u(k)y (s, ·)∥∥L∞ ds

and
∫ L

–L

∣∣Gi,k
xy (t, s,x, y)�u(k)(s, y)�v(k)y (s, y)

∣∣dy
≤

∫ t



C

(t – s)/
∥∥�u(k)(s, ·)∥∥L∞

∥∥�v(k)y (s, ·)∥∥L∞ ds. (.)

Hence

∥∥�u(k+)x (t, ·)∥∥L∞

≤
∫ t



C

(t – s)/
(∥∥�u(k)(s, ·)∥∥

L∞ +
∥∥�u(k)y (s, ·)∥∥

L∞ +
∥∥�v(k)y (s, ·)∥∥

L∞
)
ds

+
∫ t



C√
t – s

(∥∥�u(k+)y (s, ·)∥∥L∞ +
∥∥�u(k+)(s, ·)∥∥L∞ +

∥∥�u(k+)y (s, ·)∥∥L∞

+
∥∥�v(k+)y (s, ·)∥∥L∞

)
ds.

Similarly

∥∥�v(k+)x (t, ·)∥∥L∞

≤
∫ t



C

(t – s)/
(∥∥�v(k)(s, ·)∥∥

L∞ +
∥∥�u(k)y (s, ·)∥∥

L∞ +
∥∥�v(k)y (s, ·)∥∥

L∞
)
ds

+
∫ t



C√
t – s

(∥∥�v(k+)y (s, ·)∥∥L∞ +
∥∥�v(k+)(s, ·)∥∥L∞ +

∥∥�u(k+)y (s, ·)∥∥L∞

+
∥∥�v(k+)y (s, ·)∥∥L∞

)
ds.

We have

∥∥(
�u(k+),�v(k+)

)
(t, ·)∥∥W ,∞ ≤

∫ t



C

(t – s)/
∥∥(

�u(k),�v(k)
)
(s, ·)∥∥

W ,∞ ds

+
∫ t



C√
t – s

∥∥(
�u(k+),�v(k+)

)
(s, ·)∥∥W ,∞ ds.

We apply Lemma A.:

Kk+trk+
(
 – CT /) ≥ CKktrk++/

∫ 



θrk

( – θ )/
dθ ,

where

rk =



(
k – 

) ≈ k and Kk ≈ Ak . �
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We give sufficient conditions for the successive approximations to remain in X .

Proposition . Assume that u, v ∈ C,  < ε ≤ u(x) ≤  – ε < ,  < ε ≤ v(x) ≤
 – ε <  and the sequence (u(k), v(k),w(k)) defined by (.) with the first element given by

u()(t,x) = u(x) + tku(x) and v()(t,x) = v(x) + tkv(x),

where ku,kv ∈X are of the form

ku(x) =Du′′
(x) –

(
u(x)

[
D′

u
′
(x) +D′

v
′
(x)

])
x,

kv(x) =Dv′′
(x) –

(
v(x)

[
D′

u
′
(x) +D′

v
′
(x)

])
x,

converges to the solution (u, v,w) of (.), (.) in the Sobolev space W ,∞. If

∞∑
k=

K̃kt
k
 ≤ ε, K̃k := K̃k–

C̃
 – CT /

∫ 



θ k–

( – θ )/
dθ ,

then  ≤ u(k)(t,x)≤  and  ≤ v(k)(t,x)≤ , k = , , . . . .

Proof We have

�u()t (t,x) = u()t (t,x) – u()t (t,x)

= Du()xx –
(
u()

[
D′

u
()
x +D′

v
()
x

])
x

–
(
�u()

[
D′

u
()
x +D′

v
()
x

])
x –

(
u()

[
D′

�u()x +D′
�v()x

])
x – ku(x)

= D�u()xx –
(
�u()

[
D′

u
()
x +D′

v
()
x

])
x –

(
u()

[
D′

�u()x +D′
�v()x

])
x

+ tR(x) + tR(x),

where R(x) and R(x) are of the same form as in the proof of Proposition .. Since

∥∥tR + tR
∥∥
L∞ ≤ T

(‖R‖L∞ + T‖R‖L∞
)
=: K̃

we have

∥∥(
�u(),�v()

)
(t, ·)∥∥W ,∞

≤
∫ t



C√
t – s

∥∥(
�u(),�v()

)
(s, ·)∥∥W ,∞ ds +

∫ t



C̃
(t – s)/

K̃ ds.

Applying Lemma A. we get

∥∥(
�u(),�v()

)
(t, ·)∥∥W ,∞ ≤ K̃t/

and by induction ‖(�u(k),�v(k))(t, ·)‖W ,∞ ≤ K̃k+t
(k+)

 for k = , , . . . . Hence

K̃k+ := K̃k
C̃

 – CT /

∫ 



θ k

( – θ )/
dθ . �
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5 Conclusions
Assume that (u(), v(),w()) coincides with (u, v,w) at t =  and consider the following
iterative scheme for (.)-(.):

u(k+)t =Du(k+)xx –
(
u(k+)

[
Du(k)x +Dv(k)x +Dw(k)

x
])

x,

v(k+)t =Dv(k+)xx –
(
v(k+)

[
Du(k)x +Dv(k)x +Dw(k)

x
])

x,

w(k+)
t =Dw(k+)

xx –
(
w(k+)[Du(k)x +Dv(k)x +Dw(k)

x
])

x

with the initial condition

u(k+)(,x) = u(x), v(k+)(,x) = v(x), w(k+)(,x) = w(x)

for x ∈ [–L,L] and the Neumann boundary condition. Denote

�u(k) = u(k+) – u(k), �v(k) = v(k+) – v(k), �w(k) = w(k+) –w(k).

Convergence problems occur in L and the Sobolev norm W ,∞. Our attempt to obtain
the following relation for the increments �u(k), �v(k), �w(k):

d
dt

Ak+(t) ≤ C
[
Ak+(t) +Ak(t)

]
, Ak(t) =

∫ L

–L

[(
�u(k)

) + (
�v(k)

) + (
�w(k))]dx

was unsuccessful as it is difficult to estimate the following component:

∫ L

–L
�u(k+)

(
u(k+)

[
D�u(k)x +D�v(k)x +D�w(k)

x
])

x dx.

This example of iterations shows that strongly coupled systems cause serious problems
with their approximation. We think that the ternary system and suitable approximations
to it will be somehow expressed in an abstract way, based on a Conti-Opial type theorem,
like in [].
In order to illustrate fast convergence of Newton’s iterations we provide numerical ex-

amples with D = , D = ., D = ., and u, v being sample piecewise polynomial
functions taking values in [., .]. We check the differences uk+ – uk and vk+ – vk for
k = , , , , . Our computer programs are performed by implicit finite difference meth-
ods with steps h = h = .; see Table  (direct iterations), Table  (Newton’s iterations).

Appendix
Lemma A. Assume that

z(t) ≤
∫ t



C√
t – s

z(s)ds +
∫ t



C̃
(t – s)α

p(s)ds and p(s)≤ Ksm.

Then z(t) ≤ K̃tm+α for t ∈ [,T], where 
 ≤ α <  and  – CT / > .
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Table 1 Maximal differences between successive approximations u(k) by direct iterations (3.1)
with D1 = 1, D2 = 0.5, D3 = 0.2, h = 0.01, h0 = 0.01

t |u(1) – u(0)| |u(2) – u(1)| |u(3) – u(2)| |u(4) – u(3)| |u(5) – u(4)|
0.00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.05 1.023328e–01 3.742852e–03 1.383520e–04 7.409068e–06 3.256123e–07
0.10 1.476173e–01 6.990620e–03 2.908263e–04 1.835346e–05 1.004908e–06
0.15 1.783626e–01 9.324930e–03 4.031573e–04 2.746097e–05 1.675459e–06
0.20 2.028066e–01 1.096861e–02 4.788241e–04 3.397007e–05 2.215127e–06
0.25 2.239067e–01 1.206830e–02 5.253484e–04 3.806322e–05 2.601687e–06
0.30 2.425240e–01 1.273201e–02 5.499511e–04 4.011546e–05 2.844953e–06
0.35 2.593736e–01 1.304597e–02 5.585483e–04 4.051817e–05 2.967818e–06
0.40 2.745434e–01 1.307759e–02 5.556250e–04 3.970391e–05 2.985870e–06

Table 2 Maximal differences between successive approximations u(k) by Newton’s method
(4.1) with D1 = 1, D2 = 0.5, D3 = 0.2, h = 0.01, h0 = 0.01

t |u(1) – u(0)| |u(2) – u(1)| |u(3) – u(2)| |u(4) – u(3)| |u(5) – u(4)|
0.00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
0.05 9.970638e–02 1.703717e–03 6.949251e–07 1.628697e–13 8.038015e–14
0.10 1.430019e–01 3.927916e–03 4.076982e–06 4.423240e–12 5.245804e–14
0.15 1.723550e–01 5.877059e–03 9.749392e–06 2.192441e–11 3.896883e–14
0.20 1.956575e–01 7.536084e–03 1.659814e–05 1.148864e–10 3.987088e–14
0.25 2.155355e–01 8.989691e–03 2.404146e–05 4.279036e–10 3.957945e–14
0.30 2.332049e–01 1.029947e–02 3.161596e–05 1.167791e–09 3.042011e–14
0.35 2.489078e–01 1.153614e–02 4.250313e–05 2.625514e–09 1.676437e–14
0.40 2.631780e–01 1.269348e–02 5.972126e–05 5.163286e–09 2.378098e–13

Proof We have

z(t) ≤
∫ t



C√
t – s

z(s)ds +
∫ t



C̃
(t – s)α

Ksm ds

≤
∫ t



C√
t – s

K̃tm+α ds +
∫ t



C̃
(t – s)α

Ksm ds

for  ≤ t ≤ T and 
 ≤ α < . We claim that

K̃Ctm+αT / + C̃Ktm+α

∫ 



θm

( – θ )α
dθ ≤ K̃tm+α ,

K̃tm+α
(
 – CT /) ≥ C̃Ktm+α

∫ 



θm

( – θ )α
dθ .

It suffices to take

K̃ := K
C̃

 – CT /

∫ 



θm

( – θ )α
dθ . (A.)

�
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