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Abstract

By applying the mountain pass theorem and the symmetric mountain pass theorem
in critical point theory, the existence and multiplicity of fast homoclinic solutions are
obtained for the following second-order non-autonomous problem:

Ut) + g - a®u@®P2ut) + VWG u@®) =0, wherep > 2, t e R,u e RN, a e C[R,R),
W e C'(R x RY,R) are not periodicin t and g : R — R is a continuous function and
Q1) = f; g(s) ds with limjgj 0 Q1) = +00.
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1 Introduction

Consider fast homoclinic solutions of the following problem:
i(t) + q(@)is(t) — a(t)|u(?) |”’2u(t) +VW(tu(t)) =0, teR, (L1)

where p>2,teR, u e RV, a € C(R,R), W € CY(R x RV, R) are not periodic in ¢, and
q:R — Ris a continuous function and Q(¢) = fos q(s) ds with

|Hlim Q(t) = +o0. (1.2)

When g(£) = 0, problem (1.1) reduces to the following special second-order Hamiltonian

system:
ii(t) — a(t)|u(t) |p_2u(t) +VW(t,u(t))=0, teR. (1.3)

When p = 0, problem (1.1) reduces to the following second-order damped vibration
problem:

i(t) + q@)i(t) — a@)u(t) + VW (¢, u(t)) =0, teR. (1.4)

If we take p = 2 and ¢(t) = 0, then problem (1.1) reduces to the following second-order

Hamiltonian system:

i(t) — a®ut) + VW (t,u(t)) =0, teR. (1.5)

©2014 Zhang et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.


http://www.boundaryvalueproblems.com/content/2014/1/89
mailto:qfzhangcsu@163.com
http://creativecommons.org/licenses/by/2.0

Zhang et al. Boundary Value Problems 2014, 2014:89 Page 2 of 18
http://www.boundaryvalueproblems.com/content/2014/1/89

The existence of homoclinic orbits plays an important role in the study of the behavior
of dynamical systems. If a system has transversely intersected homoclinic orbits, then it
must be chaotic. If it has smoothly connected homoclinic orbits, then it cannot stand the
perturbation, and its perturbed system probably produces chaotic phenomena. The first
work about homoclinic orbits was done by Poincaré [1].

Recently, the existence and multiplicity of homoclinic solutions and periodic solutions
for Hamiltonian systems have been extensively studied by critical point theory. For exam-
ple, see [2—30] and references therein. In [6, 16, 17], the authors considered homoclinic
solutions for the special Hamiltonian system (1.3) in weighted Sobolev space. Later, Shi
et al. [31] obtained some results for system (1.3) with a p-Laplacian, which improved and
generalized the results in [6, 16, 17]. However, there is little research as regards the exis-
tence of homoclinic solutions for damped vibration problems (1.4) when ¢(£) # 0. In 2008,
Wu and Zhou [32] obtained some results for damped vibration problems (1.4) with some
boundary value conditions by variational methods. Zhang and Yuan [33, 34] studied the
existence of homoclinic solutions for (1.4) when ¢(t) = c is a constant. Later, Chen et al.
[35] investigated fast homoclinic solutions for (1.4) and obtained some new results un-
der more relaxed assumptions on W (¢,x), which resolved some open problems in [33].
Zhang [36] obtained infinitely many solutions for a class of general second-order damped
vibration systems by using the variational methods. Zhang [37] investigated subharmonic
solutions for a class of second-order impulsive systems with damped term by using the
mountain pass theorem.

Motivated by [21, 23, 32-34, 38—42], we will establish some new results for (1.1) in
weighted Sobolev space. In order to introduce the concept of fast homoclinic solutions
for problem (1.1), we first state some properties of the weighted Sobolev space E on which
the certain variational functional associated with (1.1) is defined and the fast homoclinic
solutions are the critical points of the certain functional.

Let

X= {u € H1'2(R,RN)‘ / eQ(’)Hzlt(t)‘2 + ‘u(t)‘z] dt < +oo},
R
where Q(t) is defined in (1.2) and for u,v € X, let
(u,v) = / eQ(t)[(it(t), (1)) + (u(t), v(2))] dt.
R

Then X is a Hilbert space with the norm given by

9 N 1/2
||u||=(AeQ<‘>[|u(t)< + ()| ]dt) .

It is obvious that
X c L* ()

with the embedding being continuous. Here L?(e??) (2 < p < +00) denotes the Banach
spaces of functions on R with values in R¥ under the norm

1/p
llull, = {/eQ<f)|u(t)|”dt} )
R
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If o is a positive, continuous function on R and 1 < s < +00, let

loc

L2 (e20) = {u e L (e20)

/ o (02O |u(t)|* dt < +oo}.
R

L} equipped with the norm

1/s
il = ( /R o(t)e‘?(”|u(t)|5dt)

is a reflexive Banach space.

Set E = X N I5(e?®), where a is the function given in condition (A). Then E with its
standard norm || - || is a reflexive Banach space. Similar to [33, 35], we have the following
definition of fast homoclinic solutions.

Definition 1.1 If (1.2) holds, a solution of (1.1) is called a fast homoclinic solution if i € E.

The functional ¢ corresponding to (1.1) on E is given by
1 ¢
o(u) = f eQ<”[§|f4(t)|2 + ?\u(t) P -wi(t u(t))} dt, ucE. (1.6)
R

Clearly, it follows from (W1) or (W1)' that ¢ : E — R. By Theorem 2.1 of [43], we can
deduce that the map

u— a()e?O |u(@)["u(p)

is continuous from L4 (e??) in the dual space L‘Z - (€9®), where py = 1%' As the embed-

dings E € X C L” (e?®) for all y > 2 are continuous, if (A) and (W1) or (W1)’ hold, then
@ € CY(E,R) and one can easily check that

(' (w),v) = /R eQ<t>[(u(t),v(t))+a(t)|u(t)|”*2(u(t),v(t))

— (VW (&, u(t)),v(t))|dt, ueE. 1.7)
(VW (&, u®),v()]

Furthermore, the critical points of ¢ in E are classical solutions of (1.1) with u#(+00) = 0.

Now, we state our main results.

Theorem 1.1 Suppose that a, q, and W satisfy (1.2) and the following conditions:

(A)  Letp>2,a(t) is a continuous, positive function on R such that for all t € R
at) > altl?, «>0,8>@p-2)/2.

(W1) W(tx) = Wi(t,x) — Wa(t,x), Wi, Wy € CHR x RN, R), and there exists a constant
R > 0 such that
1

_ -1 =
ﬂ(t)|VW(t,x)|—o(|x|p) asx— 0

uniformly in t € (—00,—R] U [R, +00).
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(W?2) There is a constant pu > p such that
0<uWit,x) < (VWl(t,x),x), Y(t,x) € R x RN\{0}.
(W3) Wy(t,0) =0 and there exists a constant o € (p, ) such that
Wa(t,x) >0, (VWa(tx),x) <oWa(tx), Y(tx)eRxRY.
Then problem (1.1) has at least one nontrivial fast homoclinic solution.

Theorem 1.2 Suppose that a, q, and W satisfy (1.2), (A), (W2), and the following condi-
tions:

(W1 W(t,x) = Wi(t,x) — Wa(t,x), Wi, Wa € CHR x RN, R), and
1 VW (t,x)| = o(lxl”™") asx— 0
a(t) ’

uniformly in t € R.
(W3) Wy(¢£,0) =0 and there exists a constant ¢ € (p, ) such that

(VWz(t,x),x) <oWsi(t,x), Y(tx)eR xRN,
Then problem (1.1) has at least one nontrivial fast homoclinic solution.

Theorem 1.3 Suppose that a, q, and W satisfy (1.2), (A), (W1)-(W3), and the following

assumption:
(W4) W(t, —x) = W(t,x), ¥(t,x) e R x RN,

Then problem (1.1) has an unbounded sequence of fast homoclinic solutions.

Theorem 1.4 Suppose that a, q, and W satisfy (1.2), (A), (W1)', (W2), (W3)', and (W4).
Then problem (1.1) has an unbounded sequence of fast homoclinic solutions.

Remark 1.1 It is easy to see that our results hold true even if p = 2. To the best of our
knowledge, similar results for problem (1.1) cannot be seen in the literature, from this
point, our results are new. As pointed out in [17], condition (A) can be replaced by more
general assumption: a(t) — +oo as |t| — +oo.

The rest of this paper is organized as follows: in Section 2, some preliminaries are pre-
sented. In Section 3, we give the proofs of our results. In Section 4, some examples are

given to illustrate our results.

2 Preliminaries
Let E and | - || be given in Section 1, by a similar argument in [41], we have the following
important lemma.

Lemma 2.1 Foranyu € E,

1/2
lulloo < \/%nun - \/%{fme‘i’“)[w(s)f ¥ !u(s)|2]ds} , 2.1)
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1/2
lu(®)| <

P

/‘+0<> e‘Q(s)eQ(s)[|it(s)|2 + |u(s)|2] ds}

1 {/+006Q(3)[|it(s)|2 + fu(s)|2] ds}

e

1/2

IA
S

and

1/2

lu(t)| < {/t €290 |ig(s)|* + |u(s)|2]ds}

¢ 172
{/ eQ(S)[|L't(s)|2 + |u(s)|2] ds} ,

1
C
where ||u]| oo = essSup,p |u(t)], ey = emn{QWER),
The following lemma is an improvement result of [16].
Lemma 2.2 [f a satisfies assumption (A), then
the embedding 17(e?") c L (e??) is continuous.

Moreover, there exists a Hilbert space Z such that

the embeddings L2 (eQm) cZcl? (eQ(t) ) are continuous;

the embedding X N Z C L*(e?")) is compact.
Proof Let 0 =p/(p -2), 0’ = p/2, we have

2
= [ e futof* at
R

_ fa—l/@’ﬂl/e’eQ(t)/@’eQ(t)/G|u(t)|2dt
R

16 RN
< ( / 410" Q) dt) ( / 0 u(t) | dt)
R R
2/p
= (/ aeQ(t)|u(t)|p dt)
R

a|ull

2
pa’

where from (A) and (1.2), a; = (f a™>#~2e?®) dt)?-2/ < +.00. Then (2.4) holds.

(2.2)

(2.3)

(2.4)

(2.5)
(2.6)

By (A), there exists a continuous positive function p such that p(t) - +oo as |{| - +o0

and

1/
ay = (f p%a 0" Q0 dt> < +00.
R

Since

2
||u||§yp =/peQ(”‘u(t)’ dt
R

_ / pa—l/a’ ﬂl/e’eQ(t)/G’eQ(t)/Q‘u(t)|2 dr
R

Page 5 of 18
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, 1/6 1/6’
< ( / 00 a0 QW dt) ( / ae?® |u(p)|” dt)
R R

2

=d ”u”p,g’

(2.5) holds by taking Z = Lf)(eQ(”).
Finally, as X N Z is the weighted Sobolev space I'"%(R, p, 1), it follows from [43] that (2.6)
holds. O

The following two lemmas are the mountain pass theorem and the symmetric mountain
pass theorem, which are useful in the proofs of our theorems.

Lemma 2.3 [44] Let E be a real Banach space and I € C'(E, R) satisfying (PS)-condition.
Suppose 1(0) = 0 and:

(i) There exist constants p,a > 0 such that Iy, ) > a.

(ii) There exists an e € E\B,(0) such that I(e) < 0.
Then I possesses a critical value ¢ > o which can be characterized as

= inf I(h(s)),
= inf max [(h(5)
where ® = {h € C([0,1], E)|h(0) = 0,h(1) = e} and B,(0) is an open ball in E of radius p
centered at 0.

Lemma 2.4 [44] Let E be a real Banach space and I € C'(E,R) with I even. Assume that
I(0) = 0 and [ satisfies (PS)-condition, assumption (i) of Lemma 2.3 and the following con-
dition:
(ili) For each finite dimensional subspace E' C E, there is r = r(E') > 0 such that I(u) <0
for u € E'\B,(0), B,(0) is an open ball in E of radius r centered at 0.
Then I possesses an unbounded sequence of critical values.

Lemma 2.5 Assume that (W2) and (W3) or (W3)' hold. Then for every (t,x) € R x RV,
(i) s WA(¢,sx) is nondecreasing on (0, +00);
(i) s~@Ws(t,sx) is nonincreasing on (0, +00).

The proof of Lemma 2.5 is routine and we omit it.

3 Proofs of theorems

Proof of Theorem 1.1 Step 1. The functional ¢ satisfies the (PS)-condition. Let {u,} C E
satisfying ¢(u,) is bounded and ¢'(#,,) — 0 as n — oco. Then there exists a constant C; > 0
such that

lowa)| <C |0 ()| g < 1Cr. (3.1)
From (1.6), (1.7), (3.1), (W2), and (W3), we have

2 /
2C; +2C1 luy |l > 2¢(uy) — ;(w (t4), th)

= M;2||Iltn||§+2/ReQ(t)|:W2(t,un(t))— %(VWg(t,un(t)),u,,(t))]dt
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-2 / eQ(t)[Wl(t, Uy (t)) - l(vwl(t, un(t)),u,,(t))] dt
R w

2 2
+ (- - —) f a()e??|u,(t)|” dt
p MHJ IR
w=2 . 5 (2 2
> i ||un||2+<;—; llenll 4

It follows from Lemma 2.2, © > p > 2, and the above inequalities that there exists a constant
C, > 0 such that

luall < Cy, neN. (3.2)

Now we prove that i, — ug in E. Passing to a subsequence if necessary, it can be assumed
that u, — ug in E. Since Q(f) — 00 as |t| — 00, we can choose T > R such that

2

C
Qt) = ln(é—j) for |t| > T. (3.3)
It follows from (2.2), (3.2), and (3.3) that
|, (0] < / ¢ Q0| iz, (5)[* + [1(s)[*] ds
t

< EHunH2 <& fort>TandneN. (3.4)
2

Similarly, by (2.3), (3.2), and (3.3), we have
’un(t)’2 <§&? fort<-TandneN. (3.5)

Since u,, — ug in E, it is easy to verify that u,(¢) converges to u(t) pointwise for all £ € R.
Hence, it follows from (3.4) and (3.5) that

luo(t)| <& fort e (~00,~T)U[T,+00). (3.6)

Since e2®) > ¢y > 0 on [-T, T] = J, the operator defined by S: E — X(J) : u — ul; is a
linear continuous map. So u, — ug in X(J). The Sobolev theorem implies that u,, — ug
uniformly on J, so there is ny € N such that

T
/ e\ VW (&, u,(8)) = VW (£, u0(0))||tn(t) — uo(8)| dt <& for n > ny. (3.7)

For any given number ¢ > 0, by (W1), we can choose £ > 0 such that
|VW(t,%)| < ea(®)lxP" for |¢] > Rand |x| <&. (3.8)
From (3.8), we have

€2 [TW (£, 1,(8)) - VW (£, o (1)

< e [ea(t)(|un@)|"™ + o' )]
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< Q06277 a(8) | () — o (B)[" ™ + £(1+ 277 a(®)[uo(e) ']
< 276202 (1)e20 |u(t) - uo ()P + (26)2 (1 +27) a2 (0)e% |uo (0) ¥

= ,(0). (39)

Moreover, since a(t) is a positive continuous function on R and u,(¢) converges to u(t)
pointwise for all £ € R, it follows from (3.9) that

lim g,(8) = (26)?(1+277)2a2()e2®|uo(t) "™ :=g(t) forae.teR
n—00
and
; _ 1 Q) [92p .2 2 2(p-1)
lim g,(t)dt = lim e [2 &ca (t)}u,,(t)—uo(t)’
71— 00 R\(~T,T) n— 00 R\(~T,T)
+ (262 (1+ 2272 @2 (@) uo (8)| ¥ ] it

= 2%()* lim / @020, (1) — o (O dt
R\(-T.T)

n— 00

+(26)*(1+ 21"‘1)2 / a®(£)e?? |uo(t)|2(p_1) dt
R\(-T,T)

- @e)2(1+ 27’ / (020 |uo(t) 27 de
R\(-T,T)

= fg(t)dt< +00.
R

From Lebesgue’s dominated convergence theorem, (3.4), (3.5), (3.6), (3.9), and the above
inequalities, we have

lim QO IV W (¢, 1,(2)) - VW (¢, u0(0)) |* di = 0. (3.10)
71— 00 R\(-T,T)

From Lemma 2.2, we have u, — ug in L?(e2®). Hence, by (3.10),

/ QO |V W (£, 1, (1)) = VW (£, 10(0)) || 1) — o (8) | it
R\(-T,7)

1/2
< </ eQO|VW (£, u,(2)) — VW (£, u0(2)) \2 dt)
R\(-T,T)

1/2
x ( / Q0 () - uo(t)|2dt)
R\(-T,T)

tends to 0 as n — +00, which together with (3.7) shows that
/ eQ(t)WW(t, un(t)) - VW(t, uo(t)) | |un(t) - uo(t)| dt— 0 asn— oo. (3.11)
R
From (1.7), we have

0 <« (¢ () — ¢’ (o), 4, — 10)

= ity — ito |13 + /l; a()e?? (|un ()] 40(0) = |10 @) [P~ 10()) (1 (8) — o (£)) dlt
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- /}R QO (VW (t, un(t)) — VW (&, u0(t)), un(t) — uo(t)) dt
= it~ il + Cs [ a2, 0) - (o)) s
- /R QL (VW (t, un(t)) = VW (£, uo(t)), un(t) — uo(t)) dt, n— oo,  (312)
where Cj is a positive constant. It follows from (3.11) and (3.12) that
létnll2 = lloll2  asn— oo (3.13)
and
/Ra(t)eQ(t)|u,,(t)|p dt — /Rzz(t)eQ(t){uo(t) Pdt asn— oo. (3.14)

Hence, u, — up in E by (3.13) and (3.14). This shows that ¢ satisfies (PS)-condition.
Step 2. From (W1), there exists § € (0,1) such that

1
[VW ()| < 5a(t)|x|p’1 for |t| > R, |x| <. (3.15)

By (3.15) and W (¢,0) = 0, we have

1
|W(t,x)| < 2—a(t)|x|” for |t| > R, |x| <$. (3.16)
4
Let
Wil(t,
Cy= sup{ ;((t)x) ’t €[-R,R,xeR,|x| = 1}. (3.17)

Set o = min{1/(2pCy + 1)) 8} and ||u|| = /2Zego := p, it follows from Lemma 2.1 that
|u(t)] <o <6 <1forteR. From Lemma 2.5(i) and (3.17), we have

R t
R {te[-R,R]:u(£)70} |u(t)]

R
<G / a()e??|u(t)|" dt
-R

R
< Cyoh? / a@®)e?®|u(p)|” dt
-R
LI TR
< — a(t)e |u(t)| dt. (3.18)
2p J R
By (W3), (3.16), and (3.18), we have
L I UIPNE a®) o), P 0
o)== e ’u(t)| dt+ | —e ’u(t)‘ dt— | e W(t,u(t))dt
2 Jr R P R

1 1
=—WW+4MW—/
2 ppe R\(-R,R)

R
eQOW (t,u(t)) dt - f eQOW (¢, u(t)) dt

-R
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1 1 R
> a3 + = llulb, - / QLW (¢, u(t)) dt - / eQOW, (¢, u(t)) dt
2 P ’ R\(-R,R) R
1 1 1
> —all3 + =llulf, - — / a()e??|u(t)|” dt
272 p P 2p Je e (@)

LI TN
-— a(t)e ’u(t)‘ dt
2p Jr
12
= §||M||2 + E”””Zﬂ'
Therefore, we can choose a constant & > 0 depending on p such that ¢(u#) > « for any

u € E with |ju| = p.
Step 3. From Lemma 2.5(ii) and (2.1), we have for any u € E

3
/ eQOW, (¢, u(t)) dt
-3
- / eQOW, (¢, u(t)) dt + / eQOW, (£, u(t)) dt
{te[-3,3]:u(t)|>1} {te[-3,3]):u(t)|<1}

u(t 3
< / PRICAVZA (t, L) |u(t)|° dt + f e max Wa (¢, x) dt
{te[=3,3]:u(t)|>1) |u(t)] -3 I« <1

3 3
< ||u||§0/ &0 max Wy (t,x) dt+/ e?® max Wy (t,x) dt
-3 X|=

_3 lx|<1

0 3 3
) ||u||9/ e max Wy (¢, x) dt+/ e max W, (¢, x) dt
S R P

< ( 1
- «/260
= Gsllull® + Cs, (3.19)

where C; = (\/%TO)Q f_33 e max -; Wa(t,x) dt, Cs = f_as e max <1 Wa(t,x) dt. Take » €
E such that

1 forlt| <1,
(@) = or |£] = (3.20)
0 for|t| >3,

and |w(t)| <1 for |t| € (1,3]. For s > 1, from Lemma 2.5(i) and (3.20), we get

1 1
f QW (t,50(0)) dt > s / e2OWi (¢, w(t)) dt = Crs, (3.21)

1 -1
where C; = f_ll eQOW (t, w(t)) dt > 0. From (W3), (1.6), (3.19), (3.20), and (3.21), we get for
s>1

2 V4
%nd)ng + S;nwngﬂ N /R QO Wy (£, s(£)) — W (£, so(®)) ] dt

p(sw)

2 V4 3 1
< %||cb||%+s;||wn5ﬂ+ / QOW, (1, 500(0)) dt — f QW (£, se0(2)) dit
-3

-1

A

s’ 112 s” p Y Y 7
3 loll; + » loll}, + CssCllofl® + C — Crs™. (3.22)

IA
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Since u > ¢ > pand C; > 0, it follows from (3.22) that there exists s; > 1 such that ||s;w| > p
and ¢(s;0) < 0. Set e = s;0(¢), then e € E, ||| = |s1o] > p, and ¢(e) = p(s1w) < 0. It is easy
to see that ¢(0) = 0. By Lemma 2.3, ¢ has a critical value ¢ > o given by

— inf , 3.23
c ;g¢5r33§]¢(g(s)) (3.23)

where

@ = {geC([0,1],E) :g(0) = 0,g(1) = e}

Hence, there exists u* € E such that

o) -
¢'(u*) =0.

The function u* is the desired solution of problem (1.1). Since ¢ > 0, u* is a nontrivial fast
homoclinic solution. The proof is complete. d

Proof of Theorem 1.2 In the proof of Theorem 1.1, the condition W5(¢,x) > 0 in (W3) is
only used in the proofs of (3.2) and Step 2. Therefore, we only need to prove that (3.2) and
Step 2 still hold if we use (W1) and (W3)’ instead of (W1) and (W3). We first prove that
(3.2) holds. From (W2), (W3), (1.6), (1.7), and (3.1), we have

2C 11 2, ,
20 + 5 | = 20 (u,) - E(w (t4n), th)

Q—2
= ”un”z

+2 / e |:W2 (t, un(®)) - l(vwz(t, un(t)),un(t)):| dt
R Q
1
2/ eQ [Wl (t,un(®)) - =(VWA(2, u,,(t)),u,,(t))] dt
R 0
+ 2(1 - —) a(t)eQ<f>|un(t) | dt
p

-2 . (1 1
] —— p
ll2all5 + 2(;9 Q)Ilunllp,a,

which implies that there exists a constant C; > 0 such that (3.2) holds. Next, we prove that
Step 2 still holds. From (W1)’, there exists § € (0,1) such that

ZQ

1
|[VW(t,%)| < Ea(t)|x|1"’1 fort e R, |x| <38. (3.24)
By (3.24) and W(t,0) = 0, we have

1
|W(tx)| < Ea(t)le’ fort e R, |x| <. (3.25)

Page 11 0of 18


http://www.boundaryvalueproblems.com/content/2014/1/89

Zhang et al. Boundary Value Problems 2014, 2014:89 Page 12 0f 18
http://www.boundaryvalueproblems.com/content/2014/1/89

Let ||u|| = v/2e06 := p, it follows from Lemma 2.1 that |u(¢)| < §. It follows from (1.6) and
(3.25) that

£eQ®
o(u) = —/eQ(f>]i¢(t)|2dt+f &W(t)‘pdt—feQ(t)W(t,u(t)) dt
2 Jr R P R
1. 1 1
> il + = lull?, - / —a(t)e?) |u(e)|” dr
2 p R 2P

1 ..,
—|lull; +
5 3

1
25 141

Therefore, we can choose a constant & > 0 depending on p such that ¢(u#) > « for any
u € E with ||u|| = p. The proof of Theorem 1.2 is complete. O

Proof of Theorem 1.3 Condition (W4) shows that ¢ is even. In view of the proof of The-
orem 1.1, we know that ¢ € C}(E,R) and satisfies (PS)-condition and assumption (i) of
Lemma 2.3. Now, we prove that (iii) of Lemma 2.4. Let E’ be a finite dimensional subspace
of E. Since all norms of a finite dimensional space are equivalent, there exists d > 0 such
that

llull < dllulloo- (3.26)
Assume that dim E’ = m and {uy, u», ..., u,,} is a basis of E’ such that
lwill =d, i=12,...,m. (3.27)

For any u € E/, there exists A; € R, i =1,2,...,m such that

m
u(t) =y riu(t) forteR. (3.28)
i=1
Let
m
laell = > Il llsell. (3.29)
i=1
It is easy to see that | - ||, is a norm of E’. Hence, there exists a constant d’ > 0 such that

d'||ull« < |lu||. Since u; € E, by Lemma 2.1, we can choose R; > R such that

U

d's
|lui(t)| < . |t >R,i=1,2,...,m, (3.30)
l+m

where § is given in (3.25). Let

O={> hw(®): h €Ri=12,...,m; Y || =1{={ueE :|ull,=d}. (3.31)
i=1 i=1

Hence, for u € ©, let ty = to(u) € R such that

|u(to)| = lltll . (3.32)
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Then by (3.26)-(3.29), (3.31), and (3.32), we have

lul _d d
d=lull. = —= = Zlullo = J|M(to)|
d m m
=7 D hai(to)| <d Y hallwilto)|, ueo. (3.33)
i=1 i=1

This shows that |u(fy)| > d’ and there exists iy € {1,2,...,m} such that |u;,(ty)| > d'/m,
which together with (3.30), implies that |£5| < R;. Let R, = R; + 1 and

d/
3.34‘
( )

y = min{eQ(‘)Wl(t,x) t~Ry <t <Ry, —= < |x| < L}.

V2 v/ 2e9
Since Wi(t,x) > 0 for all t € R and x € RN\{0}, and W; € CY(R x RN, R), it follows that
y > 0. For any u € E, from Lemma 2.1 and Lemma 2.5(i), we have

Ry
/ e2OW, (¢, u(t)) dt
—Ry

_ / QO (¢, (1)) dit
{te[-Ry,RaT:u()[>1}

+ / eQOW, (¢, u(t)) dt
{te[-Ro, Ry J:u(t)| <1}

t
< / 20w, <t, ﬂ) |lu(t)|® dt
{te[-Ra,Ro): ()51} |lu(t)|

Ry
+ / e max Wy (t, x) dt

Ry lx]<1

Ry

Ry
<lull, [ e max wae e [

€29 max Wy (¢, x) dt
Ry x| -Ry x| <1

1 Q Ry Ry
< ——) |lu|? e max Wy (¢, x dt+/ e max Wy (¢, x) dt
< () 1 [ e max wate.n) (6

Ry —Ry lx[<1

= Ggllu||® + Co, (3.35)

where Cg = (\/;T())Q _RI§2 eQ(t) maxx =1 Wz(t,x) dt, C9 = f—R]?2 eQ(t) maXix <1 Wz(t,x) dt. Since

i € L2(eQ), i =1,2,...,m, it follows that there exists ¢ € (0, (d')%eg)/(32m2d?)) such that

t—¢ t—e
. _QW QW .
/ |ui(s)|ds :/ e Te? ui(s)|ds
t+e t+e

|
VR
m|m
SN——
S
I~y

IA

forteR,i=1,2,...,m. (3.36)
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Then for u € ® with |u(ty)| = |#]le and ¢t € [ty — &,y + €], it follows from (3.28), (3.31),
(3.32), (3.33), and (3.36) that

@) = |ulto)]” +2 / (ix(s), u(s)) ds

to

> |u(t0)|2—2/0 |u(s)||ix(s)| ds

to—¢

2 to+e
> ‘u(t0)| —2|u(t0)| |L't(s)|ds
to—¢

m to+e
> Juto)[* - 2futeo) 310 [ (9] s
i=1 to—¢

(d)?
> - (3.37)

On the other hand, since ||u|| < d for u € ®, then

(@] < lull <

d
—, teRue®. 3.38
= e u (3.38)

Therefore, from (3.34), (3.37), and (3.38), we have

Ry to+e
/ eQOW, (¢, u(t)) dt > / eQOW, (¢, u(t)) dt > 2ey  forue @. (3.39)
- £

Ry 0—¢
By (3.30) and (3.31), we have
lu@®)| <> hllw(®)| <8 for |t] > Ri,ue®. (3.40)
i=1
By (1.6), (3.16), (3.35), (3.39), (3.40), and Lemma 2.5, we have for u € ® and r > 1

2 P

%||zlt||§ + %Hulliﬂ + /ReQ(t)[Wz(t, ru(t)) - Wl(t, ru(t))] dt

@(ru)

2 P

< %nun% + %nungﬂ 0 / QOW, (2, u(®)) dt - r* f QW (£, u(t)) dt
R R

r2

rp
- D e Dt e [ 0w (e uo)de
2 p , R\(=R2,R2)
Ry
—rk / eQOW, (¢, u(t)) dt +r° f eQOW, (¢, u(t)) dt
R\(~Ry,R) R

Ry
—rt / 2w, (tu(e)dt

Ry

AT QW
s D -t [ Ow () ar
p R\(-Ry,R2)

IA

Ry Ry
—rt / 2w, (tu(®))dt +r° / 2w, (t,u(0))dt

Ry Ry
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< Tl il ¢ 2 0 |u(e)|” dt
—l&ll5 + —llull?  + — a(t)e=" u
T2 p P 2p e rmy
+ rQ(C8||u||Q + Cg) —2eyrt
P 2 r 14 re 14 0 4 i
< Ellullz + ;Hullp,ﬂ + Ellullp,a +1¢(Csllull® + Co) — 2eyr
2 D 0
< r—dz + r—d” + r—d"’ + Cg(rd)? + Cor® —2eyrt. (3.41)
2 p 2p

Since i > 0 > p > 2, we deduce that there exists ry = ro(d,d’, Cg, Co, Ry, Ry, €,7) = ro(E') > 1
such that

o(ru) <0 foru e ® andr > ry.
It follows that

o(u) <0 foru € E and ||u|| > dro,
which shows that (iii) of Lemma 2.4 holds. By Lemma 2.4, ¢ possesses an unbounded
sequence {c,}>; of critical values with ¢, = ¢(u,), where u, is such that ¢'(x,) = 0 for
n=12,....If {|lu,||} is bounded, then there exists Cjo > 0 such that

lunll < Cyp formeN. (3.42)

In a similar fashion to the proof of (3.4) and (3.5), for the given § in (3.16), there exists
R3 > R such that

’un(t)’ <48 forl|t|>R3,neN. (3.43)
Hence, by (1.6), (2.1), (3.16), (3.42), and (3.43), we have

1 . 1

5 liuall3 + 5 lleeull?

=cp+ / eQOW (¢,u,(2)) dt
R

R3
=cp+ / eQOW (£, u,(2)) dt + / eQOW (¢, u,(t)) dt
R\[-R3,R3] -R3
1 ks
>c¢p— — a(t)eQ(”‘un(t) ‘p dt—/ eQ(t)|W(t, un(0))|dt
2D JRr\[-R3.R3) -R3

1 ks
> ¢ = o= llunllh . - / eV max |W(w)|dt,
2p ’ -R3 Ix1=+/2€0 C10

which, together with (3.42), implies that
Loy S o [ Qw d
Cy < 5||un||2+ﬂ||u,,||p‘a+ max ¥ |W(t,x)|dt < +oo.

—R3 |x|=+/2e0Cio

This contradicts the fact that {c,}32, is unbounded, and so {||u, ]} is unbounded. The proof
is complete. d
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Proof of Theorem 1.4 In view of the proofs of Theorem 1.2 and Theorem 1.3, the conclu-
sion of Theorem 1.4 holds. The proof is complete. (]

4 Examples
Example 4.1 Consider the following system:

|1/2

i(t) + tin(t) — a(t)|u@)| “ul®) + VW (t,u(t)) =0, ae.teR, (4.1)

where g(t) =t,p=5/2,t e R, u e RN, a € C(R, (0,00)), and a satisfies (A). Let

W(t,x) = a(t) (Zaile“' - Zb,-|x|@f>,

i=1 j=1

where py > o> > Um>01>00> >0, >5/2,a;,b;>0,i=1,...,m,j=1,...,n Let
m n
Wiltx) =a() Y ailxl™,  Walt,x)=a(t) )y blxl9.
i=1 j=1

Then it is easy to check that all the conditions of Theorem 1.3 are satisfied with © = u,,

and o = g;. Hence, problem (4.1) has an unbounded sequence of fast homoclinic solutions.

Example 4.2 Consider the following system:

i(t) + (¢ + £2)in(t) - a(t)|u(t)|4u(t) +VW(t,u(t)) =0, aeteR, (4.2)
where g(t) =t + 3, p=6,t e R, u e RY, a € C(R,(0,00)), and a satisfies (A). Let

W(t,x) = a(t)[arx|"" + az|x]"> — by(cos £)|x]®" — by |x|%],
where w1 >ty > 01> 02 >6,ay,a; >0, by, by > 0. Let

Wi(t,x) = a(t)(a1|x|’” + a2|x|"2), Wi (t, x) = a(t)[bl(cos t)]x|t + b2|x|92].

Then it is easy to check that all the conditions of Theorem 1.4 are satisfied with © = 5
and o = ;. Hence, by Theorem 1.4, problem (4.2) has an unbounded sequence of fast
homoclinic solutions.
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