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1 Introduction
It is well known that a priori estimates and uniqueness results, which are necessary in the
proof of the well-posedness for boundary value problems for elliptic equations in nondi-
vergence form, are based on Aleksandrov type estimates, i.e., on estimates for the maxi-
mum of a solution in terms of the L”-norm of the right-hand side.

If £2 is a bounded domain in R” (n > 2) and

L=

n
ij=1

92 9
j——— *t i— +a, 11
% 0x; 0x; ;al 0x; . (L.1)

1

is a uniformly elliptic operator in §2, the classical result of AD Aleksandrov states that if
u e C°(22) N W2"(£2), with u < 0 in 382, verifies Lu > f, where a;,a,f € L"(£2) (a < 0),
then

supu < c|f |l 17(02), (1.2)
2

where ¢ € R, depends only on n, £2, ||a;||17(e) and on the ellipticity constant.

There have been various directions of developments and extensions of Aleksandrov
estimate. For example, maximum principles have been established in different types of
boundary problems, such as in the stationary oblique derivative problem or in the sta-
tionary Venttsel’ problem. Another direction of development of the Aleksandrov ideas is
the extension of maximum estimates to equations with lower order coefficients and right-
hand sides in other function classes (for example, in spaces with anisotropic norms or
weighted spaces). In particular, a large number of works is devoted to the weakening of
requirements for the right-hand side of the equation considered (see, for example, [1] and
its large bibliography).
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In this framework, it is well known that additional hypotheses on the leading coeffi-
cients are necessary to obtain the estimates. Several authors have obtained estimates for
the maximum of a solution through the L”-norms of the right-hand side (p > n/2) under
different conditions on the leading coefficients.

For instance, if §2 is an arbitrary open subset of R” and p € ]n/2, +00[, a bound of type
(1.2) and a consequent uniqueness result can be found in [2]. In fact, it has been proved
that, if the coefficients a;; are bounded and locally VMO, the coefficients a;, a satisfy suit-
able summability conditions, and ess supg, @ < 0, then for any solution « of the problem

ue Wl (2)nco(f),
Lu>f, fel} (),
Ue =0,

limsup,, ., #(x) <0 if 2 is unbounded,

there exist a ball B CC £2 and a constant ¢ € R, such that

IRY
sgpugc(ﬁ[f ‘ dx) , (1.4)

where f~ is the negative part of f,

][B[f’]pdleiq/glfﬂpdx,

and c depends on #, p, on the ellipticity constant and on the regularity of the coefficients
of L.

If the boundary of a domain has various singularities, as for example corners or edges,
then, in accordance with the linear theory, it is natural to assume that the lower order
coefficients and the right-hand side of the equation belong to some weighted spaces L?,
where the weight is usually a power of the distance function from the ‘singular set’ on the
boundary of domain. In these cases, the estimates on the solutions are obtained in terms
of such weight function.

For instance, if p is a bounded weight function related to the distance function from a
non-empty subset S, of the boundary of an arbitrary domain £2, not necessarily bounded
and regular (see Section 2 for the definition of such weight function), in [3] has been stud-
ied a problem similar to the problem (1.3) with boundary conditions and data related to
the weight function p. In particular, if s € R, S, = 342, the coefficients a;; are bounded and
locally VMO, the coeficients a;, 2 belong to suitable weighted spaces L*, in [3] the author
has proved that the solution u of the problem

ue W (),

loc

Lu>f, fel} (), 15)
limsup, . p*(X)u(x) <0, Vx, €08, '

limsup,, ., p°*(X)ulx) <0 if £2 is unbounded,

verifies the estimate

sup p* (¥)u(x) < C(]é |o*2f | dx) ’, (1.6)

xef2
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where B CC £2 is an open ball and the constant ¢ € R, depends on n, p, s, p, on the el-
lipticity constant and on the regularity of the coefficients of L. As a consequence, some
uniqueness results are also obtained. Results of this type are also established in [4] under
the more general hypothesis ¥ # S, C 952, but for an operator L with coefficients a; = 0.

The aim of this paper is to improve the above quoted results in [3] by obtaining a similar
estimate under much weaker assumptions. In particular, the main difference lies in the
hypotheses on the coefficients a;, a which are not supposed to belong to weighted spaces
L* but just to appropriate weighted Sobolev spaces K/ (2) (see Section 2 for the definition
of such weighted spaces), which strictly contain the weighted spaces L*°. Moreover, as
in [4], we consider the more general hypothesis ¥ # S, C 952.

2 Notation

In this section we introduce some notation used throughout this paper. Moreover, we
recall the definitions of a class of weight functions and of some function spaces in which
the coefficients of our operator will be chosen.

Let A be a Lebesgue measurable subset of R” and let X (A) be the collection of all
Lebesgue measurable subsets of A. If F € X' (A), we denote by |F| the Lebesgue measure of
F and by D(F) the class of restrictions to F of functions ¢ € C°(R”) with F Nsupp¢ C F.
Moreover, if X(F) is a space of functions defined on F, we denote by Xjo.(F) the class of
all functions g: F — R such that ¢g € X(F) for all ¢ € D(F). Furthermore, for g € L7(A)
(p = 1), we put

o’[g,Al(t) = sup |gllre), teR..
EecX(A)
|E|<t

Since w”[g,A](t) is a decreasing function and lim;_,o w”[g,A](¢) = 0, we can refer to
¥ (g, A] as the modulus of continuity of g in L?(A).

Let §2 be an open subset of R”, n > 2. We denote by .A(£2) the class of measurable weight
functions p : 2 — R, such that

y'o() < px) <yp(y), VyeR2,Yxe€2NB(y,p0), (2.1)
where y € R, is independent of x and y, and B(y, p(y)) is the open ball of radius p(y) cen-
tered at y.

We remark that A(£2) contains the class of all functions p : 2 — R, which are Lipschitz

continuous in §2 with Lipschitz constant less than 1.
Typical examples of functions p € A(£2) are the function

x€ 2 —1+alx|, aec]0,1],

if 2 =R” and, if £2 # R” and S is a nonempty subset of 952, the function
x € 2 — a-dist(x,S), a€]0,1].

For any p € A(£2) we put

Sy={z€082 | plx) < |x—z| Vx € 2}. (2.2)
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We recall that the set S, is a closed subset of 352 and

zeS, <<= limpx)=0

(see [5]).

It is well known that
p €LY (£2), pteLX(£2\S,), (2.3)
and, if S, # 0 [5, 6],
p(x) <dist(x,S,), Vxe . (2.4)

Let p € A(£2). For k € Ny, 1 < p < +00 and s € R, we denote by Wsk’p(.Q) the space of
distributions u on £2 such that p**®=%3%y e [7(2) for |a| < k. We observe that Wsk'p(.Q)

is a Banach space with the norm defined by

Il oy = D100 1y g

| <k

Moreover, it is separable if 1 < p < +00, reflexive if 1 < p < +00, and, in particular, W*2(£2)
is an Hilbert space. We put VVSO'p(.Q) = I£(£2), and we observe that the space C°(£2) is
dense in £ (£2) (see [7, 8]).

A more detailed account of properties of the above defined weighted Sobolev spaces can
be found in [7, 9] and [8].

For any x € £2, we put

2(x) = 2 NB(x, p(x)). (2.5)

Let p € A(£2). For 1 < p < +00 and s € R, we denote by K (£2) the class of functions g €
L} (£2\'S,) such that

S

Ielzie) = sup(p @lglirioten) < +oo. (2.6)
xXe

Obviously K?(£2) is a Banach space with the norm defined by (2.6). It is easy to prove
that the space L°(£2) is a subset of K% (£2) (see [10]). Thus, we can define a new space of
functions K (£2) as the closure of L¥(£2) in KZ(£2).

We recall the following characterization of the above defined space (see [10]):

gekP(2) < gek?(2) and lim( sup ||gXE||Kp(m):O,
=0 Ee3(82) s
20nE _,

SUPxes2 (%)

where xr denotes the characteristic function of the set E.

Page 4 of 17
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Therefore, we define modulus of continuity of g in K (£22) asamap @ [g] : R, — R, such

that [11]
sup ”gXE”Kf(Q) =< CNOng](t);
Eex(Q)
whres 258 < 7)

lim &% [g](¢) = 0.

t—0

Further properties of above mentioned function spaces can be found in [5, 10], and [11].
If £2 has the property

|2(x,7)| = Ar", Vxe£,Yrelol], (2.8)

where §2(x, ) = B(x,r)N §2 and A is a positive constant independent of x and r, it is possible
to consider the space BMO(S2,t) (t € R,) composed by all functions g € LIIOC(Q) such that

g - ][ g
2(x,r)

< +00,

xeR
rel0,t]

[glamoa, = sup f
2(x,r)

where

][ g= |.Q(x,r)|_1/ g
£2(x,r) £2(x,r)

If g € BMO(2) = BMO(2, t4), with

oo o)
a=sup| sup —— < — ),
teR, \ xeQR |.Q(x,r)| A

re0,t]

we will say that g € VMO(£2) if [g]lgmo(e,y — O for ¢ — 0*. A function n[g] : R, — R, is
called a modulus of continuity of g in VMO($2) if

lglsmoay = nlgl®), VteR,, lim n[g](#) = 0.

t—0*

We say that g € VMO, (£2) if (¢g)o € VMO(R") for any ¢ € C§°(£2), where (¢g), denotes
the zero extension of ¢g outside of £2. A more detailed account of properties of the above
defined spaces BMO($2) and VMO($2) can be found in [12].
We conclude this section introducing a class of applications needed in the sequel.
From now on we consider p € A(£2) N L*(£2) and we suppose that the following condi-
tion on p holds:

(ho) there exists a function o € A(£2) N C®(£2) N C*(£2) which is equivalent to p and
such that

|8aa(x)| <o (x), VxeR2,Vac Ng,

where ¢, is independent of x (see [6]).

Page 5 of 17
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We observe that the condition (hg) holds, for example, if §2 is an unbounded open set with
the cone property, or if the open set §2 has not the cone property but the weight function
p is equivalent to the function dist(-, 3£2) (see [6]).

Let us fix g € C°(R,) satisfying the conditions

1
0<g<l, g)y=1 ift>1, g)=0 iftfi' (2.9)
For each k € N, we put
1
M) = 26 + (1-a®) o), xe,
where i (x) = g(ko (x)), x € £2. Obviously, nx € C*(£2) for any k € N and
1 : 5
_ % ifx e Qk,
() :a(x) ifxe 2\ 2o,
where
1
Qk:{er ’a(x)>%}. (2.10)
Moreover, for k € N, it is easy to prove that
o) <m(x) <20(x), x€2\2% (2.11)
dro(®) <mx) <o), xe, (2.12)
(&), <alcw@), xe, (2.13)
(%) + 0 (%) - (%)) xs
(m&)),, < e (o)), +o(x)- (o) , x€f, (2.14)
* o(x)

where ¢’y € R, depends on k and o, and ¢, ¢; € R, depend only on #. Furthermore, for
any s € R, we have

(7. (%))x _ k(%))

nE — 0 ok x€ L, (2.15)

(@) _ ()2 + i (%) - (M(%)) 0
m) — o2 (x) ’

x € 2, (2.16)

where ¢3 € R, depends on s and n.

3 Hypotheses and preliminary results
Suppose that £2 has the property (2.8) and let p > n/2. Consider in §2 the differential op-
erator L defined by

O 92 "9
L= ji———+ ) di— +d,
Z“z} ax,« 8xj ; ! Bxi

ij=1
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with the following assumptions on the coefficients:

ajj = aji ELOO(‘Q)ﬁ VMOIOC(‘Q)! i,j=1,...,l’l,
(hy) v, v eR,: ZZ]‘:I ||6lij||L°°(.Q) = Vy,
ZZ/’:l élfjdi]‘ > U|~§;— |2 a.e. in Q,VE € Rn,

di=a;+d;, aeK(Q),decl®R),i=1,...,n,
(1) 1d=a+d, acKi(Q)dclPR),
d<0 a.e.in$2,

wherer>nifp <mandr=pifp>n.

Fixing x, € 2 and 7 € R, such that T < o(x,), we put B = B(x,, T) and B* = B(x,, 1).

We observe that under assumptions (h;) and (i), the operator L from W2?(B) into L?(B)
is bounded and the following estimate holds:

ILullpe) < < Nullweom, Yue W(B),

where ¢’ € R, depends on 1, p, 1, p, Vo, laillr ), il @), llallzem), 1dlrom)-
Let v be a solution of the problem

ve W2P(B),
Lv>h, hel’(B), (3.1)
Vigg = 0.

We want to prove a bound for the solution v of the above problem (see Lemma 3.1 be-
low), which will be the primary technical tool in the proof of our main result (see the next
Section). In order to use a classical result of Vitanza (see, Theorem 2.1 in [13]) it is neces-
sary to make an appropriate change of variables which allows to transform the operator L
into a differential operator L* whose lower order coefficients, in particular, belonging to
Lebesgue spaces and their moduli of continuity can be estimated by moduli of continuity
of the corresponding coefficients of L. To this aim, let us consider the map T : B — B*
defined by

T(x) =, + (3.2)
Clearly

z=Tx) & x=x,+1@—2%,)=T").
For any function g defined on B, we set

gi=goT™. (3.3)

Using the equivalence between p and o it is easy to prove that td; € L"(B*) for any i =
1,...,n and t2d* € I?(B*); moreover,

[d;

~ 1
L7(B*) = Cl(”ai”K{(Q) + ”dt”]i’fo(g)): i=1...,m, (34')

Page 7 of 17
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and

~ 1
”Tzd* HIP(B*) E CZ(”“”K;(Q) + ”d”fgo(g))! (35)

where ¢; € R, depends on n, p, r and ¢; € R, depends on #, p, p.
On the other hand, for any E* € X' (B*) and ¢ € R,, we have |E*| <t if and only if 'T%' <t
where E = {x € Blx = T"!(z), z € E*}. Thus, we obtain

a)’[rd;‘,B*](t) < sup ||rl’¥d,» @ i=1...,n,
Ec3(B)
El_,
a(xo) =
. (3.6)
a)”[tzd*,B*](t) < sup ||127d||Lp(E).
EeX(B)
I _,
a(xo) =
Using again the equivalence between p and ¢ and (2.7), from (3.6) we also deduce
~r ~ % 1 .
wr[rd;k,B*](t) < c;.;(a)l[a,»](t) + ||di||L1°°(9) . tr), i=1,...,n, (3.7)
and
~ ~ L 1
[, B)(0) < (@1a)) + 1 s gy 1), (3.8)

where ¢3 € R, depends on p, r and ¢4 € R, depends on p, p.
We are now able to prove the requested a priori bound.

Lemma 3.1 Suppose that the conditions (hy) and (iy) hold. Let v be a solution of the problem
(3.1). Then there exists c, € R, such that

sgpv <¢, - T¥F I HU,(B), (3.9)

where c, depends on n, p, 1, p, v, vo, [play)lemorr,), laillxy(e), lallxr @)y ldills@)
Il (), o' la;), @hlal, and where play) are the extensions of ay to R" in L*(R") N
VMO(R") forany i,j=1,...,n.

Proof Let v e W2P(B). Taking into account the definitions (3.2) and (3.3), it is easily seen

that
n n
T\ * * sk * % %
Lv)* = E ay(Vaw,)™ + E d;(vy,))" +d"v
ij=1 i=1
n n
-2 k% -1 ESES k%
=T E AV + T E d;v, +dv’,
ij=1 i=1
and hence

2(Lv)* =T,
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where
n n
~ 92 0]
L*= E afja 3 +er78—+r2d*.
i1 CF0% i=1 Zi

Let us denote by p(a;;) the extensions of a;; to R” such that
play) € L°(R") N VMO(R"), ij=1,...,n (3.10)

(for the existence of such functions see Theorem 5.1 in [12]). Since

play)* e L*(R") N VMO(R"), play)j,, =ajij=1...,n, (3.11)
we have
a; € L°(B) N VMO(B*), ij=1,...,n. (312)

Moreover, from assumptions (hy), (i;), and (3.4), (3.5) it follows that

at=al, ij=1...n,
Yl E&a; = vIE* ae in BY,VE €R”, (3.13)

tdf €L’ (B*), i=1...,n ’d* € I’(B*), d* <0a.e.in B*,

where r and p are as in hypothesis (i;).

Consider now the following problem:

(3.14)

L*w =g, gelLP(BY),
w e W2P(B*) N Wi (B*).

Putting together (3.11) and (3.13) with Theorem 2.1 of [13] if # > 3 or with Theorem 3.5 of

[14] if n = 2, it follows that there exists a unique solution w of (3.14) satisfying the estimate

Wil w2r @ < Klglle @, (3.15)
where K € R, depends on n, p, v, vo, [p(ay)*Ismown, IT - dfllre, 7> - d* o),
o"[td}, B*], o?[t%d*, B*].

Thus from (3.15) and classical Sobolev embedding theorems (see Lemma 5.15 in [15])

we deduce that there exists K; € R,, depending on the same parameters as K, such that

H;X [w| < Killgllzr ), (3.16)
and hence for each z € B* there is a function G(z, -) € L” (B*) (1/p +1/p’ =1) such that

W) = - /B Gy gy (3.17)
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The map G(z,-) is the Green function for the operator L* in B* and it has the following

properties:
/ G(zy)-gy)dy=0, Vgel’(B*),g>0, (3.18)
B*
1G@ )], gy < K- (3.19)

Setting g = L*v* in (3.14), we find that the function w — v*, belonging to W2#(B*), is a

solution of the following problem:

iz*(w—v*) =0 inB, (3.20)

(W= V")) = _V\*aB* = 0.

Moreover, from (3.12), (3.13) and Lemma 3.1 of [16] (see also Lemma 3.1 of [2] for the case
n > 3) it follows that w — v* > 0 in B*. Finally, applying (3.17) with g = L*v* = t2(Iv)* and
using (3.18) and (3.19) we obtain

V(o) < - /E Glay) I )y

<72 / Glz,y) - h*(y) dy < —21> / Glzy) - (h*)" () dy
B* B*

<27%| Gz, ')”LP’(B*) - (h*)_”LP(B*) <20 K| (h*)_”uf(s*)’ vzeB'.  (321)

From (3.21), converting back to the x-variables (z = T'(x)), we easily deduce the estimate
(3.9). O

4 Main results
In this section we use the previous result to prove a bound for the solution of our main
problem.

Consider in §2 the differential operator L defined by

- 32 S
L= aj——+ ai— +a,
Z v 8965 8x,» 1=Zl lax;

ij=1

and put

n 82
Lo=Y aj——.
Zal 8961' 8xj

ij=1

Suppose that the leading coefficients of operator L satisfy the assumption (h;) while the

lower order coefficients verify the following condition:

a,-e]?{(.Q), i=1,...,n,
(hy) {aeki(),

Ja, € R, :esssup,, o2

a=—a,
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where r and p are as in hypothesis (i;). Moreover, assume that the following condition on
o holds:

(hs)  lim < sup ((0(x)), +o (@) (o (x))xx)> =0,

k—+00 Q\Qk

where §2; is defined in (2.10). For an example of function p whose regularizing function
o satisfy (hs) we can refer to [17].

We introduce now a class of mappings needed in the sequel. Let us fix a function « €
C*®(£2) N C*(2) which is equivalent to dist(-,3$2) (for more details on the existence of
such an « see, for instance, Theorem 2, Chapter IV in [18] and Lemma 3.6.1 in [19]). Hence,
for any m € N we define the functions

= Joc]
e 2 1-gl— ) ),
Y X E —>g(moc(x))( g(zm))
where g € C*(R,) verifies (2.9). It is easy to prove that each 1, belongs to C5°(£2) and

0 < wm < 1; supp wm g EZm: (wm)Em = 17

1
Em:{x69:|x|<m,a(x)>—}.
m

Remark 4.1 From hypothesis (h;) and Lemma 4.2 in [12] it follows that for any m € N
the functions (y,,4;), (obtained as extensions of ,,a; to R” with zero values out of £2)
belong to VMO(R") and

[(Wmai)o] ppro@ny < Wmailsmow.o,
for ¢ small enough.
Now we are able to prove our main result.

Theorem 4.2 Suppose that conditions (hy), (hy), (h3) hold. Fixing s € R, let u be a solution

of the problem
ue Wit (),
Lu>f, fell (%),

) loc (4'1)
limsup,_,, o*(x)u(x) <0, Vx,€ds2,

limsup,, o 0°(®)u(x) <0 if 2 is unbounded.

Then there exist an open ball B CC §2 and a constant ¢ € R, such that

sup o (x)u(x) < c<7[|o“2f‘ ¥ dx) E, (4.2)
B

xe2

where ¢ depends on n, p, 1, p, v, vo, ao, N[¥may] (m € N), llaillz ), lallg o) &lail, @lal.
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Proof Without loss of generality it can be assumed that sup,, o°(x)u(x) > 0. For any k € N,
we put

wi(x) = nx)ulx), xe . (4.3)

Thus, from the last two conditions of (4.1) and from (2.11), (2.12) and (4.3) it follows
that there exists yx € £2 such that supg, wi(x) = wr(yx). Moreover, taking into account
the classical Sobolev embedding theorem (see Theorem 5.4 in [15]), there exists Ry €
10, dist(yx, 2)[ such that wy(x) > 0 for all x € B(yx, Rg)-

Let A, ax, a, € R,, with «, > 1 (which will be suitably chosen later), such that

Q= Oloa()/k), A<, Ao < min{Rk,O'()/k)}. (4'4)

For simplicity of notation, for each k € N, we denote by By the open ball B(yx, Lak).
Let us set

1+A%- %, x € By,
Pr(x) = i (4.5)
11 X € 2 \Bk

It is easily seen that
l<g<1l+r?<2. (4.6)

Moreover, for x € By

2 4%
(§0k)x,‘ =— (§0k)x,‘ : (§0k)x, = 0 L] = 1; e 1, (4'7)
(673 Olk
e 2
(wk)x,'xj =0 ifi 7/}’ (Qﬂk)xix, =7 ifi =] (4.8)
Ak

Consider now the function vy defined by

V(%) = or()wi(x) — wi(y),  x € By (4.9)
Clearly
Vidlas, = Wiiys, — wki) 0, k) = A2wic(yi). (4.10)

The first step of the proof is to show that there exists k, € N such that, for any k > k,, each
function vy is a solution of a problem of type (3.1), where the coefficients of associated
differential operator verify the assumptions of Lemma 3.1.

For any k € N, it is easy to prove

n n
Lowk —uL,n; —2 Z“i/(’?li)x,”xi + Z ai(n;‘(u)xi
ij=1 i=1

n
-u Zui(ni)xi +amu=mnly, xecf2. (4.11)
i=1
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Since

Serani 5 (), Gj=1...,m, (4.12)
M (77k)2 ( k )

(7). s = (mise),,

and u is a solution of problem (4.1), from (4.11) we deduce

Lowe+ Y bE(wi)y, + Bwi = g* in 2, (4.13)

i=1

where we have put

X S U
bf=a;-2) ay i i=1,...,n (4.14)
j=1
n ( S S n S
nk)xi(nk)x (Uk)xix~
v =a+22ai,»% —Zai' ! (4.15)
2 ] s 7
ij=1 (1) ij=1 k

()
g=nif +w ) a; rf" : (4.16)

i=1 k

We observe that using the hypotheses (hy), (h;), (hy), the equivalence between p and o,
and (2.11)-(2.16), we easily get

(m)x; ..
(al]%)EL?O(Q), l,]=1,...,7[,
(Us)xi("ls)x' ("Is)xl'x~ .
ag - k(n,i)zk L a - kni LeLP(2), ij=1,...,n (4.17)

gell (2).

Using now the estimate (4.13), it is easily seen that

n
Lo (¢/<Wk) - WkLo(pk -2 Z ﬂij(gpk)xj(wk)x,-
ij=1

n n
+ Y B @wi)s — Y B (@r)wwic + B
i=1

i=1

=@k (ngk + be(wk)xl. + bkwk) > (pkgk in Bg. (4.18)

i=1
This last inequality can be rewritten as
n
Lo(gawi) + Y df (@aowa)s; + d* pewi
i=1

n
> gt + > b (@) Wi in By, (4.19)
i=1
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where we have set

K " ((pk)x} .
:bi—ZZa,y , i=1,...,nm, (4.20)
€0k)x (€0k)x - ((pk)xx
=bk+2 2T N g =, (4.21)
”Zl T ? UZ=1 "k

Hence, putting together (4.9) with (4.19) we get

Lovi+ Y _df i)y, +dvie = in By, (4.22)
i1
where
W = gig* + wy Z b (i), — d*wicye). (4.23)

i=1

Observe that using the hypotheses (h;), (hy), and (4.17), (4.5)-(4.8), it is easy to prove that,
for any k € N, the coefficients dff (for i =1,...,n) and d* satisfy the first two conditions of
assumption (i) and the function #* € L?(By). We show now that, for a suitable choice of
the constant a,, there exists k, € N such that for any k > k, the coefficients d¥ verify also
the last condition of (i;). To this aim, we firstly observe that using again hypotheses (h;),
(hy), and (2.15), (2.16), from (4.15) we obtain
bk < —% + —[(nk) +mc(M)sx],  ace.in £2, (4.24)

where ¢; € R, depends on v,, n and s.

Thus, from (4.4), (2.11)-(2.14) and hypothesis (h3) it follows that there exists k, € N such
that for any k > k, we get

b < —%, ae. in 2. (4.25)
o

Now, for k > k,, putting together (4.25) with (4.21) and using the assumption (h;), the
properties (4.6)-(4.8) and (4.4), we obtain

8v,A2 2 10
dk < —% gt e o [— L ””} 2(y), ae.in By (4.26)
o ay ay 2.y o?
Hence, fixing o, such that
1 o
—_<— 4.27
o2 7 40v, - y? 4-27)
from (4.26) it follows that for each k > k,
k do .
d < - a.e. in By. (4.28)

4yto(x)’
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Putting together (4.28) with (4.25) and observing that d* = b in £2 \ By, we deduce that
d* < 0 a.e. in 2. The above considerations together with (4.4), (4.9), (4.10), and (4.22)
show that for any k > k, the problem

vi € W*P(By),
Lovi + Y 1 d¥ (i), + d¥vi > W, HF e LP(By), (4.29)

Vg, = 0

satisfy the assumptions of Lemma 3.1. Therefore, there exists a constant ¢; € R, depending

onn, p,1, p, v, Vo, [Play)smowr,), laillk(e), lall ez () @) [a;], @ [a] such that
91 -
sup v < c1(rae)” 7 || () ||U,(Bk). (4.30)
By

By (4.10), the last bound with x = y; becomes

Rwi) < 00”7 [ (1) [ g, - (4.31)

Now, in order to obtain the estimate (4.2), we have to provide a lower bound for the func-
tion /¥ in terms of the data f. First of all, we observe that, using the definitions (4.14) and
(4.16), we can rewrite (4.23) as

n
(M),
W = gemif +wi Zﬂi( K2+ (o),
i=1 Mk
() .
—2wi Y ay g (00 = dwn). (4.32)
ij=1 k

On the other hand, by assumption (h;), and by (2.15), (4.7), and (4.4) we easily obtain

C
1< oz—ix) (M) (4.33)

where ¢; € R, depends on v,, 1, s, p, a,. Thus, using (2.13) and hypothesis (hs) it follows
that there exists k; > k,, with & € N, such that for any k > k

2 () a
2. T <" 4.34
;a, 00| = s (434)
Putting together (4.34) and (4.28) with (4.32) we obtain
k s - (nli)xi
W= genf +wie Y ai| =5 o+ (@e), - (4.35)
i=1 k

Taking into account (4.35), from (4.31) we get

wi(x) < Cl)‘_ga/f_ﬁ H (nlscf)_ ”LP(B,() + W+ g, (4.36)
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where we have put

n
_n 2-%
Vi =an ey " \we ) aleds| (4.37)
i=1 LP(By)
and
n
_nu 2-7 (’75)5
V= vy we ) a S g (438)
EE 17(By)

To end the proof, we give some upper bounds for the functions W} and W¥ (with k > k).
First of all, observe that using (4.7) and Holder’s inequality in (4.37) we obtain

WE < ey T wiye) : (4.39)

L"(By)

n
24
i=1

where ¢3 € R, depends on the same parameters as ¢;. Using now (4.4), the equivalence on

p and o, we get

n
_n 1-Z
V<o T wi)| Y af (4.40)
=1 K@)
where ¢4 € R, depends on the same parameters as ¢;. If we choose A such that
AF < 1 (4.41)
T degal N aillkr(2) ’
from (4.40), for k > ki, we get
w,
wk < kiyk ). (4.42)

Arguing similarly we obtain, for each k > k;, the following bound on the function WX:

n
24

i=1

_n 272
WK <ceshray " wilyk) sup (1) (4.43)

K[ (£2) 2\

where ¢5 € R, depends on the same parameters as ¢; and on s. Thus, using again (2.13)
and assumption (h3), we see that there exists k, > ky, with k; € N, such that for k > k;, we
get

(4.44)

Finally, chosen k = kj, putting together (4.42) and (4.44) with (4.36) and using (4.4), (2.11),
and (2.12) it follows that

Wi, k) < Ce()»otkz)_tg HUZHJF HU,(B](Z), (4.45)
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where ¢ € R, depends on the same parameters as ¢; and on a4,. Taking into account (4.3)
and using again (2.11) and (2.12), from (4.45) we get

sgpo )ulx) <cy (][Bk

2

1/
o203~ |"> ’ (4.46)

where ¢; € R, depends on the same parameters as ¢; and on 4,.
Finally, if we choose

P(tlij|3k2) = (Y, @ij)os (4.47)

where m, € N is such that wm"\Bk =1, the estimate (4.2) follows from (4.46), (4.47), and
Remark 4.1. ’ O
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