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Abstract

We are concerned with the following nonlinear problem:

—diviw()|VulP¥2Vu) + |ulPW2u = wg()|ulPW=2u + f(A, x,u, Vu) in &, % =00on 9%,
which is subject to a Neumann boundary condition, provided that w is not an
eigenvalue of the p(x)-Laplacian. The aim of this paper is to study the structure of the
set of solutions for the degenerate p(x)-Laplacian Neumann problems by applying a
bifurcation result for nonlinear operator equations.
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1 Introduction
In recent years, there has been much interest in studying differential equations and varia-
tional problems involving p(x)-growth conditions since they can model physical phenom-
ena which arise in the study of elastic mechanics, electro-rheological fluid dynamics and
image processing, etc. We refer the readers to [1-5] and references therein. In the case of
p(x) a constant, called the p-Laplacian, there are a lot of papers, for instance, [6—-14] and
references therein.

In the present paper, we are concerned with the existence of an unbounded branch of the
set of solutions for the p(x)-Laplacian problem with degeneracy subject to the Neumann
boundary condition

—div(w(®) | VulPW2Vu) + [ulPW2u = p1g(x)|uP2u + (A, x,u, Vu) in Q,

2 (B)
a_” =0 on 0€2,
n
when p is not an eigenvalue of the divergence form
—diviw(®) | VulPP2Vu) + [ulP® 2y = ng(x)|uP®2u  in Q, ©
g_z =0 on 0%,

u

where  is a bounded domain in RN with the Lipschitz boundary 9<2, 3—n denotes the
outer normal derivative of u with respect to <2, the variable exponent p :  — (1,00) is a
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continuous function, g € L*(2), w is a weighted function in Q and f : Q x R — R satisfies
a Carathéodory condition.

Since the inceptive study of bifurcation theory by Krasnoselskii [15], Rabinowitz [16]
claimed that the bifurcation occurring in the Krasnoselskii theorem is actually a global
phenomenon. As regards the p-Laplacian and generalized operators, the nonlinear eigen-
value and bifurcation problems have been widely studied by many researchers in various
approaches in the spirit of Rabinowitz [16]; see also [6-9, 13, 17].

The authors in [6, 7] obtained the bifurcation phenomenon for the nonlinear Dirichlet
problem which bifurcates from the first eigenvalue of the p-Laplacian. As in [6, 7], Khalil
and Ouanan [18] got the result for the nonlinear Neumann problem of the form

—div(|VulP2Vu) = am()|ul’2u + f(,x,u)  in Q, (A)

which is based on the fact [19] that the first eigenvalue of the p-Laplacian is simple and
isolated under suitable conditions on .

While many researchers considered global branches bifurcating from the first eigenvalue
of the p-Laplacian, Vith [20] came at it from another viewpoint to establish the existence
of a global branch of solutions for the p-Laplacian with Dirichlet boundary condition by
applying nonlinear spectral theory for homogeneous operators. From this point of view,
for the case that p(x) is a constant function, the existence of a global branch of solutions
for the problem (B) was attained in [11] (for generalization to equations involving nonho-
mogeneous operators, see also [12]) when p is not eigenvalue of (E).

Compared to the p-Laplacian equation, an analysis for the p(x)-Laplacian equation has
to be carried out more carefully because it has complicated nonlinearities (it is nonhomo-
geneous) and includes a weighted function. As mentioned before, the fact that the princi-
pal eigenvalue for nonlinear eigenvalue problems related to the p-Laplacian under either
Dirichlet boundary condition or Neumann boundary condition is isolated plays a key role
in obtaining the bifurcation result from the principal eigenvalue of the p-Laplacian. How-
ever, unlike the p-Laplacian case, under some conditions on p(x), the first eigenvalue for
the p(x)-Laplacian Neumann problems is not isolated (see [21]), that is, the infimum of
all eigenvalues of the problem might be zero (see [22] for Dirichlet boundary condition).
Thus we cannot investigate the existence of global branches bifurcating from the prin-
cipal eigenvalue of the p(x)-Laplacian. For this reason, the global behavior of solutions
for nonlinear problems involving the p(x)-Laplacian had been considered in [23]. To the
best of our knowledge, there are no papers concerned with the bifurcation theory for the
p(x)-Laplacian Neumann problems with weighted functions.

This paper is organized as follows. We first state some basic results for the weighted vari-
able exponent Lebesgue-Sobolev spaces which were given in [23]. Next we give some prop-
erties of the corresponding integral operators. Finally we show the existence of a global
bifurcation for a Neumann problem involving the p(x)-Laplacian by using a bifurcation
result in an abstract setting.

2 Preliminaries

In this section, we state some elementary properties for the (weighted) variable exponent
Lebesgue-Sobolev spaces which will be used in the next sections. The basic properties
of the variable exponent Lebesgue-Sobolev spaces, that is, when w(x) =1 can be found
from [24].
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To make a self-contained paper, we recall some definitions and basic properties of the
weighted variable exponent Lebesgue spaces L7 (w, ©2) and the weighted variable expo-
nent Lebesgue-Sobolev spaces W*® (w, Q).

Set

C,(Q) = {h € C(Q) : minh(x) > 1}.

xeQ

For any 4 € C,(R2) we define

hy=suph(x) and h_= insfzh(x).
X€E

xeQ

Let w is a measurable positive and a.e. finite function in . For any p € C, (), we introduce
the weighted variable exponent Lebesgue space

179 (w, Q) := {u : u is a measurable real-valued function, / w(x) ’u(x) |p ® dx < 00 },
Q

endowed with the Luxemburg norm

u(x) p(x)

||u||w<x)(w,9)=inf{k>0:f w(x) dxfl}.
Q

The weighted variable exponent Sobolev space X := W"*® (w, Q) is defined by
X={uelfPQ): |Vul € /P w,Q)},
where the norm is

llallx = llzell g @y + 1V 2l Lot (0,2 (2.)

It is significant that smooth functions are not dense in W'*®)(Q) without additional as-
sumptions on the exponent p(x). This feature was observed by Zhikov [25] in connection
with the Lavrentiev phenomenon. However, if the exponent p(x) is log-Hoélder continuous,
i.e., there is a constant C such that

C

{p(x) _p()’)| =< okl
—log|x -yl

(2.2)
for every x,y € Q with |x —y| <1/2, then smooth functions are dense in variable exponent
Sobolev spaces and there is no confusion in defining the Sobolev space with zero bound-
ary values, Wé‘p (x)(Q), as the completion of C§°(£2) with respect to the norm ||| 15w g
(see [26]).

Lemma 2.1 ([24]) The space L’ () is a separable, uniformly convex Banach space,
and its conjugate space is LV (Q) where 1/p(x) + 1/p/(x) = 1. For any u € [’¥(Q) and
v € LF'%)(Q), we have

/ uvdx
Q

1 1
< (p— + (T)) el oty 1Vl gy < 211l oty 1V o -


http://www.boundaryvalueproblems.com/content/2014/1/92

Hwang et al. Boundary Value Problems 2014, 2014:92 Page 4 of 16
http://www.boundaryvalueproblems.com/content/2014/1/92

Lemma 2.2 ([23]) Denote
o(u) = / w(x)|ul?® dx, forallue LP%(w, Q).
Q

Then

1) p(u) >1(=1;<1) if and only if ||ull pw (g > 1 (=1 <1), respectively;

@ i oz > L then [y, o < p) < sl o

3) if luall o, < L then llull i, o) < P) < ||u||p D)
Lemma 2.3 ([27]) Let g € L*°(R2) be such that 1 < p(x)q(x) < co for almost all x € Q. If
u € L1(Q) with u #0, then

(1) 3 Nl ooty > L hem 1t < 117 ) < 10

(2) if lutll pto WQ)<1then||u||Lp(x ome s|||u|q<x>||m(w,ms||u||L,,W)(WVQ).

We assume that w is a measurable positive and a.e. finite function in €2 satisfying that
(wl) we LIOC(Q) and wV/e®-1) ¢ LIIOC(Q)
—s(x) 1 i N
(w2) w® e L}(Q) with s(x) € (p(x), o0) N [p(x)
The reasons that we assume (wl) and (w2) can be found in [23].

1, 00).

Lemma 2.4 ([23]) Let p € C.(Q) and (wl) hold. Then X is a reflexive and separable Ba-

nach space.
For p,s € C, (), let us denote

px)s(x)

ps(®) = 1+s(x)

<px),
where s(x) is given in (w2) and

@GN ;
Pr@) = N N > Psl), 2.3)
) +00 if N < ps(x),

for almost all x € 2.
We shall frequently make use of the following (compact) imbedding theorem for the

weighted variable exponent Lebesgue-Sobolev space in the next sections.

Lemma 2.5 ([23]) Let Q C RN be an open, bounded set with Lipschitz boundary and p €
C.(Q)with1 < p_ < p, < oo satisfy the log-Holder continuity condition (2.2). If assumptions
(wl) and (w2) hold and r € L*°(Q2) with r_ > 1 satisfies 1 < r(x) < p¥(x) for all x € @, then

we have
X — L'™(Q)

and the imbedding is compact if infyeq(p} (x) — r(x)) > 0.
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3 Properties of the integral operators
In this section, we give the definitions and some properties of the integral operators cor-
responding to the problem (B), by applying the basic properties of the spaces L/ (w, Q2)
and X which are given in the previous section.

Throughout this paper, let p € C, () satisfy the log-Holder continuity condition (2.2).
We define an operator J: X — X* by

W), ¢) = /Q (w(@) | V() "D Vaalx), Voo () dix + /Q @) " P uwe®) dx,  (3.1)

for any ¢ € X where (-, -) denotes the pairing of X and its dual X* and the Euclidean scalar
product on R¥, respectively.
The following estimate, which can be found in [17], plays a key role in obtaining the

homeomorphism of the operator /.

Lemma 3.1 For any u,v € RN, the following inequalities hold:

—2 2 .
(|u|10—2u_|V|p—2V’M_V>Z (Pl—l)(|’4|+|"|)p |t —v| z‘f1<p<2and(u,v)7’(0,0),
4Py —v|P ifp>2.

From Lemma 3.1, we can obtain the following topological result, which will be needed
in the main result. Compared to the case of p(x) being constant (see [11]), the following
result is hard to prove because it has complicated nonlinearities.

Theorem 3.2 Let (wl) and (wW2) be satisfied. The operator ] : X — X* is homeomorphism
onto X* with a bounded inverse.

Proof Let W : X — L/ ¥)(Q) and W, : X — L” @ (2, RN) be operators defined by

W) () = @) u) and Wa()@) = w0 Vul) " Vu().

Then the operators W;, W, are bounded and continuous. In fact, for any u € X, let u,, — u
in X as #n — oo. Then there exist a subsequence (u,,) and functions v, w; in LPY) (w, Q)
for j =1i,...,N such that u,, (¥) = u(x) as k = o0, |u,, (¥)| < v(x) and [(u,, /dx))(x)| <
wj(x) for all k € N and for almost all x € Q. Without loss of generality, we assume that
1Wi(un, ) - \I/,»(u)||Lp/(x)(Q) <1fori=1,2. Then we have

||‘I’1(unk)—‘lfl(u)H(L'},/)&)(Q) < ‘/Q ||'4nk(x)|1’(x>-2unk(x)— |M(x)|17(x)—2u(x)|p’(x) dx (3.2)
and
| W at) — W 1) 210

V' @) (Q,RN)

x)—2

5/]wzﬁ|Vu,,k(x)]p(x)72Vunk(x)—wﬁoWu(x)]p( Vu(x)]p/(x)dx, (3.3)
Q

and the integrands at the right-hand sides in (3.2) and (3.3) are dominated by some inte-
grable functions. Since u,, — u in X as k — oo, we can deduce that |u,, (x) |p(")’2unk (%) —>
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|u(x) P92 5(x) and wlﬁ )|V, (%) PP 2V 1, (x) — wm ()| Vux) P92V y(x) as k —
oo for almost all x € Q. Therefore, the Lebesgue dominated convergence theorem tells
us that W (u,, ) — W1(u) in LF'®(Q) and Wy () — Wa(u) in LF'@)(Q, RN) as k — o0, that
is, ¥;, W, are continuous on X. Also it is easy to show that these operators are bounded
on X.

Using the continuity for the operators ¥; and W, on X, we finally show that / is contin-
uous on X. From Holder’s inequality, we have

() = T (1), )|

/ (ot 210 = P2 10)
Q

+

1 1
/ (wp’<x) Vi, P92V, — wr® | VuPW-2vy, V(p)dx
Q
< 2” |ttys |P(x)—2un _ |u|p(")_2u”Lp’<x)(Q) ||(p||Lp(x)(Q)
5 w)-2 e (-2
+ 2||WP |Vu, |P¥~*Vu, — wr'® | Vy|P¥- Vu”u,/(x)(Q’RN) IVl e g

for all ¢ € X. Hence we get

1 Ga) - a0

= sup |[J(u,) = J(w), )|

lellx=<1

E 2{ ” |un |p(x)—2un - |u|p(x)_2u”Lp’(x)(Q)

1 _1
+ [ w? Ve, P92V, - WIS [ VuPO2 | ( (3.4)

Q,RN) }’

and the right-hand side in (3.4) converges to zero as n — 0. Therefore the operator J is
continuous on X.
For any u in X with |[u||x > 1, it follows that

(Jw),u) > Clluly

for some positive constant C. Thus we get

(J(u), u) N

llaellx

as |lul|x — oo and therefore the operator J is coercive on X.
Denote

le{er:1<p(x)<2}, sz{er:p(x)z2}.
Set

po = inf p(x), p1 = sup p(x)
x€Q

erl

and

po = inf p(x), 3 = sup p(x).
x€Qy

x€Q
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(Of course, if both the sets ; and Q, are nonempty, then p; = p, = 2 by the continuity of
p(x).) It is clear that

Jw) 1), u-v)= / <w|Vu|p(x)_2Vu - W VYO Vy, Vi — Vv)dx
Q
+ / (|u|p<x)_2u - |v|p(x)_2v)(u —v)dx
Q
= / (w|Vu|p(x)’2Vu —w| VP97, Vi — Vv)dx
Q1
+ / (|u|1’(")_2u - |v|p(")_2v)(u —v)dx
Q
+ / (W|Vu|p(")_2Vu —w|VyPO27y, Vi — Vv) dx
Q9

+ / (|u|1"(")’2u - |v|p(’“)’2v)(u -v)dx. (3.5)
2

By using Lemma 3.1 and (3.5), we find that / is strictly monotone on X. The Browder-Minty
theorem hence implies that the inverse operator /™' : X* — X exists and is bounded; see
Theorem 26.A in [28].

Next we will show that /! is continuous on X*. Assume that z and v are any elements
in X with ||z — v||x < 1. According to Lemma 3.1, we have

(|Vu|l7(x)72Vu - |VV|P(x)72Vv, Vu- VV> > C|Vu - VV|p(x)
and
(|M|P(x)—2u _ |V|P(x)72V’ u— V) > Cylu— V|p(x)

for almost all x € €, and for some positive constants C; and C,. Integrating the above
inequalities over €2 and using Lemma 2.2, we assert that

Iw) - J),u—v)= / (WIVulP 2V — w| Vv PP 2Vy, Vi - V) dx
Q

+ / (1P — [P0 (1 — v) dx
Q

> G| Vi = VI ) + Callu= VI o

> G5 (Ve = Vo) + 14 = Vil o) (3.6)

for some positive constants Cs3, C4, and Cs. For almost all x € €24, the following inequalities
hold:

D72\ — V) < |V — VyP® (3.7)
and

2w = ) < - P, (3.8)
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where we put Q¢ := {x € Q; : (u(x), v(x)) # (0,0)} and use the shortcuts
mi(x) = |Vu(x)| + |Vv(x)| and m(x) = |u(x)| + |v(x)|.
Hence using Lemma 3.1, we assert that

@) -J(v), u—-v)

=/ (w|Vu|p(")_2Vu—w|VV|p(x)_2Vv,Vu—Vv)dx
Q
+/ (|u|”(x)_2u—|V|p(x)_2v)(u—v)dx
Q

>Co | VU= Vv + B - v dx
Q0

for some positive constant Cq. From Holder’s and Minkowski’s inequalities, and the in-

equality

L

1 1
7 7

+bd s% > (a+b)d (r+s)é (3.9)

Q
ESY
~N
QU

for any positive numbers 4, b, r, and s, it follows that

/|Vu—Vv|p(x)dx+/ |u — vIP™) dx
Qo

Qo

PWCPE)  p@(pE)-2) ®
= m 7 (m T |Vu-VvY)dx
Q0

Px)(2-p()) P (Ppx)-2)
+ m, 2 (m2 2 u- V|”(x)) dx
Qo

px)(2-p(x))
<2fm > |

PR (px)-2)
lmy 2 IVu= V@
L

P09 (@)

2

L3P ()
P)(2-p(x)) P&)(p(x)-2)

+2|my, T | |my 2 |u—v|"(")” I (3.10)

L2710 (@) LPH) (Qq)

Applying Lemma 2.3 and Minkowski’s inequality,

||m1 > = ”ml”gp(x)(ﬂl)

p)(2-p(x))
I

2
296 (@)

< [1val + 1991 | gy

o
< (IVull gy + 1V o)

for any u,v € X where « is either p;(2 — po)/2 or po(2 — p1)/2. In a similar way,

[, HLZWSWMWMWMWf

Page 8 of 16
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for any u,v € X where 8 is either p1(2 — py)/2 or po(2 — p1)/2. It follows from (3.7)-(3.10)
and Lemma 2.2 that

P
(IIVu—VVIIpr(gl) + |l - V”Lp(x)(gl)) !

52171(/ |Vu—Vv|P(x)dx+/ |u—V|p(x)dx>
Qo Qo
7o

2
<2 (2(||w||wm> + ||Vv||mxm>)“( / |V~ Vvlzdx)
Qo

ro
B -2 :
2([lell ooy gy + VIl pior ) (/ 2y — V|2dx) )
Qo

20 2B
((”VUHM(x + ”VV”LP(?C)(Q)) o+ (”u”u?(x)(g) + ||V||Lp(x>(g)) 27170)
ro

|Vu Vv dx + mg(x)2|u—v|2dx)
Q0

2-po

2

X
2-po

221 (il + V1) 270 + (laelx + Ivllx) 70) F

2
_2|Vu—Vv|zdx+ m';(x)_2|u—v|2dx>

Qo

]

0

7
_C7(||u||x+ IIVIIX)y X ( mf(x)72|Vu—Vv|2dx+ mg(x)2|u—v|2dx) ,
Qo Q0

where y is either p1(2 — po)/2 or po(2 — p1)/2 and C; is positive constant. So

) - J ), 1~ )

-2y 27
> Ca(lluellx + IVllx) 7 (IVe = Vvl i) + 15 = Vil o)) 7 (3.11)

for some positive constant Cg. Consequently, it follows from (3.6) and (3.11) that

{Jw) =7 )u—v)
2y il
= C9(||”||X + ||V||X) Po (”VU = Vg + lu— V||Lp<x)(gl)) o

+ Co (Vi = V| iy + 1 = Vil oo )

-2y
> Cio min{ Co(llullx + [[VlIx) 70, Co } (Ve = V¥l ptsr g + 14 = VI ot Q))(S

-2y

= Cro min{Co(llullx + IVIlx) 70, Co }llu - vI% (3.12)

for some positive constants Cy and Cyp where § = max {2p;1/po, p3}. For each h € X*, let
(h,) be any sequence in X* that converges to / in X*. Set u, = J"*(h,) and u = J () with
||, — u||x < 1. We obtain from (3.12)

—

ll4, = ullx < Cy¢’ min {Co(llllx + IIMllx) C9} ; 17 Gaa) -

Page9of 16
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Since {u,, : n € N} is bounded in X and J(u,) — J(u) in X* as n — oo, it follows that (u,,)
converges to u in X. Thus, /™ is continuous at each /# € X*. This completes the proof.
O

From now on we deal with the properties for the superposition operator induced by
the function f in (B). We assume that the variable exponents are subject to the following
restrictions:

px)s(x)N
4%) € (RGN =sCN-N+7@5)

,00) if N > pg(x),
q(x) € (1, 00) arbitrary if N < pg(x)

for almost all x € 2. Assume that:
(F1) f:R x © x R x RN — R satisfies the Carathéodory condition in the sense that
f(x, -, u,v) is measurable for all (A, u,v) e R x R x RN and f(-,x,-,-) is continuous
for almost all x € Q.
(F2) For each bounded interval I C R, there are a function a; € L7¥(Q) and a

nonnegative constant b; such that

M psx
If G 1, v)| < () + by (Jue] 49 + [v] a6 )

for almost all x € Q and all (A, u,v) €I x R x RN,

(F3) f satisfies the following inequality:

px)
V(Ayx) u, V) _f()"07x; u, V) | < C()") )"0) (a}\,A.O (x) + |M| 1

ps()
),

where ||, || ;a0 () <1 and lim,;, C(&,40) = 0 for each Ao € R.
(F4) There exist a function a € L#®(2) and a locally bounded function 4: [0,00) — R
with lim,_, o, b(r)/r = 0 such that

_—1)s—

0, 3,10)] < ) + [b(1ul + )]

for almost all x € Q and all (&, v) € R x RY.
Under assumptions (F1) and (F2), we can define an operator F: R x X — X* by

(F(,u),0) = /szf(k,x, u(x), Vu(x)) o (x) dx (3.13)

and an operator G : X — X* by

(Glw),¢) = /Q )@ ul)px) d (314)

for any ¢ € X.

For our aim, we need some properties of the operators F and G. In contrast with [23],
we give a direct proofs for the continuity and compactness of F and G without using a
continuity result on superposition operators.
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Theorem 3.3 If (wl), (w2), and (F1)-(F3) hold, then the operator F : R x X — X* is con-
tinuous and compact. Also the operator G : X — X* is continuous and compact.

Proof Let W:R x X — L1¥(Q) be an operator defined by
(A, u)(x) ::f(k,x, u(x), Vu(x)).

Then for fixed A € R, the operator W(},-) : X — L1%(Q) is bounded and continuous. In
fact, for any u € X, let #,, — u in X as n — oo. Then there exist a subsequence (u,,) and
functions v, w; in LIW(Q) for j = i,...,N such that Uy, (x) = u(x) and Vi, (x) — Vu(x)
as k — oo, and |u,, (x)| < v(x) and [(0u,, /9x;)(x)| < wj(x) for all k € N and for almost
all x € Q. Suppose that we can choose K € N such that k > K implies that || W(},u,,) -
(A, u)lqu(x)(Q) < 1. For k > K, we have

W t) = W (2, 00) ||Z;(x)(9) < /S;[f()\,x, Uy (%), Vit () = f (A, %, u(x), V() |q(x) dx

and (F2) implies that the integrand at the right-hand side is dominated by an inte-
grable function. Since the function f satisfies a Carathéodory condition, we obtain
S %, 1, (%), Vi, (%)) — f (A, %, u(x), Viu(x)) as k — oo for almost all x € Q2. Therefore, the
Lebesgue dominated convergence theorem tells us that W (A, u,, ) — W(X,u) in LI9(Q) as
k — o0o. We conclude that W(A,u,) — Wi, u) in L19(Q) as n — oo and thus W(2,-) is
continuous on X. The boundedness of W(A, ) follows from (F2), Minkowski’s inequality,
and the imbedding X < Ws®)(w, Q) continuously (see Theorem 2.11 in [23]) as follows:

”"D(}” u ”Lq Q) = <1+ ”aI”Lq + H |l/£| + |VL£| H a) (Q)
2 &)
<1+ ||“I||Lq y T |||u| 4 “Lq(x)(g) + |||Vu| ) HL‘I") (Q)
P+ (ps)+
q,
<34 sl @) + 1l ) + 18150
P+ s)+
<3+ llarll oy + Nl +dllully™ (3.15)
for all # € X and for some positive constant d.
Minkowski’s inequality and (3.12) imply in view of (F3) that
23 Ps)+

| WG ) = W o, ) | gy ) = COL20) (B + g ll gty + el +llull* )

P+ (vs)+

< COuro) (4 + llullf +dlully™ )

forall A, Ao € Rand forall # € X. This shows that for any bounded subset B C X, the family
{W(-,u) : u € B} is equicontinuous at each Ao € R. Hence it follows from the continuity of
W (%o, -) that W is continuous on R x X, on observing the following relation:

” "Ij()‘-’ M) - "Ij()‘-O’ V) ||Lq(x)(9) = || \IJ()\, l/l) - lI”()\0; Ll) + ” \IJ()\Or M) - \I‘]()\O; V) ||Lq(x)(9)

” LI®/(Q)

Moreover, ¥ is bounded. Indeed, if B € X and Ay € R are bounded, we have to verify that
W (A x B) is bounded. We may assume that A is compact. By the equicontinuity and the
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compactness of Ay, we can find finitely many numbers A3, ..., ,, € Ao such that for every
A € Ay there is an integer k € {1,...,m} with

W (s 1) = W O, ) || g0 @ =1 forallueB.

Since W ({Ax} x B) is bounded for each k € {1, ..., m}, Minkowski’s inequality hence implies
that W(Aq x B) is bounded.

Recall that the embedding I : X — L7%)() is continuous and compact (see e.g. [8]) and
so the adjoint operator I* : L1%)(Q2) — X* given by

(I*V)(u) :=/ viedx
Q

is also compact. As F can be written as a composition of I* with W, we conclude that F is
continuous and compact on R x X. The operator G is continuous and compact because
G can be regarded as a special case of F. This completes the proof. d

The analog of the following result can be found in [23]. However, our growth condition
described in assumption (F4) is slightly different from that of [23].

Lemma 3.4 Let assumptions (wl), (w2), (F1) and (F4) be fulfilled. Then the operator
F(0,-) : X — X* has the following property:

IE©, )l

lulix—o0 [zl

Proof Let 0 < ¢ < 1. Choose a positive constant R such that |b(r)| < er for all » > R. Since b
islocally bounded, there is a nonnegative constant Cg such that |b(r)| < Cgforallr € [0, R].
Let u € X with |Ju|/x > 1. Set Qg = {x € Q: |u(x)| + |Vu(x)| < R}. Without loss of generality,
we may suppose that

fb(|u|+|Vu|)(pS)'dx>1 and '/|u|(p3)*+|Vu|(”‘)*dx>1.
Q Q

By assumption (F4), Lemma 2.5 and the continuous imbedding X <> W's®(Q) <
WLs)-(Q), we obtain that

(0, (), Vuu()) ||U7’(x)(s2)

(p——1)s—
o HLP’Mm)

< Ha + b(|u| + |Vu|)

(p—-1)s—
< llall ooy + [ B(ul +1V24l) | o1y,

1

) (A
(s)- dx)

< llall g + ( /Q |b(|u(x)] + |Vulx)|)

p—-1
< lalpwg) + (/ (Cr)P)- dx>
Qr

+ (/ e(”S)*(|u(x)| + |Vu(x)|)(pS)’ dx)
Q\Q

p—-1
p-
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- ceo- Q)
= “a”Lp’(x)(Q) + ( R meas( R))
p—-1

(p=-Ds—  (p—=D(ps)— p-
+2 I g P ( / |u(x) (bs)- dx)
Q

) p—-1 (p—-Ds—  (p=-D(ps)— p—Ds-

_ — Ts—
V" meas(Qpg)) 7~ +2 - & P C1||M||W1,+(;s)_m)

o), ’Vu(x)

< lall g + (CF

Pl (po-Ds- (p--Dips)- (p—-Ds—
< llall g + (CFmeas(Qe)) 7= +2 7 & = adiluly ™

. Pl ol (poDipo)- .
< llall g + (CF meas(Qe) 7= +27 T & = adiluly ™

where ¢; and d; are positive constants. It follows from Holder’s inequality that

|(F(0,u), )| = ‘/Qf(o,x,u(x),Vu(x))ga(x) dx

< 2[[£(0,1(x), Vit()) | o 10100 )

5)- ==

< 2d2(||6l||Lp/(x)(Q) + (C}f meas(Qg)) -
(s (p--D(ps)- -

+2 e 7~ adull ) lellx

for all u, ¢ € X with ||u||x > 1, where dj is a positive constant. Consequently, we get

IE(0, )|l x+

lulx—oo |ly|B-t 0

Recall that a real number p is called an eigenvalue of (E) if the equation

J () = nG(u)

has a solution #, in X which is different from the origin.

The following lemma is a consequence about nonlinear spectral theory and its proof can
be found in [23]. For the case that p(x) is a constant, this assertion has been obtained by
using the Furi-Martelli-Vignoli spectrum; see Theorem 4 of [29] or Lemma 27 of [20].

Lemma 3.5 Suppose that assumptions (wl) and (w2) are fulfilled. If i is not an eigenvalue
of (E), then we have

limint V) = rG@)llx-
iminf ———————

> 0. 3.16
lullx—o0 lull% " (316)

4 Bifurcation result
In this section, we are ready to prove the main result. We give the definition of weak so-
lutions for our problem.

Definition 4.1 A weak solution of (B) is a pair (A, %) in R x X such that
J(u) — uG(u) = F(A,u) in X,

where J, F and G are defined by (3.1), (3.13) and (3.14), respectively.
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The following result, taken from Theorem 2.2 of [20], is a key tool to obtain our bifur-
cation result.

Lemma 4.2 Let X be a Banach space and Y be a normed space. Suppose that ] : X — Y
is a homeomorphism and G : X — Y is a continuous and compact operator such that the
composition ] o (=G) is odd. Let F : R x X — Y be a continuous and compact operator. If
the set

U {u eX:Ju)+Gu) = tF(O,u)}

te[0,1]

is bounded, then the set
{(A,u) eRxX:J(u) + G(u) :F(A,u)}
has an unbounded connected set C < (R \ {0}) x X such that C intersects {0} x X.

Finally we establish the existence of an unbounded branch of the set of solutions for

Neumann problem (B) thereby using Lemma 4.2.

Theorem 4.3 Let conditions (wl), (w2), and (F1)-(F4) be satisfied. If i1 is not an eigenvalue
of (E), then there is an unbounded connected set C C (R \ {0}) x X such that every point
(A, u) in C is a weak solution of the above problem (B) and C intersects {0} x X.

Proof By Theorem 3.2 and Lemma 3.3, J : X — X* is a homeomorphism, the operators G
and F are continuous and compact, and /! o (1G) is odd. Since u is not an eigenvalue of
(E), we get by Lemma 3.5

I (1) — nG () llx+

liminf ————"—" 0.
llellx— o0 fll|5

This together with Lemma 3.4 implies that for some § > 0, there is a positive constant
R >1 such that

) - 1Gw)|

o > Bllully ™ > | F(0, )|

v = | £E(0,u)

X*

for all # € X with ||ul|x > R and for all ¢ € [0,1]. Therefore, the set

U {#eX /@) - nGw) = tF (0, u)}

te[0,1]
is bounded. By Lemma 4.2, the set
{(A, u) e R x X :J(u)— nuG(u) = F(A, u)}

contains an unbounded connected set C which C intersects {0} x X. This completes the
proof. d

In particular the following example illustrates an application of our bifurcation result.
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Example 4.4 Suppose that assumptions (wl) and (w2) are fulfilled and g € L>*(2). If u
is not an eigenvalue of (E), then there is an unbounded connected set C such that every
point (A, u) in C is a weak solution of the following nonlinear problem:

; 2 2 2 28 ;
—diviw(®) | VulPW=2Vu) + [ulP 2y = p1g(x)|uP®2u + Malx) + |u|9@ "u) in Q,

u _ on 9%,

gu —
where a € L7¥ () and the conjugate function of g(x) is strictly less than pi(x).

Proof Let f(A,x,u, Vi) = Aa(x) + |u[P®/4®-1y), Then it is clear that f satisfies conditions
(F1)-(F4). Therefore, the conclusion follows from Theorem 4.3. |
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