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Abstract
In this paper, we consider the free boundary value problem (FBVP) for
one-dimensional isentropic compressible Navier-Stokes equations (CNS) with
density-dependent viscosity coefficient and constant exterior pressure. Under certain
assumptions imposed on the initial data, the global existence and uniqueness of a
strong solution to FBVP for CNS are established, in particular, the strong solution
tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the
time tends to infinity.
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1 Introduction
In the present paper, we consider the free boundary value problem to one-dimensional
isentropic compressible Navier-Stokes equations with density-dependent viscosity coef-
ficient for regular initial data in the case that across the free surface the stress tensor is
balanced by constant exterior pressure. In general, one-dimensional isentropic compress-
ible Navier-Stokes equations with density-dependent viscosity coefficient can be written
as {

ρt + (ρu)x = ,
(ρu)t + (ρu + P(ρ))x = (μ(ρ)ux)x, (x, t) ∈ R× [,T],

(.)

where ρ > , u and P(ρ) = ργ (γ > ) stand for the flow density, velocity and pressure,
respectively, and the viscosity coefficient is μ(ρ) = ρα with α > . Note here that the case
γ =  and α =  in (.) corresponds to the viscous Saint-Venant system for shallow water.
Recently, there have been much significant progress achieved on the compressible

Navier-Stokes equations with density-dependent viscosity coefficients. For instance, the
mathematical derivations are obtained in the simulation of flow surface in shallow region
[, ]. The existence of solutions for the D shallow water equations is investigated by
Bresch and Desjardins [, ]. The well-posedness of solutions to the free boundary value
problemwith initial finitemass and the flow density being connected with the infinite vac-
uum either continuously or via jump discontinuity is considered by many authors; refer
to [–] and the references therein. The global existence of classical solutions is shown
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by Mellet and Vasseur []. The qualitative behaviors of global solutions and dynamical
asymptotics of vacuum states are also made, such as the finite time vanishing of finite
vacuum or the asymptotical formation of vacuum in large time, the dynamical behaviors
of vacuum boundary, the large time convergence to rarefaction wave with vacuum, and
the stability of shock profile with large shock strength; refer to [–] and the references
therein.
In addition, some important progress has been made about free boundary value prob-

lems for multi-dimensional compressible viscous Navier-Stokes equations with constant
viscosity coefficients for either barotropic or heat-conducive fluids by many authors; for
example, in the case that across the free surface stress tensor is balanced by a constant exte-
rior pressure and/or the surface tension, classical solutions with strictly positive densities
in the fluid regions to FBVP for CNS (.) with constant viscosity coefficients are proved
locally in time for either barotropic flows [–] or heat-conductive flows [–]. In
the case that across the free surface the stress tensor is balanced by exterior pressure [],
surface tension [], or both exterior pressure and surface tension [], respectively, as
the initial data is assumed to be near to a non-vacuum equilibrium state, the global exis-
tence of classical solutions with small amplitude and positive densities in fluid region to
the FBVP for CNS (.) with constant viscosity coefficients is obtained. The global exis-
tence of classical solutions to FBVP for compressible viscous and heat-conductive fluids
is also established with the stress tensor balanced by the exterior pressure and/or surface
tension across the free surface; refer to [, ] and the references therein.
In this paper, we consider the free boundary value problem (FBVP) for one-dimensional

isentropic compressible Navier-Stokes equations with density-dependent viscosity coeffi-
cient and constant exterior pressure, and we focus on the existence, regularities and dy-
namical behaviors of a global strong solution, etc.As γ >  we show that the free boundary
value problemwith regular initial data admits a unique global strong solution which tends
pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends
to infinity (refer to Theorem . for details).
The rest of the paper is arranged as follows. In Section , the main results about the

existence and dynamical behaviors of a global strong solution to FBVP with two different
initial data for compressible Navier-Stokes equations are stated. Then, some important
a priori estimates are given in Section  and the theorem is proven in Section .

2 Main results
Weare interested in the global existence and dynamics of the free boundary value problem
for (.) with the following initial data and boundary conditions:

{
(ρ,u)(x, ) = (ρ,u), x ∈ [a,b],
(ργ – ραux)(a(t), t) = pe, (ργ – ραux)(b(t), t) = pe, t > ,

(.)

where x = a(t) and x = b(t) are the free boundaries defined by

{
d
dt a(t) = u(a(t), t), a() = a,
d
dt b(t) = u(b(t), t), b() = b, t > ,

(.)

and the positive constant pe is the exterior pressure.
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Without loss of generality, the total initial mass is renormalized to be one, i.e.,

∫ b(t)

a(t)
ρ(x, t)dx =

∫ b

a
ρ(x)dx := . (.)

Define

E :=



∫ b

a
ρu dx +

∫ b

a
ρ

(


γ – 
(
ρ

γ–
 – ρ̄γ–) + ρ̄γ

(
ρ–
 – ρ̄–))dx (.)

and

E :=



∫ b

a
ρ

(
u +


α

(
ρα

)
x

)

dx

+
∫ b

a
ρ

(


γ – 
(
ρ

γ–
 – ρ̄γ–) + ρ̄γ

(
ρ–
 – ρ̄–))dx, (.)

where ρ̄ := p

γ
e > .

Firstly, we consider the initial data satisfying

⎧⎪⎨⎪⎩
inf[a,b] ρ ≥ ρ > , (ρ,u) ∈ W ,∞([a,b]),
(ργ

 – ρα
ux)(a) = ρ̄γ , (ργ

 – ρα
ux)(b) = ρ̄γ ,

|ρα
 (a) – ρ̄α| ≤ δ, |ρα

 (b) – ρ̄α| ≤ δ,
(.)

where ρ and δ >  are positive constants, δ is bounded, and we also consider the other
initial data satisfying

⎧⎪⎨⎪⎩
inf[a,b] ρ ≥ ρ > , (ρ,u) ∈ W ,∞([a,b]),
(ργ

 – ρα
ux)(a) = ρ̄γ , (ργ

 – ρα
ux)(b) = ρ̄γ ,

ρ(b) ≥ ρ(a)≥ ρ̄,
(.)

note that the compatibility conditions between the initial data and boundary conditions
hold. Then we have the global existence and time-asymptotical behavior of a strong solu-
tion as follows.

Theorem . (FBVP) Let γ > . Assume that the initial data satisfies (.) for  < α ≤ 
 ,

and satisfies (.) together with

E


 (E + E)


 ≤ ν

(α – )
ρ̄

γ+α–
 (.)

for α > 
 or the initial data satisfies (.) for  < α ≤ 

 , and satisfies (.) together with

E



(
E + E +

(
ρ

γ
 (b) – ρ̄γ

)
b –

(
ρ

γ
 (a) – ρ̄γ

)
a

) 
 ≤ ν

(α – )
ρ̄

γ+α–
 (.)
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for 
 < α ≤ γ , where ν is a positive constant. Then there exists a unique global strong solu-

tion (ρ,u,a,b) to FBVP (.) and (.) satisfying, for T > ,⎧⎪⎨⎪⎩
c≤ ρ ∈ L∞(,T ;H([a(t),b(t)]))∩C([a(t),b(t)]× [,T]),
u ∈ L∞(,T ;H([a(t),b(t)]))∩ L(,T ;H([a(t),b(t)])),
a(t),b(t) ∈ H([,T]), (ργ – ραux) ∈ L∞(,T ;L([a(t),b(t)])),

(.)

with c >  being a constant independent of time.
If it further holds that u ∈ H([a,b]), then (ρ,u,a,b) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(ρ,u) ∈ C([a(t),b(t)]× [,T]),
ρ ∈ L∞(,T ;H([,a(t)])), ρt ∈ L∞(,T ;L([a(t),b(t)])),
u ∈ L∞(,T ;H([a(t),b(t)]))∩ L(,T ;H([a(t),b(t)])),
ut ∈ L∞(,T ;L([a(t),b(t)]))∩ L(,T ;H([a(t),b(t)])),
a(t),b(t) ∈ H([,T]), (ργ – ραux) ∈ C([,T]× ([a(t),b(t)])).

(.)

The solution (ρ,u) tends to the non-vacuum equilibrium state exponentially∥∥(ρ – ρ̄,u)(·, t)∥∥L∞([a(t),b(t)]) ≤ Ce–Ct , t > , (.)

where C and C are positive constants independent of time.

Remark . Theorem . holds for the one-dimensional Saint-Venant model for shallow
water, i.e., γ = , α = .

Remark . The initial constraints (.) and (.) do not always require that the pertur-
bation of the initial data around the equilibrium state (ρ̄, ) is small. Indeed, it can be large
provided that the state ρ̄ >  is large enough.

3 The a priori estimates
It is convenient to make use of the Lagrange coordinates in order to establish the a priori
estimates. Take the Lagrange coordinates transform

ξ =
∫ x

a(t)
ρ(y, t)dy, τ = t. (.)

Since the conservation of total mass holds, the boundaries x = a(t) and x = b(t) are trans-
formed into ξ =  and ξ = , respectively, and the domain [a(t),b(t)] is transformed into
[, ]. FBVP (.) and (.) is reformulated into⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρτ + ρuξ = ,
uτ + (ργ )ξ = (ρ+αuξ )ξ ,
(ρ,u) = (ρ,u)(ξ ), ξ ∈ [, ],
(ργ – ρ+αuξ )(, τ ) = ρ̄γ , (ργ – ρ+αuξ )(, τ ) = ρ̄γ , τ ∈ [,T],

(.)

where the initial data satisfies⎧⎪⎨⎪⎩
inf[,] ρ ≥ ρ > , (ρ,u) ∈W ,∞([, ]),
(ργ

 – ρ+α
 ux)() = ρ̄γ , (ργ

 – ρ+α
 ux)() = ρ̄γ ,

|ρα
 () – ρ̄α| ≤ δ, |ρα

 () – ρ̄α| ≤ δ

(.)
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or ⎧⎪⎨⎪⎩
inf[,] ρ ≥ ρ > , (ρ,u) ∈W ,∞([, ]),
(ργ

 – ρ+α
 ux)() = ρ̄γ , (ργ

 – ρ+α
 ux)() = ρ̄γ ,

ρ()≥ ρ()≥ ρ̄,
(.)

and the consistencies between the initial data and boundary conditions hold.
Next, we deduce the a priori estimates for the solution (ρ,u) to FBVP (.).

Lemma . Let T > .Under the assumptions of Theorem ., it holds for any strong solu-
tion (ρ,u) to FBVP (.) that∫ 



(


u +


γ – 

(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ

+
∫ τ



∫ 


ρ+αuξ dξ ds = E, τ ∈ [,T]. (.)

Proof Taking the product of (.) with u, integrating on [, ] and using boundary con-
ditions, we have




d
dτ

∫ 


u dξ +

∫ 


ρ+αuξ dξ

=
∫ 


uξ

(
ργ – ρ̄γ

)
dξ =

∫ 



(
ργ– – ρ̄γ ρ–)(–ρτ )dξ

= –
d
dτ

∫ 



(


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ , (.)

which leads to (.) after the integration with respect to τ ∈ [,T]. �

Lemma . Let T > .Under the assumptions of Theorem ., it holds for any strong solu-
tion (ρ,u) to FBVP (.) with the initial data satisfying (.) that

∫ 



(



(
u +


α

(
ρα

)
ξ

)

+


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ

+ γ

∫ τ



∫ 


ργ+α–ρ

ξ dξ ds ≤ E, τ ∈ [,T]. (.)

As the initial data satisfies (.), it holds

∫ 



(



(
u +


α

(
ρα

)
ξ

)

+


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ

+ γ

∫ τ



∫ 


ργ+α–ρ

ξ dξ ds +
(
ργ (, τ ) – ρ̄γ

)
b(τ ) –

(
ργ (, τ ) – ρ̄γ

)
a(τ )

+
γ

α

∫ τ



(
ργ–α(, s)

(
ργ (, s) – ρ̄γ

)
b(s) – ργ–α(, s)

(
ργ (, s) – ρ̄γ

)
a(s)

)
ds

= E +
(
ρ

γ
 () – ρ̄γ

)
b –

(
ρ

γ
 () – ρ̄γ

)
a, τ ∈ [,T], (.)

where a(τ ) satisfies a′(τ ) = u(, τ ) and a() = a, b(τ ) satisfies b′(τ ) = u(, τ ) and b() = b.
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Proof Multiplying (.) by ρα– leads to

(
ρα

)
τ
/α + ρ+αuξ = , (.)

which gives

(
ρα

)
τξ
/α +

(
ρ+αuξ

)
ξ
= . (.)

Summing (.) and (.), we deduce

(
u +

(
ρα

)
ξ
/α

)
τ
+

(
ργ

)
ξ
= . (.)

Multiplying (.) by (u + (ρα)ξ /α) and integrating the result over [, ]× [, τ ], we have

d
dτ

∫ 



(



(
u +


α

(
ρα

)
ξ

)

+


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ

+ γ

∫ 


ργ+α–ρ

ξ dξ +
((

ργ (, τ ) – ρ̄γ
)
u(, τ ) –

(
ργ (, τ ) – ρ̄γ

)
u(, τ )

)
= . (.)

Next, we prove (.) in the case that the initial data satisfies (.) firstly, to obtain (.).
We assume a priori that there are constants ρ± >  so that

 < ρ– ≤ ρ(ξ , τ ), ρ̄ ≤ ρ+, (ξ , τ ) ∈ [, ]× [,T],T > . (.)

By means of (.) and the boundary condition, we have

(
ρα(, τ ) – ρ̄α

)
τ
+

(
ργ (, τ ) – ρ̄γ

)
= , (.)

which yields

ρα(, τ ) – ρ̄α =
(
ρα
 () – ρ̄α

)
e–

∫ τ


ργ (,s)–ρ̄γ

ρα (,s)–ρ̄α ds. (.)

From (.), we can obtain

γ

α
ργ–α
– ≤ ργ (, τ ) – ρ̄γ

ρα(, τ ) – ρ̄α
≤ γ

α
ργ–α
+ . (.)

It holds from (.), (.), (.) and (.) that∣∣∣∣∫ τ



(
ργ (, s) – ρ̄γ

)
u(, s)ds

∣∣∣∣
≤ Ĉ

∫ τ


ργ–α
+

∣∣ρα(, s) – ρ̄α
∣∣(∫ 


u dx +

∫ 


ux dx

) 

ds

≤ Ĉ
∫ τ



∣∣ρα
 () – ρ̄α

∣∣e– γ
α ργ–α

– s
(

ρ(γ–α)
+ +

∫ 


u dξ + ρ–(+α)

–

∫ 


ρ+αux dξ

)
ds

≤ Ĉ
∣∣ρα

 () – ρ̄α
∣∣(ρα–γ

– ρ(γ–α)
+ + ρα–γ

– + ρ–(+α)
–

) ≤ 

E, (.)

http://www.boundaryvalueproblems.com/content/2014/1/93
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where Ĉ is a positive constant independent of time, and we assume that

∣∣ρα
 () – ρ̄α

∣∣ ≤min

{
ργ–α
– ρ

(α–γ )
+

Ĉ
E,

ργ–α
–

Ĉ
E,

ρ+α
–

Ĉ
E

}
:= δ. (.)

Using the same method we can obtain

∣∣∣∣∫ τ



(
ργ (, s) – ρ̄γ

)
u(, s)ds

∣∣∣∣ ≤ 

E. (.)

From (.), (.) and (.), we have (.).
Then, we prove (.) as the initial data satisfies (.), where we have the fact

∫ τ



((
ργ (, s) – ρ̄γ

)
u(, s) –

(
ργ (, s) – ρ̄γ

)
u(, s)

)
ds

=
∫ τ



(
ργ (, s) – ρ̄γ

)
b′(s)ds –

∫ τ



(
ργ (, s) – ρ̄γ

)
a′(s)ds

=
(
ργ (, τ ) – ρ̄γ

)
b(τ ) –

(
ρ

γ
 () – ρ̄γ

)
b –

(
ργ (, τ ) – ρ̄γ

)
a(τ ) +

(
ρ

γ
 () – ρ̄γ

)
a

–
γ

α

∫ τ


b(s)ργ–α(, s)

(
ρα(, s)

)
τ
ds +

γ

α

∫ τ


a(s)ργ–α(, s)

(
ρα(, s)

)
τ
ds

=
(
ργ (, τ ) – ρ̄γ

)
b(τ ) –

(
ργ (, τ ) – ρ̄γ

)
a(τ ) –

(
ρ

γ
 () – ρ̄γ

)
b +

(
ρ

γ
 () – ρ̄γ

)
a

+
γ

α

∫ τ


ργ–α(, s)

(
ργ (, s) – ρ̄γ

)
b(s)ds

–
γ

α

∫ τ


ργ–α(, s)

(
ργ (, s) – ρ̄γ

)
a(s)ds. (.)

Applying equation (.) and the boundary condition, we have that

(
ρα(, τ ) – ρα(, τ )

)
τ
+

(
ργ (, τ ) – ργ (, τ )

)
=  (.)

and

ρα(, τ ) – ρα(, τ ) =
(
ρα
 () – ρα

 ()
)
e–

∫ τ


ργ (,s)–ργ (,s)
ρα (,s)–ρα (,s) ds ≥ , (.)

which together with

ρα(, τ ) – ρ̄α =
(
ρα
 () – ρ̄α

)
e–

∫ τ


ργ (,s)–ρ̄γ

ρα (,s)–ρ̄α ds ≥ , (.)

ρα(, τ ) – ρ̄α =
(
ρα
 () – ρ̄α

)
e–

∫ τ


ργ (,s)–ρ̄γ

ρα (,s)–ρ̄α ds ≥  (.)

and

b(τ ) – a(τ ) =
∫ 




ρ(ζ , τ )

dζ >  (.)

gives rise to (.). �
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Lemma . Let T > . Under the assumptions of Theorem ., it holds

 < ρ∗ ≤ ρ(ξ , τ )≤ ρ∗, (ξ , τ ) ∈ [, ]× [,T],T > , (.)

where ρ∗ and ρ∗ are positive constants independent of time.

Proof Define

ϕ(ρ) :=


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–) (.)

and

ψ(ρ) :=
∫ ρ

ρ̄

ϕ(η)

 ηα– dη. (.)

It is easy to verify that ϕ(ρ)≥  and ψ ′(ρ)≥ . In addition, it holds as ρ → +∞ that

lim
ρ→+∞ψ(ρ) → (γ – )–


 lim

ρ→+∞

∫ ρ

ρ̄

η
γ+α–

 dη

= lim
ρ→+∞


(γ + α – )

√
γ – 

(
ρ

γ+α–
 – ρ̄

γ+α–


) → +∞, (.)

and as ρ →  that

lim
ρ→

ψ(ρ) → lim
ρ→

∫ ρ

ρ̄

ρ̄
γ
 ηα– 

 dη

=

{
limρ→


α– ρ̄

γ
 (ρα– 

 – ρ̄α– 
 ), α �= 

 ,
limρ→ ρ̄

γ
 (lnρ – ln ρ̄), α = 



→
{
–∞,  < α ≤ 

 ,
– 

α– ρ̄
γ+α–

 , α > 
 .

(.)

As the initial data satisfies (.), it follows from (.) and (.) that

∣∣ψ(
ρ(ξ , τ )

)∣∣ ≤ ∣∣ψ(
ρ(, τ )

)∣∣ + ∣∣∣∣∫ 


∂ξψ(ρ)dξ

∣∣∣∣
≤ C̃

∣∣ρα(, τ ) – ρ̄α
∣∣ + ∣∣∣∣∫ 


ϕ(ρ)


 ρα–ρξ dξ

∣∣∣∣
≤ C̃

∣∣ρα
 () – ρ̄α

∣∣ + 
ν

(∫ 


ϕ(ρ)dξ

) 

(∫ 




α

(
ρα

)
ξ
dξ

) 


≤ 
ν
E



 (E + E)


 , (.)

where C̃ and ν are positive constants independent of time, and we assume that

∣∣ρα
 () – ρ̄α

∣∣ ≤min

{

C̃ν

E


 (E + E)


 , δ

}
:= δ. (.)
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As  < α ≤ 
 and as α > 

 , from the condition

E


 (E + E)


 ≤ ν

(α – )
ρ̄

γ+α–
 , (.)

we can find that there are two positive constants ρ∗ and ρ∗ independent of time and choose

ρ– =
ρ∗

, ρ+ = ρ∗, (.)

such that

 < ρ– < ρ∗ ≤ ρ(ξ , τ )≤ ρ∗ < ρ+, (ξ , τ ) ∈ [, ]× [,T],T > . (.)

As the initial data satisfies (.), it follows from (.) and (.) that

∣∣ψ(
ρ(ξ , τ )

)∣∣ ≤
∣∣∣∣∫ 


ψ(ρ)dξ

∣∣∣∣ + ∣∣∣∣∫ 


∂ξψ(ρ)dξ

∣∣∣∣
≤

∣∣∣∣∫ 


ϕ(ρ)


 ρα dξ

∣∣∣∣ + ∣∣∣∣∫ 


ϕ(ρ)


 ρα–ρξ dξ

∣∣∣∣
≤ 

ν

(∫ 


ϕ(ρ)dξ

) 

(∫ 


ρα dξ

) 


+

ν

(∫ 


ϕ(ρ)dξ

) 

(∫ 




α

(
ρα

)
ξ
dξ

) 


≤ 
ν

(∫ 


ϕ(ρ)dξ

) 

(∫ 




α

(
ρα

)
ξ
dξ

) 


≤ 
ν
E




(
E + E +

(
ρ

γ
 (b) – ρ̄γ

)
b –

(
ρ

γ
 (a) – ρ̄γ

)
a

) 
 , (.)

where ν is a positive constant independent of time, and we use the fact that

∥∥ρα(ξ , τ )
∥∥
L ≤ ∥∥ρα(ξ , τ )

∥∥
L∞ ≤ C

∥∥ρα(ξ , τ )
∥∥
L

∥∥(
ρα

)
ξ
(ξ , τ )

∥∥
L , (.)

which together with Young’s inequality gives

∥∥ρα(ξ , τ )
∥∥
L ≤ C

∥∥(
ρα

)
ξ
(ξ , τ )

∥∥
L , (.)

where C is a positive constant independent of time. As  < α ≤ 
 and as 

 < α ≤ γ , by
means of the condition

E



(
E + E +

(
ρ

γ
 (b) – ρ̄γ

)
b –

(
ρ

γ
 (a) – ρ̄γ

)
a

) 
 ≤ ν

(α – )
ρ̄

γ+α–
 , (.)

we can obtain two positive constants ρ∗ and ρ∗ independent of time such that

 < ρ∗ ≤ ρ(ξ , τ )≤ ρ∗, (ξ , τ ) ∈ [, ]× [,T],T > . (.)

The proof of this lemma is completed. �
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We also have the regularity estimates for the solution (ρ,u) to FBVP (.) as follows.

Lemma . Let T > .Under the assumptions of Theorem ., it holds for any strong solu-
tion (ρ,u) to FBVP (.) that

⎧⎪⎨⎪⎩
ρ ∈ L∞(,T ;H([, ]))∩C([, ]× [,T]),
u ∈ L∞(,T ;H([, ]))∩ L(,T ;H([, ])),
a(τ ),b(τ ) ∈H([,T]), (ργ – ρ+αuξ ) ∈ L∞(,T ;L([, ])).

(.)

If it is also satisfied that

u ∈H([, ]), (.)

then the strong solution (ρ,u) has the regularities

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(ρ,u) ∈ C([, ]× [,T]),
ρ ∈ L∞(,T ;H([, ])), ρτ ∈ L∞(,T ;L([, ])),
u ∈ L∞(,T ;H([, ]))∩ L(,T ;H([, ])),
uτ ∈ L∞(,T ;L([, ]))∩ L(,T ;H([, ])),
a(τ ),b(τ ) ∈H([,T]), (ργ – ρ+αuξ ) ∈ C([,T]× ([, ])).

(.)

Proof Multiplying (.) by ρ–(+α)uτ , integrating the result over [, ] and making use of
the boundary conditions, after a direct computation and recombination, we have

d
dτ

∫ 



(


uξ –

(
ργ – ρ̄γ

)
ρ–(+α)uξ

)
dξ +

∫ 


ρ–(+α)uτ dξ

=
[
γ – ( + α)

]∫ 


ργ–αuξ dξ + ( + α)ρ̄γ

∫ 


ρ–αuξ dξ

– ( + α)
∫ 



(
ργ – ρ̄γ

)
ρ–(+α)ρξuτ dξ + ( + α)

∫ 


ρ–ρξuξuτ dξ . (.)

Integrating equation (.) over [, τ ], from (.), (.), (.) and (.), it is easily verified
that

∫ 


uξ dξ +

∫ τ



∫ 


us dξ ds

≤ C +C
∫ τ



∫ 


uξ dξ ds +C

∫ τ



∫ 


ρ

ξ dξ ds +C
∫ τ



∫ 


ρ

ξ u

ξ dξ ds, (.)

where C denotes a constant independent of time. From (.), (.), (.), (.) and (.),
we deduce

C
∫ τ



∫ 


ρ

ξ u

ξ dξ ds ≤ C



∫ τ



∫ 


ρ

ξ u

ξ dξ ds +




∫ τ



∫ 


us dξ ds

+C
∫ τ



∫ 


ρ

ξ dξ ds +C
∫ τ



∫ 


uξ dξ ds. (.)
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Using (.), we can obtain that

∫ 


uξ dξ +

∫ τ



∫ 


us dξ ds≤ C, (.)

which together with (.) implies

∫ 


uξ dξ +

∫ τ



∫ 


us dξ +

∫ τ



∫ 


uξξ dξ dτ ≤ C. (.)

Differentiating (.) with respect to τ , we get

uττ +
(
ργ

)
ξτ

=
(
ρ+αuξ

)
ξτ
. (.)

Taking product between (.) and uτ , integrating the results over [, ] and using the
boundary conditions (.), we have




d
dτ

∫ 


uτ dξ =

∫ 



(
ργ – ρ̄γ

)
τ
uξτ dξ –

∫ 



(
ρ+αuξ

)
τ
uξτ dξ . (.)

The terms on the right-hand side of (.) can be bounded respectively as follows:

∫ 



(
ργ – ρ̄γ

)
τ
uξτ dξ = –

∫ 


γργ+uξuξτ dξ

≤ –
γ


d
dτ

∫ 


ργ+uξ dξ +C

∫ 



(
ρ+αuξ + ργ–α+uξ

)
dξ (.)

and

–
∫ 



(
ρ+αuξ

)
τ
uξτ dξ = –

∫ 



(
( + α)ραρτuξ + ρ+αuξτ

)
uξτ dξ

≤ –



∫ 


ρ+αuξτ dξ +C

∫ 


ρ+αuξ dξ . (.)

Summing (.)-(.) together and making use of (.) and (.), we obtain




d
dτ

∫ 


uτ dξ +

γ


d
dτ

∫ 


ργ+uξ dξ +




∫ 


ρ+αuξτ dξ

≤ C
∫ 


uξ dξ +C‖uξ‖L∞([,])

∫ 


uξ dξ

≤ C +C‖uξ‖L∞([,])

∫ 


uξ dξ . (.)

Integrating equation (.) over [, τ ], we get from (.), (.) and (.) that

∫ 


uτ dξ +

∫ 


uξ dξ +

∫ τ



∫ 


uξ s dξ ds

≤ C +C sup
τ∈[,T]

‖uξ‖L∞
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≤ C +C sup
τ∈[,T]

(∫ 


uξ dξ

) 

(∫ 


uξξ dξ

) 


≤ C +



∫ 


uτ dξ , (.)

which gives

∫ 


uτ dξ +

∫ 


uξ dξ +

∫ T



∫ 


uξτ dξ dτ ≤ C, (.)

which implies (ργ – ρ+αuξ ) ∈ L∞(,T ;H([, ])), and it follows from the definition of
a′(τ ) = u(, τ ) and b′(τ ) = u(, τ ) that a(τ ),b(τ ) ∈ H([,T]). The proof of this lemma is
completed. �

Finally, we give the large time behaviors of the strong solution as follows.

Lemma . Let T > .Under the assumptions of Theorem ., it holds for any strong solu-
tion (ρ,u) to FBVP (.) that

∥∥(ρ – ρ̄,u)(·, τ )∥∥L∞([,]) ≤ Ce–Cτ , τ > , (.)

where C and C denote two positive constants independent of time.

Proof Applying (.) and (.) with modification, we can obtain

d
dτ

∫ 



(


u +


γ – 

(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ +

∫ 


uξ dξ ≤  (.)

and

d
dτ

∫ 



(



(
u +


α

(
ρα

)
ξ

)

+


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ +

∫ 


ρ

ξ dξ

≤ –
((

ργ (, τ ) – ρ̄γ
)
u(, τ ) –

(
ργ (, τ ) – ρ̄γ

)
u(, τ )

)
. (.)

We have from (.), (.), (.), the Gagliardo-Nirenberg-Sobolev inequality and Young’s
inequality that

∫ 



(


γ – 
(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ

≤ C
∫ 


(ρ – ρ̄) dξ ≤ C

∫ 


ρ

ξ dξ , (.)∫ 


u dξ ≤ C

∫ 


uξ dξ , (.)

and define

E(τ ) :=
∫ 



(


u +




(
u + r

(
ρα

)
ξ

) + 
γ – 

(
ργ– – ρ̄γ–) + ρ̄γ

(
ρ– – ρ̄–))dξ . (.)
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As the initial data satisfies (.), we have

∣∣(ργ (, τ ) – ρ̄γ
)
u(, τ )

∣∣ + ∣∣(ργ (, τ ) – ρ̄γ
)
u(, τ )

∣∣ ≤ Ce–Cτ , (.)

whereC andC are positive constants independent of time. By (.)-(.), a complicated
computation gives rise to

d
dτ

E(τ ) +CE(τ )≤ Ce–Cτ , (.)

where C < C is a positive constant independent of time. From (.), we have

E(τ )≤ E()e–Cτ +Ce–Cτ

∫ τ


e–(C–C)s ds ≤ Ce–Cτ . (.)

As the initial data satisfies (.), from (.)-(.), we obtain

ρ(, τ )≥ ρ(, τ )≥ ρ̄ > , (.)

which implies that the domain (b(τ ) – a(τ )) expands as t grows up, so that we have

b′(τ ) – a′(τ ) = u(, τ ) – u(, τ ) ≥ . (.)

Then it holds from (.) and (.) that

(
ργ (, τ ) – ρ̄γ

)
u(, τ ) –

(
ργ (, τ ) – ρ̄γ

)
u(, τ ) ≥ . (.)

Using (.), after a complicated computation, we have

d
dτ

E(τ ) +CE(τ )≤ , (.)

where C is a positive constant independent of time, and we have

E(τ )≤ E()e–Cτ ≤ Ce–Cτ , (.)

where C is a positive constant independent of time.
By the fact

E(τ )≥ c
(∥∥(ρ – ρ̄,u)

∥∥
L([,]) +

∥∥(
ρα

)
ξ

∥∥
L([,])

)
, (.)

where c >  is a constant independent of time, and the Gagliardo-Nirenberg-Sobolev in-
equality

∥∥(ρ – ρ̄,u)
∥∥
L∞([,]) ≤

∥∥(ρ – ρ̄,u)
∥∥ 


L([,])

∥∥(ρ – ρ̄,u)ξ
∥∥ 


L([,]), (.)

we can deduce (.). �
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4 Proof of themain results
Proof The global existence of a unique strong solution to FBVP (.) and (.) can be es-
tablished in terms of the short time existence carried out as in [], the uniform a priori
estimates and the analysis of regularities, which indeed follow from Lemmas .-.. We
omit the details. The large time behaviors follow from Lemma . directly. The proof of
Theorem . is completed. �
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11. Okada, M, Nečasoá, ŠM, Makino, T: Free boundary problem for the equation of one-dimensional motion of

compressible gas with density-dependent viscosity. Ann. Univ. Ferrara, Sez. 7: Sci. Mat. 48, 1-20 (2002)
12. Vong, S, Yang, T, Zhu, C: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum (II).

J. Differ. Equ. 192, 475-501 (2003)
13. Yang, T, Yao, Z, Zhu, C: Compressible Navier-Stokes equations with density-dependent viscosity and vacuum.

Commun. Partial Differ. Equ. 26, 965-981 (2001)
14. Yang, T, Zhao, H: A vacuum problem for the one-dimensional compressible Navier-Stokes equations with

density-dependent viscosity. J. Differ. Equ. 184, 163-184 (2002)
15. Yang, T, Zhu, C: Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Commun.

Math. Phys. 230, 329-363 (2002)
16. Mellet, A, Vasseur, A: Existence and uniqueness of global strong solutions for one-dimensional compressible

Navier-Stokes equations. SIAM J. Math. Anal. 39, 1344-1365 (2008)
17. Guo, Z, Jiu, Q, Xin, Z: Spherically symmetric isentropic compressible flows with density-dependent viscosity

coefficients. SIAM J. Math. Anal. 39, 1402-1427 (2008)
18. Jiu, Q, Wang, Y, Xin, Z: Stability of rarefaction waves to the 1D compressible Navier-Stokes equations with

density-dependent viscosity. Commun. Partial Differ. Equ. 36, 602-634 (2011)
19. Jiu, Q, Xin, Z: The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinet.

Relat. Models 1, 313-330 (2008)
20. Li, H, Li, J, Xin, Z: Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations.

Commun. Math. Phys. 281, 401-444 (2008)

http://www.boundaryvalueproblems.com/content/2014/1/93


Lian and Liu Boundary Value Problems 2014, 2014:93 Page 15 of 15
http://www.boundaryvalueproblems.com/content/2014/1/93

21. Lian, R, Liu, J, Li, H, Xiao, L: Cauchy problem for the one-dimensional compressible Navier-Stokes equations. Acta
Math. Sci., Ser. B 32, 315-324 (2012)

22. Xin, Z: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density. Commun.
Pure Appl. Math. 51, 229-240 (1998)

23. Solonnikov, VA, Tani, A: Free boundary problem for a viscous compressible flow with a surface tension. In: Constantin
Carathéodory: An International Tribute, vol. II, pp. 1270-1303. World Scientific, Teaneck (1991)

24. Zajaczkowski, WM: Existence of local solutions for free boundary problems for viscous compressible barotropic fluids.
Ann. Pol. Math. 60, 255-287 (1995)

25. Zajaczkowski, WM: On nonstationary motion of a compressible barotropic viscous fluid bounded by a free surface.
Diss. Math. 324, 1-101 (1993)

26. Secchi, P, Valli, A: A free boundary problem for compressible viscous fluids. J. Reine Angew. Math. 341, 1-31 (1983)
27. Tani, A: On the free boundary value problem for compressible viscous fluid motion. J. Math. Kyoto Univ. 21, 839-859

(1981)
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