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Abstract
In this paper, we give a Beale-Kato-Majda type criterion of strong solutions to the
incompressible ideal MHD equations. Instead of double exponential estimates, we
get a single exponential bound on ‖(u,h)‖Hs (s > 5

2 ). It can be applied to a system of
an ideal viscoelastic flow.
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1 Introduction
In this paper, wewill get the Beale-Kato-Majda type criterion for the breakdown of smooth
solutions to the incompressible ideal MHD equations in R

 as follows:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut + u · ∇u +∇(p + 
 |h|) = h · ∇h,

ht + u · ∇h = h · ∇u,

∇ · u = , ∇ · h = ,

t = : u = u, h = h,

()

where x ∈ R
, t ≥ , u is the flow velocity, h is the magnetic field, p is the pressure, while

u and h are, respectively, the given initial velocity and initial magnetic field satisfying
∇ · u = , ∇ · h = .
Using the standard energy method [], it is well known that for (u,h) ∈ Hs(R), s ≥ ,

there exists a T >  such that the Cauchy problem () has a unique smooth solution (u,h)
on [,T] satisfying

(
u(t,x),h(t,x)

) ∈ C
(
[,T];Hs) ∩C([,T];Hs–). ()

Recently, Caflisch et al. [] extended thewell-known result of Beale et al. [] to the D ideal
MHD equations. More precisely, they showed that if the smooth solution (u,h) satisfies
the following condition:

∫ T


‖∇ × u‖L∞ dt < ∞ and

∫ T


‖∇ × h‖L∞ dt < ∞, ()

then the solution (u,h) can be extended beyond t = T , namely, for some T� > T , (u,h) ∈
C([,T�);Hs(R)) ∩ C([,T�);Hs–(R)). Many authors also considered the blow-up cri-
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terion of the ideal MHD equations in other spaces; see [–] and references therein. More
recently, for the following incompressible Euler equations:

⎧⎪⎪⎨
⎪⎪⎩
ut + u · ∇u +∇p = ,

∇ · u = ,

t = : u = u,

()

with ∇ · u = , Chen and Pavlovic [] showed that if the solution u to () satisfies

∫ T



(
ιγ (τ )

)– 
 dτ < ∞, ()

where ιγ (t) = min{L, ( ‖ω(t)‖Cγ

‖u‖L
)–


γ+ }, ω = ∇ × u and ‖ω‖Cγ = sup|x–y|<L

|ω(x)–ω(y)|
|x–y|γ , then the

solution u can be extended beyond t = T . The quantity ιγ (t) was introduced by Constantin
in [] (see also the work of Constantin et al. []). For the blow-up criterion of incompress-
ible Euler equations, we refer to [, ] and references therein.

2 Main results
In this short note, we develop these ideas further and establish an analogous blow-up
criterion for solutions of the D ideal MHD equations (). More precisely, we can get the
following theorem.

Theorem . Let (u,h) be a solution to () in the class () for s = 
 + γ . Assume that

∫ T



(
lγ (τ )

)– 
 dτ < ∞, ()

where lγ (t) =min{L, ( ‖ω(t)‖Cγ

‖u‖L
)–


γ+ , ( ‖�(t)‖Cγ

‖h‖L
)–


γ+ },ω =∇×u,� =∇×h and the definition

of Cγ as above.Then there exists a finite positive constant Cγ =O(γ –) independent of (u,h)
and t such that

∥∥(u,h)∥∥Hs ≤ ∥∥(u,h)∥∥Hs exp

{
Cγ

∥∥(u,h)∥∥L

∫ t



(
lγ (τ )

)– 
 dτ

}
()

holds for  ≤ t ≤ T .

Remark . Using a similar method, we also can get the blow-up criterion result about
ideal viscoelastic flow

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u +∇p =
∑

k=(Fk · ∇)Fk ,

∂tFk + u · ∇Fk = (Fk · ∇)u,

∇ · u = , ∇ · Fk = ,

t = : u = u(x), Fk = Fk(x)

()

with ∇ · u = , ∇ · Fk = .
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Theorem . Let (u,F) be a solution to () in the class () for s = 
 + γ . Assume that Lγ (t)

is defined as above, and that

∫ T



(
Lγ (τ )

)– 
 dτ < ∞, ()

where Lγ (t) =min{L, ( ‖(∇×u)(t)‖Cγ

‖u‖L
)–


γ+ , ( ‖(∇×F)(t)‖Cγ

‖F‖L
)–


γ+ }. Then there exists a finite posi-

tive constant Cγ =O(γ –) independent of (u,F) and t such that

∥∥(u,F)∥∥Hs ≤ ∥∥(u,F)∥∥Hs exp

{
Cγ

∥∥(u,F)∥∥L

∫ t



(
Lγ (τ )

)– 
 dτ

}
()

holds for  ≤ t ≤ T .

This system arises in the Oldroyd model for an ideal viscoelastic flow, i.e. a viscoelastic
fluid whose elastic properties dominate its behavior. Here F = F(x, t) ∈ R

× represents
the local deformation gradient of the fluid. The blow-up criterion of the ideal viscoelastic
system can be found in [] and references therein.

3 Proof of Theorem 2.1
For the proof of our main result, firstly we give some properties about the gradient of ve-
locity. Recall that the full gradient of the velocity, ∇u, can be decomposed into symmetric
and antisymmetric parts,

∇u =Du+ +Du–, ()

where

Du± =


(∇u± ∇uT

)
, ()

Du+ is called the deformation tensor.
In the following lemmas, we recall some important properties of Du+ and Du– without

proof [, ].

Lemma . For both the symmetric and the antisymmetric parts Du+, Du– of ∇u, the L

bound

∥∥Du±∥∥
L ≤ C‖ω‖L ()

holds.
The antisymmetric part Du– satisfies

Du–v =


ω ∧ v ()

for any vector v ∈R
. The vorticity ω satisfies the identity

ω(x) =


P.V .

∫
σ (ŷ)ω(x + y)

dy
|y| , ()
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(‘P.V .’ denotes principal value) where σ (ŷ) = ŷ⊗ ŷ – , with ŷ = y
|y| . Notably,

∫
S

σ (ŷ)dμS (y) = , ()

where dμS denotes the standard measure on the sphere S.
The matrix components of the symmetric part have the form

Du+ij =
∑
k

Tk
ij (ωk) =

∑
k


k
ij ∗ ωk , ()

where ωl are the vector components of ω, and where the integral kernels 
k
ij have the prop-

erties


k
ij(y) = σ k

ij (ŷ)|y|–, ()
∥∥σ k

ij
∥∥
C(S) ≤ C, ()

∫
S

σ k
ij (ŷ)dμS (y) = . ()

Thus, in particular, Tk
ij is a Calderon-Zygmund operator, for every i, j,k ∈ {, , }.

We can also give the following useful lemma to provide an upper bound of singular
integral operator for the incompressible Euler equations in [].

Lemma . For L >  fixed, and γ > , let ιγ (t) be defined as above. Moreover, let ωk

(k = , , ) denote the components of the vorticity vector ω(t). Then any singular integral
operator

Tωk(x) =

π

P.V .
∫

σT (ŷ)ωk(x + y)
dy
|y| , ()

with
∫
S

σT (ŷ)dμS (y) = , ‖σT‖C(S) < C, ()

satisfies

‖Tωk‖L∞ ≤ C‖u‖L ι


γ (t) ()

for k ∈ {, , } and the constant C independent of u and t.

Nowwe are ready to give a proof of Theorem ., which is based on combining an energy
estimate for ideal MHD equations with the estimate of (‖∇u‖L∞ + ‖∇h‖L∞ ).
For s > 

 , we recall the definitions of the homogeneous and inhomogeneous Besov
norms for  ≤ p,q ≤ ∞,

‖f ‖Ḃsp,q =
(∑

j∈Z
jqs‖fj‖qLp

) 
q

()
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and

‖f ‖Bsp,q = ‖f ‖Lp +
(∑

j∈Z
jqs‖fj‖qLp

) 
q
, ()

where fj = Pjf is the Paley-Littlewood projection of f of scale j. We take the Bs
, Besov

norm of u(t) and h(t); then

d
dt

(∥∥u(t)∥∥
Bs,

+
∥∥h(t)∥∥

Bs,

)

≤ C
(‖∇u‖∞ + ‖∇h‖L∞

)(∥∥u(·, t)∥∥
Bs,

+
∥∥h(·, t)∥∥

Bs,

)
. ()

Therefore,

d
dt

(∥∥u(t)∥∥Bs,
+

∥∥h(t)∥∥Bs,

)

≤ C
(‖∇u‖∞ + ‖∇h‖L∞

)(∥∥u(·, t)∥∥Bs,
+

∥∥h(·, t)∥∥Bs,

)
. ()

However, applying the results of Lemma . and Lemma . to u and h, and by the defini-
tion of lγ (t), we obtain

‖∇u‖L∞ + ‖∇h‖L∞ ≤ ∥∥Du+∥∥L∞ +
∥∥Du–∥∥L∞ +

∥∥Dh+∥∥L∞ +
∥∥Dh–∥∥L∞

≤ Cγ

(‖u‖L + ‖h‖L
)(
lγ (t)

)– 
 . ()

Therefore, we get

∥∥u(t)∥∥Hs +
∥∥h(t)∥∥Hs

� ∥∥u(t)∥∥Bs,
+

∥∥h(t)∥∥Bs,

≤ (‖u‖Bs, + ‖h‖Bs,
)
exp

{
C

(‖u‖L + ‖h‖L
)∫ t


lγ (s)–


 ds

}

� (‖u‖Hs + ‖h‖Hs
)
exp

{
C

(‖u‖L + ‖h‖L
)∫ t


lγ (s)–


 ds

}

for s ≥ 
 + γ . Thus we complete the proof of Theorem ..
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