Kubo et al. Boundary Value Problems 2014, 2014:141 0 Boundary Value PrOblemS

http://www.boundaryvalueproblems.com/content/2014/1/141 a SpringerOpen Journal

RESEARCH Open Access

On the R-boundedness for the two phase
problem: compressible-incompressible
model problem

Takayuki Kubo'", Yoshihiro Shibata? and Kohei Soga®

“Correspondence:
tkubo@math.tsukuba.acjp
'Division of Mathematics, Faculty of
Pure and Applied Sciences,
University of Tsukuba, 1-1-1
Tennoudai, Tsukuba-shi, Ibaraki,
305-8571, Japan

Full list of author information is
available at the end of the article

@ Springer

Abstract

The situation of this paper is that the Stokes equation for the compressible viscous
fluid flow in the upper half-space is coupled via inhomogeneous interface conditions
with the Stokes equations for the incompressible one in the lower half-space, which is
the model problem for the evolution of compressible and incompressible viscous
fluid flows with a sharp interface. We show the existence of R-bounded solution
operators to the corresponding generalized resolvent problem, which implies the
generation of analytic semigroup and maximal L,-L, regularity for the corresponding
time dependent problem with the help of the Weis' operator valued Fourier multiplier
theorem. The problem was studied by Denisova (Interfaces Free Bound. 2(3):283-312,
2000) under some restriction on the viscosity coefficients and one of our purposes is
to eliminate the assumption in (Denisova in Interfaces Free Bound. 2(3):283-312,
2000).
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1 Introduction

This paper is concerned with the evolution of compressible and incompressible viscous
fluids separated by a sharp interface. Typical examples of the physical interpretation of
our problem are the evolution of a bubble in an incompressible fluid flow, or a drop in a
volume of gas. The problem is formulated as follows: Let 21 be two domains. The region
2, is occupied by a compressible barotropic viscous fluid and the region ©2_ by an incom-
pressible viscous fluid. Let 'y and S be the boundaries of Q. such that ' NSy = 0. We
assume that I'y =T'_ and S, N S_ = . We may assume that one of Sy is an empty set, or
that both of S;. are empty sets. Let I';, S;_, and Q2,4 be the time evolutionsof ' =", =T"_,
S_, and Q, respectively, where ¢ is the time variable. We assume that the two fluids are
immiscible, so that Q. N, =@ for any £ > 0. Moreover, we assume that no phase tran-
sitions occur and we do not consider the surface tension at the interface I'; and the free
boundary S;, for mathematical simplicity. Thus, the motion of the fluids is governed by
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the following system of equations:

p+ (0w, +u, - Vu,) - DivS, (u,, P(p,)) = 0, 0:p4 +div(p,u,) =0 in Q4

o_(0pu_ +u_-Vu_)-DivS_(u_,7_) =0, divu_=0 in Q;_, @)
S+(u+:P(p+))nt|Ft+ - S,(u,, n*)nth‘t, = 07 u, |Ft+ - u—|I‘t, = O,
u+|S+ =0, S—(u—:n—)nt—|5t7 =0
for ¢ € (0, T), subject to the initial conditions
(wy, p1)le=0 = (Wy0, p40)  in 24, w_|ig=u inQ_. (1.2)

Here, 9, = 3/9¢, p_ is a positive constant denoting the mass density of the reference do-
main Q_, P a pressure function, and uy = (44, ..., u+y) (N > 2), p, and 7_ are unknown
velocities, scalar mass density and scalar pressure, respectively. Moreover, Sy are stress
tensors defined by

S.(u,,m,) = D) + (v, — p,)dive I -m.1, 13)
S (u,p)=pnDa)-n1, .

where D(v) denotes the doubled strain tensor whose (i, /) components are D;;(v) = 9;v; + d;v;
with 9; = 9/0x; and we set divv = Z?[zl oveandv-V = Z/Ail v;0; for any vector of functions
v = (v1,...,vn). And also, for any matrix field K with (i,j) components Kj;, the quantity
Div K is an N-vector with components Z,Ail 0;K;;. Finally, I stands for the N x N identity
matrix, n; the unit normal to I'; pointed from €, to €2;,, n,_ the unit outward normal
to S, and p1 and v, are first and second viscosity coefficients, respectively, which are
assumed to be constant and satisfy the condition

>0, v, >0, (1.4)

and f|r,,. and f|s, are defined by

flro(xo) = lim f(x) forw el fls,. = lim f(x) forxyeS;.
XEQ4 xEQ
x—>x0 x—>X0

Aside from the dynamical system (1.1), further kinematic conditions on I'; and S, are
satisfied, which give

To={xeRV|x=x(51) (Eel)}, S={xeRY|x=x(1) EeS)} (1.5)

Here, x = x(§,¢) is the solution to the Cauchy problem:

d _
Z=ux) (>0,  xeo=f n®
with u(x, t) = u,(x,t) for x € Q, and u(x, £) = u_(x,¢) for x € Q_. This expresses the fact

that the interface I'; and the free boundary S; consist of the same particles for all £ > 0,
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which do not leave them and are not incident from ;.. In particular, we exclude the
mass transportation through the interface I';, because we assume that the two fluids are
immiscible.

Denisova [1] studied a local in time unique existence theorem to problem (1.1) with sur-
face tension on I'; under the assumption that p, < u_ and pu_/p_ < 14 /Rs with some
positive constant R, and that . is bounded and Q_ = RV \ Q,. Here, p_is a positive
constant describing the mass density of the reference body €2_. Thus, in [1], both of S are
empty sets. The purpose of our study is to prove local in time unique existence theorem in
a general uniform domain under the assumption (1.4). Especially, the assumption on the
viscosity coefficients is improved compared with Denisova [1] and widely accepted in the
study of fluid dynamics.

As related topics about the two phase problem for the viscous fluid flows, the incom-
pressible-incompressible case has been studied by [2—11] and the compressible-compressible
case by [12, 13] as far as the authors know.

To prove a local in time existence theorem for (1.1), we transform (1.1) to the equations
in fixed domains 4 by using the Lagrange transform (cf Denisova [1]), so that the key

step is to prove the maximal regularity for the linearized problem

Yo+ 0su, —DivS, (u,, P2.py) = 84 Ops + Y1 diva, = £, in Q,,
yo_0pu_ —DivS_(u_,p_) =g, diva_ =f in Q_, 16)
S+(u+x 772+l9+)n|1“+ - S—(“—»P—)nht =h, ur-u|r=0,

u,ls, =0, S_(u_,p_)n_|s_ =h_

for any t € (0, T), subject to the initial conditions (1.2), where f|r (x0) = limyeq, x—x, f (%)
for xo € I". Here, y,_ is a positive constant and 7;, (i = 0,1,2) are functions defined on 2,
such that

o < )’}H(x) =< w1 (x € §+)’ VVH [S Lr(Q+)

for i = 0,1,2 with some positive constants wy and w; and with some exponent r € (N, 00),
and y,_ is a positive number describing the mass density of the flow occupied in Q_.
Our strategy of obtaining the maximal L,-L, result for (1.6) is to show the existence of

‘R-bounded solution operator R(}) to the corresponding generalized resolvent problem:

)/}0+)Lﬁ+ -DivS, (a,, );2+},'\)+) = §+, )\]9+ + )/}1+ diva, :f+ in Q,,
YoM —DivS_(d_,p_)=g, diva.=f in Q_, 1)
S, (u,, 772+f9+)n|1“ - S—(ﬁ—;ﬁ—)nh‘[, = fl’ ,|r-a_|r=0,

,]s, =0,  S_(&_,p)n_[s =h_.

Here, f denotes the Laplace transform of f with respect to ¢. In fact, solutions @i and p+

are represented by

(e, pa) = RO (Fe (1), g2 (1), A1), h_(3)),
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so that roughly speaking, we can represent the solutions (uy(t),p+(¢t)) to the non-
stationary problem (1.6) by

(us(®), ps(®) = L [RA) (Fe (1), 82(1), h(2), h_(1)) ] (¢)

with Laplace inverse transform £7!. Thus, we get the maximal L,-L, regularity result:

0 p
/o e_pyt{ |2+ (,0), 80, 0)) | wieo t Z(” a‘uZ("t)”Lq(Qg) + w0 W;(Ql))} dt
=+

<C {suitable norms of initial data and right members in (1.6)} 1<p,g<o0)

for some positive constants y and C with help of the Weis operator valued Fourier mul-
tiplier theorem [14]. To construct an R-bounded solution operator to (1.7), problem (1.7)
is reduced locally to the model problems in a neighborhood of an interface point as well
as an interior point or a boundary point by using the localization technique and the par-
tition of unity. The model problems for the interior point and boundary point have been
studied, but the model problem for the interface point was studied only by Denisova [1]
under some restriction on the viscosity coeflicients. Moreover, she studied the problem in
L, framework, so that the Plancherel formula is applicable. But our final goal is to treat the
nonlinear problem (1.1) under (1.4) and (1.5) in the maximal L,-L, regularity class, so that
we need different ideas. Especially, the core of our approach is to construct an R-bounded
solution operator to (1.7). Thus, we construct the R-bounded solution operator to (1.7)
for the model problem in this paper, and in the forthcoming paper [15] we construct an
R-bounded solution operator to (1.7) in a domain. Moreover, in [15] the maximal L,-L,
regularity in a domain is derived automatically with the help of the Weis’ operator valued
Fourier multiplier theorem, so that a local in time unique existence theorem is proved by
using the usual contraction mapping principle based on the maximal L,-L, regularity.
Now we formulate our problem studied in this paper and state the main results. Let RY,
RY, and RY be the upper half-space, lower half-space and their boundary defined by

RY = {x=(x,...,2x) € RY | £y > 0}, RY = {x = (x1,...,on) € RY | ay = 0}.
In this paper, we consider the following model problem:

g — g DivS,(uy, youpi) =84 Apy + i divu, =f,  inRY,
A -y, DivS_(u,p) =g, diva_ =0 in RN, 18)
S, (u,, V2+p+)n|xN=0+ -S_ (lL;P—)n|xN=of =h,

N
u+|xN:0+ - u—|xN:0— =k on Ro .

Throughout the paper,n = (0,...,0,1), Yo+, 1+, and y», are fixed positive constants and the
condition (1.4) holds. Substituting the relation p, = (f; — y1, divu,)A™! into the equations
in (1.8), we have

awy — V()_Jrl DiV[H“rD(qu) + (V+ — Myt )/1+)/2+)»_1) div u+I] =8+~ y()_JrIVZJr)\_lVer,

(/’L+D(u+) + (v+ — Myt V1+V2+)\71) div u+I)n|xN:0+ - S—(u-,P—)n|xN:0— =h+ V2+)\71f+n-
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Thus, g. — 5. 12:A " Vf, and h + y,,A7'f,n being renamed g, and h, respectively, and
defining S, (u,) by

S5+ (wy) = w D(wy) + (v — py + 8)div, I, (1.9)
mainly we consider the following problem:

Au, — )/Oj} DivS;, (u,) =g, in RIX,

i —y,'DivS_(u_,p) =g, divu_ =0 inRY, (L10)

Sﬁ+(u+)n|x1\]=0+ - S—(u—:p—)n|xN=0— = h:

N
u+|xN=0+ - u—|xN=0— =k on R() .

Here, § is not only y1, 5, A7! but also chosen as some complex number. More precisely,
we consider the following three cases for § and A:

(C1) 8 =y1,12:A"Y A € By, NK.

(C2) 6 € T, withRed <0, A € Cwith [A\| > 1o and ReA > |Re§/Im§||ImA|.

(C3) 8 € . withRed > 0, A € C with |A| > Ao and Re . > Ao|Im A|.
Here, ¥ ={A € C\ {0} | |argA| <7 —€} withO<e < /2, E ), ={A € X | [A]| = Ao} and

Ke={reC|(Rer+yyav; + 6)2 +(ImA)* > (yyavt + 6)2}. (1.11)

We define I'¢ ,, by

Beno NKe in case of (C1),
Cepo =3 {LeC||A| > Aro,Rer >|Res/Ims||ImA|} in case of (C2), (1.12)
{AeC|Ir =g, Rel > Ag|ImA|} in case of (C3).

The case (C1) is used to prove the existence of R-bounded solution operator to (1.8) and
the cases (C2) and (C3) are used for some homotopic argument in proving the exponential
stability of analytic semigroup in a bounded domain. Such homotopic argument already
appeared in [16] and [17] in the non-slip condition case. In (C2), we note that Im§ # 0
when é € 3, with Re§ < 0.

In case (C1), |8 = |¥1: 12+ A7 < y1:¥2445"- On the other hand, in cases of (C2) and (C3),
we assume that |§| < §; for some 8y > 0. Thus, we assume that

|6| = max(VquJxal,%)' (113)

We may include the case where y1,y,, = 0 in (1.9), which is corresponding to the Lamé
system. We may also consider the case where divu_ = f_ in (1.8) under the condition that
f e W/; (RY) and f_ = div F_ with some F_ € L,(RN)V. In fact, first we solve the equation
diva_ = £ in RY, which transfers the problem to the case where f- = 0 (cf. Shibata [18,
Section 3]). Thus, we only consider the case where f = 0 in this paper for the sake of
simplicity.

Before stating our main results, we introduce several symbols and functional spaces used
throughout the paper. For the differentiations of scalar f and N-vector g = (g1, ...,gxn), we

Page 5 of 33
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use the following symbols:

Vf = @yf,..., 0nf)s V3 = (9f |i,j=1,...,N),
Vg=(dglij=1...,N), Vg = (3:9,g | ij,k=1,...,N).

For any Banach space X with norm || - ||x, X¢ denotes the d-product space of X, while
its norm is denoted by || - |x instead of || - ||y« for the sake of simplicity. For any do-
main D, L,(D), and W;”(D) denote the usual Lebesgue space and Sobolev space, while
Il -l o) and || - lwzrp) denote their norms, respectively. We set VAV; (RN) = {0 € Lyjoc(RY) |
VO € L,(RM)N}. For any two Banach spaces X and Y, £(X,Y) denotes the set of all
bounded linear operators from X into Y. Hol({, X) denotes the set of all X-valued holo-
morphic functions defined on U. The letter C denotes generic constants and the con-
stant C,

depends on a,b,.... The values of constants C and C,; . may change from

........

line to line. N and C denote the set of all natural numbers and complex numbers, re-
spectively, and we set Ng = N U {0}. For any multi-index « = (oy,...,an) € NSI, we set
9% = (8/0x1)" - - - (3/0xN) 1Y

We introduce the definition of R-boundedness.

Definition1.1 A family of operators 7 C L(X,Y) is called R-bounded on L(X, Y), if there

exist constants C > 0 and g € [1,00) such that for any n € N, {T,»}]’»q=1 cT,{x 7:1 C X and

sequences {r,f(u)};’=1 of independent, symmetric, {—1,1}-valued random variables on [0, 1]
we have the inequality

i/ol du}%SC[/Ol idu]%.

The smallest such C is called R-bound of T, which is denoted by R zex,v) (7).

n q

> ) Ty

j=1

n

>

j=1

Y

The following theorem is our main result in this paper.

Theorem 1.2 Let1<q< 00,0 <€ <m/2andhy>0.Let Ty, be the sets defined in (1.12).
Let X, and X, be the sets defined by

X, = {(g g0 | g € Ly(RY)Y, he WE(RN)Y ke W2(RY)Y),
X, = {F = (Fi, Fi_, F3,F3,F4, Fs,Fg) |
Fis € Ly(RY), s, Fs € Ly(RN)Y  Fy, Fo € Ly(RN)Y, Ey € Ly (RN)™ ).
Then there exist operator families
AL(A) € Hol(T e, £(X, W2RY)Y)),  P_(1) € Hol(Te 0, £(X,, WE(RY)))
such that uy = AL(\)F,(g,,8_,h,K) and p_ = P_(A)F(g.,g_,h,K) solve problem (1.10)

uniquely for any (g.,8-,h,k) € X, and A € T 5, where F;(g.,g-,h, k) = (g,,8-, Vh,A1?h_,
V2k, A2Vk, AK).
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Moreover, there exists a constant C depending on €, q, and N such that

RL(Xq,Lq(Rﬁ)N)({(Taf)Z (G)»A:E()")) | )‘ e F€,)»() }) E C (E = 0’ 1);
(1.14)
R g1, @) ([T (VP-(1) [ 2 € Ay }) =C (£=0,1)

with N = N® + N? + 2N and A = y + it, where G, is an operator defined by G,u =
(Au, yu, AY2Vu, VZu).

Setting p, = A7}(f, — 31, divu,) in (1.8), we have the following theorem concerning prob-
lem (1.8) immediately with the help of Theorem 1.2.

Theorem 1.3 Let1<q< 00,0 <€ <m/2andhy>0.Let T'c,, be the sets defined in (1.12).
Set

Y, ={(fo. 8.8 010 | f; € W) (RY), (g.,8- 0 K) € X, },
Yy = {(Fo, Fr, Fy_, Fy, F3, Fy, F5, Fe) | Fo € W) (RY), (Fi,, Fy_, Fa, Fs, Fy, Fs, Fe) € X, }.

Then there exist operator families

Po() € Hol(A g, LV WERY))),  Us(h) € Hol(Ac s, £V W2(RY)Y)),
P_(%) € Hol(Ac sy, L(Vgy W, (RY)))

such that for any (f.,g.,8-,h,K) € Y, and ) € A,

p+= 7)-*- ()\')F)/L(fﬂ g+ 8- h1 k): uy = u:l: ()\')F)/L(f;—v g+ 8- h1 k);
p-=P-(\E (fi, 8+, 8-, h k)
solve problem (1.8) uniquely, where F,(f.,g.,g ,h,K) = (f.,g.,8_, Vh,AY?h, V2k,A12Vk,

Ak).

Moreover, there exists a constant C depending on €, Lo, q, and N such that
R i@y ({3 { 00 )P} 1A €T }) <C  (£=0,1),

R E(yqqu(M)ﬂ,)({ (10) (GiU+W) [ L €Te;0}) <C  (€=0,1), (1.15)

Repr,@om ([ (VP-(M)) |2 €Ty }) <C  (£=0,1).

2 Solution formulas for the model problem
To prove Theorem 1.2, first we consider problem (1.10) with g, = 0 in this section as a

model problem, that is, we consider the following equations:

ru, — 5. DivSs,(u,) =0 in RY,
i —y;'DivS_(u_,p.) =0, diva_=0 inRYN, (2.1)

S&+(u+)n|x1\1:0+ - S—(“—;p—)“'xN:()— =h, u+|xN:0+ —W_|xn=0- = k on Rf)\[

Page 7 of 33
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Let ¥ = Fy[v](¢/,xn) denote the partial Fourier transform with respect to the tangential
variable X' = (x1,...,xy_1) with &' = (§,...,&n_1) defined by Fy [VI(§, 2n) = [en- e Yy,
xn) dx'. Using the formulas

DivSs, (u,) = u,Au, + (v, +5)Vdivu,, DivS_(u_,p_)=pu_Au_ - Vp_

and applying the partial Fourier transform to (2.1), we transfer problem (2.1) to the ordi-
nary differential equations

MLy + Vo 1§ ity — Vol e Dyihy;
— Yot (s + 8)i&(iE - i, + Dniin) =0 for xy > 0,
AN + Vor a8 P ilen — Vor e DYllen
— Vol (vy + 8)Dn (i€ - &, + Dnitn) = 0 for xy > 0, (2.2)
Mo+ yot o |E i — yotu-D¥ii + yoti&p- = 0 forxy <0,
My + Vo u &' PN — yo D3t n + yo'Dnp- =0 forxy <0,

i€ -0 +Dyu_n=0 for xn < O,

subject to the boundary conditions

11 (DniLyj + i€t ) L0+ — (Dt + iE7_N) Ley=0- = 1;(0),
2M+DN£l+N + (Vg — py +8)(E - I//\t/+ + DN££+N)|xN=O+ 2.3)
— u_DNi_N = P-)lxy=0- = hin(0),

it,7(0+) — i1_;(0-) = k;(0),

where Dy = d/dxy and &' -V = Z?;ll i&; for v = (v1,...,vn_1,vn). Here and in the fol-
lowing, j and J run from 1 through N —1 and N, respectively. Applying the divergence to
the first and second equations in (2.1), we have A divu, — y5 (s + v, + 8)Adivu, = 0 in
RY and Ap_ =0 in RY, so that

(A= Vor (s + vy + OA) (A =y s A)u, =0 inRY,

(A-vlA)Au_=0 inRY.

Thus, the characteristic roots of (2.2) are

A =Vyor(ps + 0. +8) A+ A2, Bi=you(ns) A +A42, A=[¢|. (2.4)

To state our solution formulas of problem: (2.2)-(2.3), we introduce some classes of mul-
tipliers.

Definition 2.1 Let s be a real number and let I, ) be the set defined in (1.12). Set
Teso={(ME) A=y +it €Ty, & = (&1,...,6n1) e RN\ {0}).

Let m(), &) be a function defined on f'g,,\o.
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(1) m(A,&) is called a multiplier of order s with type 1 if for any multi-index
k"= (k1. .., kno1) € NYLand (A, &) € f‘mo there exists a constant C,» depending on
k', Ao, €, U, Vs, Yoo, and y;; (i = 0,1,2) such that we have the estimates

9 m(n €| < Cy (M2 + 4) 7,
|05 m(2,€)] (

«! dm / s=|i’|
3 <r¥(x,g ))' < Co (I +A)7

(2) m(A, &) is called a multiplier of order s with type 2 if for any multi-index
iK' = (K1y...,kN-1) € NSH and (A,&) € f‘mo there exists a constant C,» depending on
k', Ao, €, 4, Vi, Yo, and y;, (i = 0,1,2) such that we have the estimates

3 m(n, &) < Co (1AM + A) AT,
&

oom, o (2.6)
a5 <r£(x,g ))' < Co (1M + A AT,

Let M;; be the set of all multipliers of order s with type i (i = 1,2).

Obviously, My, are vector spaces on C. Moreover, by the fact |12 + A|7%'| < A-1*I and
the Leibniz rule, we have the following lemma immediately.

Lemma 2.2 Let s1, 53 be two real numbers. Then the following three assertions hold.
(1) Given m; € My, (i =1,2), we have mimy € My, 14, 1.
(2) Given £; e My,; (i =1,2), we have £14y € My s, 0.
(3) Given n; € My, 5 (i =1,2), we have mimy € My 4, 2.

Remark 2.3 We see easily that i§ e My, (j=1,...,N - 1), A € Mj,, and Al e M_y,. Es-
pecially, i§;/A € Mg>. Moreover, My1 C M for any s € R.

In this section we show the following solution formulas for problem (2.2)-(2.3):

4 3 N
fLyy = Z i iy = Z i, Pt Z[pz’ohg(O) +ppake(0)],
k=1 k=1

=1
N
i1y = AM. () Y[R} 1 1e(0) + RS ok (0)],
=1
N
fl; = AeTPN N (S5 (0 + S5 _ki(0)], (2.7)
=1

’:‘]ii‘s _ e¥Bi"N[T]il}Azj(0) + Tfol?,(O)], itjy = 0,

134 =AM, (o8 U ok (0)
with

+ + + +
R][,,l € M—1,2: R]g,() [S M0,2: S]g,,z € M—2,2» S]gy,l [S M—1,2; (2 8)
+ + _ _ ’
T, €My, T; € Mo, Ux o € Moy, Pro € Moy, Pe1 € My

Page 9 of 33
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Here and in the following, M. (xy) denote the Stokes kernels defined by

e—B+xN _ €7A+xN 63fo _ eAxN

M, (xn) = W» M_(xn) = ﬂ (2.9)

From now on, we prove (2.7). We find solutions #4; to problem (2.2)-(2.3) of the forms

By =ay (e‘B+xN - e‘A“‘N) + ,13+]€_B+xN,

(2.10)
By = oy (BN — M N) L BB, b=y e,
Using the symbols B., we write (2.2) as follows:
N/+B%i\l+j - M+D12\[£‘+j —(vy + S)ii:j(i‘i:, : i’\l; +Dyit,n) =0 (xn > 0),
M+BEQ+N - ,U«+D?\]if\l+N - (V+ + S)DN(lE/ : i‘:. + DN’,/LN) =0 (xN > 0)’
w-B%ii_j— p Dy i+ i&p-=0 (xn < 0), (2.11)
M_B%I’/\l_N - M_DJZVI’/\LN + DNI/'\}— =0 (XN < 0),
ir’;:, . l"\ti +DNI’/\LN =0 (xN < 0)

Substituting the formulas of #.; in (2.10) and (2.11) and equating the coefficients of e T2+~
e~4+*N and eA*N, we have
e (A% —Bi)aﬁr +(vy +8)i& (i o, — Asan) =0,
MK+ (A%, _Bz)a+N - (v + 6)A+(i$, : Ol:_ _A+a+N) =0,
€' o, — B, + i€ - Bl — BB, =0, (212)
e (A2 - Bz)a_j +i&y-=0, e (A2 —Bz)a_N +Ay_=0,

i£ o +o_nB_+iE B +PNB_=0, it -a +Aa_y=0.

First, we represent i§’ - o/, axn and y_ by i&’ - B, and B,n. Namely, it follows from (2.12)

that
2
o, = m(lf/ - B, = B.Bin) QN = m(i‘f/ - B, = BiBin)s
ol =2 (& p B N),  an=— (i f+BpN), (13
B_-A B_-A
uw_(A+B

Substituting the relations
+7(0) = By, anit,(0) = (A, —B,)a —B. By, onit_;(0) = (B-—A)a_j+B_p_;
into (2.3), we have

By = By +K(0),
1 (B = Aoy + B, By — i&Bin) + - ((B- = Aoy + B_B; + i&B ) = = (0),
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24y ((B+ - Ao + B+,3+N)

(2.14)
+ (Vs =y +9) (_ié;_, : ,Bi +(By = AN + B+ﬁ+N)
+ 2[1,_ ((B_ —A)O{_N + B_,B_N) —-Y-= —I:IN(O).
Using (2.14) and (2.13), we have
—ig" H(0) = L} (i - B.) + L (i€ B) + LiABon + L ABx,
—AI:’N(O) = L;l (ié/ ' ﬁi) +Ly (if/ ' ﬂ/—) + L§2A,3+N +LyB-n
with
A, (B> -A? B
A(QA,B, - A2 - B?) )
Lio = AB, -A2 Ly = n(B--A),
A, (B, —A,) A2 _ A2 (2.15)
Ly =Alop, 22t 2y 48— L L =u_(B.—A),
21 { My A.B, — A? (Ve = 1y )A+B+—A2 21 p( )
B, (A% — A?) )
Liy=(u, +v, + 5)m, Ly, =u_(A+B.)B..
As is seen in Section 4, we have
LieMy, LpeMy, L eMpy,
(2.16)
Ly eMyy, Ly eMyy, Ly, €My,

Noting the relation B.; = _; + /A<](0), and setting

7+ - 7+ - 7+ -
Ln = Lll + Lll’ L12 = L12 + le, L21 = L21 + L21,

Ly Ly’
we have

L B _ {{/(0) (2.18)
B-N Hy(0)

L22 = L;ZA + LEZ’ L

with
H'(0) = —i&" - I/ (0) — L}i' - K'(0) — L}, Ak (0),
Hy(0) = —Ahy(0) — L3, i€" - k' (0) — AL kn(0).
By Lemma 2.2 and (2.16), we see that

Ly e My, Ly € My, Ly € My, Ly € My,. (2.19)
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The most important fact of this paper is that det L # 0 for any (1,£’) € T ;,, and
(detL)™ € M_3,. (2.20)

This fact is proved in Section 5, which is the highlight of this paper. Since

oL (I -Alp
detL —L21 Lu ’

we have

1 N ~
l’g/ . ,Bi = M(LZZH/(O) —ALIZHN(O))

1 5, R o
T detL (_L22i5 H(0) + A%L1shy(0) + (AL12L§1 - Lflez)l“g‘ 40

+ (ALip LY, — Ly L) Ak (0)), 2.21)
2.21

B-n= ﬁ (LH]:IN(O) - Lzlfil/(o))

1 ro7 ~ . N
" detL (Lnig" - 1(0) = LuAhy(0) + (L11L21 —LuL3,)ig" - K'(0)

+ (LI2L21 —LnLZZ)A/A(N(O)).

Writing i§’ - IA(’(O) =A Z?Sl %125(0) and using the relations 8,; = 8_; + IA(](O), by (2.21),
we have

N
iE B, ~ B.Pn = —B.hn(0) + Y A(P}_71,(0) + P} yke(0)),

=1
(2.22)
N
i€ B +B_Bn=) A(Py4/1(0)+Pok(0))
¢=1
with
. —(Laz + B, Ly)i& . ALy + By Ln
Py j=————— Py =——F7F,
AdetL detL
Pt (ALyoL}; — Lo L}, — B (L} Loy — LuL}, )ik, . i&
0 AdetL A’
. ALl —Li,Loy — B (L{,Ly — L L3,)
Pho = detL ’
P - —(Laa — B_Lyy)i& _ _ALp-B.Ln
S P A By —
AdetL detL
_— (AL1pL3) — LyoLyy + B_(Lj, Ly — L1 L3)))i&e
b0 AdetL ’
p- o = AL12L52 _LIZLZZ + B—(LIQLM _LHLEZ)
N0 det L

for¢=1,...,N —1. By Lemma 2.2, (2.16), (2.19), and (2.20), we have

P €My, P}y € M. (2.23)
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By (2.13) we have
A+B_
pot) = LB ey B p e
N ~ ~
=—p-(A+B) Y (P _17(0) + Pyoke(0))e™,
=1

so that setting p; , = —~u_(A + B_)P,_; and p;, = —u_(A + B_)P;;, we have the formula of

p_(xy) in (2.7).
By (2.12), we have

v, +0)i&§ .,
(B, _A+)a+j = m(l‘g e _A+a+N):
(e +8A, .,
(B, —Aa.y = —m(l‘g o, —Aon),
i&

(B- Aoy ==L (i&" - p'+Bp),  (Bo— Ay =—(i'- B +B-py)-

Since i€’ - o, — A, = %(ié/ - B, — B, B_n) as follows from (2.13), by (2.22) we have

(v++8)(LE,)B Ar-A?

B+_A+ =
( Je ! ui(A, +B,) AB,—-A? kae(0)
(v, +8)ig A2-A2 & X "
A P;_ 1 (0) + P; 1k (0)),
+ M+(A++B+)A+B+—A2 ;( 0,1 ¢(0) + 0,0 o ))
(v, +8)A,B, A*-A?
By —Aan = kN(O)

wi(A, +B,) A,B, — A2

(v, +8)A, A?— A (2.24)

- wi(A, +B,) A,B, - A?

N
Z P; 1 he(0) + P oke(0)),
=1

. N
(B.-A)a_j= —%A > (P 7e(0) + Pr ok (0)),

=1
N ~ ~
(B —A)o_y =-A Y (P, _1hu(0) + Py ke (0))
=1

forj=1,...,N —1. By (2.24) we have

N .
(v, +8)(i&)P;_, A2 -A2 .
B, -A =A . * 1, (0
( et [Z o, +8) A a0

1

O () +8)(i§)P;, A2 - A 4.0}
WA, +B,) A.B,—A2"

+
=1

(v, +8) A*-A? ( i

& ) R
__B+ ’P+ k 0 ,
wi(A, +B,)A,B, —A2\ A + 5Py | kn(0)

2 _
(v, +8)A,B, A?-A? kN()

B, -A
(B, Doy = 1 (A, +B,) A,B, —A?
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N
(vi +8)APF_, A2 A% .
~A1 Y = 5 he(0)
¢=1 /'L+(A+ +B+) A+B+_A
N
v, +8)A P, A%2_A% .
+z( + ) +700 +2ke(0) )
ui(A.+B,) AB,-A
=1

Since (e B+*N — e=4+*N)ar,; = M, (xn) (B, — A, )at,j, setting

RE - (v, +8)(i&)P;_, A? - A2 P (vs + )P, A2 - A2
st /’L+(A+ + B+) A+B+ _A2 ’ j0 M+(A+ + B+) A+B+ _A2’

(v, +8) A2-A?
Rio = -

Sp
ui(Ay +By) AB, — A2 '

2Bt i§;P X1,0>’

o DAL, A -A rr et AP, A -4
Ne-1~ ,bL+(A++B+) A+B+_A2’ N¢Oo ~ M+(A++B+) A+B+—A2r
. (vy +8)B, AZ—A%r

o wi(A, +B,)A,B, - A?
for¢=1,...,Nandj, ¢ =1,...,N — 1, we have 12}1 and #}, in (2.7). As is seen in Section 4
below, we have

2 42
A+ e My, B+ eM;,, (A+ + Bﬁ.)_1 eM_y,, & € My, (225)
’ ' ' A.B, — A2 '
which, combined with (2.23), furnishes R}, ; € M_1, R}, ; € Mo, and Uy € Mo,1.
Analogously, in view of (2.24) we set

R, =-5ip R, =-5p Ry, =-P; Rypo=-P;

je,~1 ~ _X £,-17 je,0 ~ _X £,07 Ne-1~ "1 NE¢,O — 740
for¢=1,...,N,andj=1,...,N -1, we have u;, (xy) in (2.7). By (2.23) and (2.25), we have
RI_K,—I eM_, and R]_(Z,O e My,.

Using (2.21), we represent S_y by

N
Bn=A Z(Qe,—zile(o) + Qe,-1ke(0))

(2.26)
=1
with
L& Ly
Q2= Tier 2" " gar

Quy = (LiiLa — LulLyy)i Qny = (LiyLoy —LuL3,)
. AdetL ’ . detL

for£=1,...,N —1. By Lemma 2.2, (2.16), (2.19), and (2.20), we have

Qj2 € My, Q1 € M_q,.

(2.27)
In particular, noting that 8,x = 1A<N(O) + B_n and setting Sz%uz,-z =Qq_2, 51%1(,-1 =Q1 (L=

L...,N), Ty_; =0, Ty;o = 1 and Ty, = 0, we have the iy, and iy, in (2.7), and by (2.27)
SI%[E,—Z (S] M_272, Sff@,—l € M_Lz, Tﬁ,—l (S] M—1,1¢ and T;,O (S M(),l for € = 1,....N
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From (2.14) it follows that

_]2]‘(0) = IL+B+/3+/ + ;L,B,ﬂ,l' + . (B, _A+)Of+j

+ U (B- = Ao — (U4 fin — 1-B-n)i&;.

Noting that 8,; = B_; + k;(0), we have

-1 ~ UeB 2 H+i; 2
Bij=——F—72h T —1;(0) + L kn(0)
WiBy + B wiBy + B HiBy + B

i (By —Ay) u-(B-—A) (s = ,u,)iéj

- HBy +pu_B_ v HBy + B K

:B—NJ
mwiB, + u_B_

which, combined with (2.24) and (2.26), furnishes

-1 A L UeBx

] IA<(0) W+ 15 2
wiBy + B !

+ kx (0
wiBy +p_B_"" " w,B, + u_B- w(0)

(v, +8)i&B, A2~ A2

* K
" (wsB. + 1_B_)(B, + A,) A,B, — A2 k(0)

B+ =

(v, +8)iE; A2 A2

- A Z P 1he(0) + P} ke 0))
(wBy + u_B_)(B, +A,) A,B, — A? =

N

n l'i:/ _
—AZ Py _11(0) + Py ok (0))
(4B, + n-B)A =

(= 1)l 5

(B + 1B (Qe,-216(0) + Q¢ -1ke (0)).

=1

Thus, we set

L (v, + 8)(i&)P} _, Ar-A?
572" (ueBy + u-B_)(A, +B,) A.B, - A®
w-(i&)P, s (s = ) (i) Qe,—2
(usBy + u_B_)A wiBy + _B_
L (vs +8)(i&)Py A% - A2
T (uyBy + u-B_)(A, + B,) A, B, — A2
n-(i&)Py .\ (s — 1) (i) Qp 11
(/L+B +u_B_)A MiBy + pu_B_
st /L+i‘i:j + (vy + 3)(i‘§j)B+ A? —AE
N (uyBy + u-B)A  (wyBy + u_B_)(A, + B,)A A, B, — A2
(vy +8)(i&)PY o A% - A2
(usBs + u_B_)(A, +B.)A.B, — A2
.\ - (i&)Py o . (s — ) (i&)Qn,—1
(u4By + n_B_)A WiBy + u_B_

’

’

’

-1 _B_ B
Ty = ———— T = - ) Tio=- Fe
P By + u_B_ 70 By + u_B_ ’

By + B’

(2.28)
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so that we have the it}iz and it]jg in (2.7). Moreover, as is seen in Section 4, we have

(1:By + u_B)™ e My, (2.29)
so thatby (2.23), (2.25), (2.27),and (2.29) we have S} , € M35, 4 € M1, Tjoy € MLy,
and T]io € My,1. This completes the proof of (2.7).

To construct our solution operator from the solution formulas in (2.7), first of all we
observe that the following formulas due to Volevich hold:

+o0
a(g',xx)h(0) = —/0 {(Ona) (&2 + yn) ) + a(€xx + yn) Ik (En) ) dyw,

where 9; = 3/dx;. Using the identity 1 =

Y0 yNL (i) | e write
+ )

2 = 2
ntBL m=1 BL

o)
a(§',xn)h(E',0) = —/0 a(&',xn +yn)Inh(E  yn) dyn

~ /*“ (Ina)(€'xn +yn)ye A
0 n+Bi

klmljl(é/,yN) dyn

N-1

0 (dna)(E, xn + yn)iEr —~ .,
/ ( 'N )(‘i: ;\7 yN) ‘SZ th(é ny) dyN
=1 0 B:l:

Let ]-"g,l denote the partial Fourier inverse transform with respect to &’ variable and let
f>and f3 = (f31,...,f5n) be corresponding variables to AY2k and Vi = (14, ..., dxh). If we
define A= (f,f3) by

+oo
A*[al(fa.f3) = —/0 Fotla(§ xn +yn)fan (8, 9n) ] dyn

. 5 ', 5172 ,
_/O }--1[( INA)(E, XN+ IN) YV A G ,yzv)} dyn

1B
N-1 +oo ’ .
1| Ona) (€' xn + yn)ige
+Z/ sfl[ A& NN () | (2:30)
' Jo By
then we have
FMa(&,xn)h(E',0)] = AX[al (AR, Vh). (2.31)
+ . .
Analogously, using the identity 1 = VO—Az - ZNj mliEm) | \ye write
Bl m BL

a(é’,xN)l}(E/, 0)

+o0o 4129 (s N-1 .. >0 7 ¢
Yo AP Onk(E , yn) i£000Onk(E', yNn)
_— al&,xn+y - E dy
/0 ( N N)|: //H:Bgt — B:I: 'N

N-1

+o0 ii{ /’ 3/3\/ /’
- /0 (aNa>(scxN+yN)[W ') 5~ dedekie yN)] e

Bl = BL

Page 16 of 33


http://www.boundaryvalueproblems.com/content/2014/1/141

Kubo et al. Boundary Value Problems 2014, 2014:141 Page 17 of 33
http://www.boundaryvalueproblems.com/content/2014/1/141

Let fa, f5 = (f51,-...fsn) and fs = (foem | &, m =1,...,N) be the corresponding variables to Ak,
A2Vk and V2k = (00,,k | £,m =1,...,N). If we define BX(fy,fs,fs) by

BF[a)(fa fo. o)

+ +7 ’ N-1 .. % ’
B * , Vo Son (€', yn) Z iEfoen (&, n)
- _/0 o |:a(§ N +yN){ uiBl — B, ” D

+o0 £+ er N-1 2 ’
_ /0 Fi [(aNa)(S’,xN + yN)[ %o Jul&hon) ZJ%“(Bi’y ) H dyn, (232)
=1

MiBi T
then we have
FMa(&,xn)k(&,0)] = BE[al (hk, A2 Vk, V2K). (2.33)

Let us define uj; (i = 1,2,3,4), u; (i =1,2,3) and uj, by u]f = ]-"5’,1 [it;f] (i=1,2,3) and
uj, = .7:5‘,1[12]*4], respectively. Setting u7, = Zil uj, uy- = Zil wyandp_ = ]-'g,l [p_1,by (2.7)
wesee thatuy = (u14,...,un+) and p_ satisfy (2.1). According to the formulas (2.30), (2.31),
(2.32), and (2.33), we define our solution operators Sj;(2) (i = 1,2,3,4), S;(*) (i =1,2,3)

and P_(A) of problem (2.1) such that

uwy; = S (M) (A*h, Vh, Ak, A2Vk, V?k) onRY (i=1,2,3),
ufy = Sj(A)(A*h, Vh, 1k, A'*Vk, V?k) onRY, (2.34)

p-=P-(A)(1'*h, Vh, Ak, A"*Vk,V?k) onRY
as follows: Note that

INMx(xn + yn) = F(ePENIN) L AL M (xy +9)),
aNeA(xN+yN) :AeA(xN*'J’N)’ (2.35)

aNe:FB:k(xNU’N) _ :FBie:FB:t(xN*J’N)’

where we have set A_ = A. Let F, = (Fy; | j=1,...,N), F3 = (F3¢m | {,m =1,...,N), Fy =
(Fge | £=1,...,N), Fs = (Fsgm | &,m =1,...,N) and Fs = (Fspmn | £,m,1 = 1,...,N) be the
corresponding variables to AY?h = (A12hy,..., A hy), Vh = (3h,, | £,m = 1,...,N), Ak =
Ak, ..., Aky), AY2Vk = (W29, | &,m = 1,...,N) and V2k = (3¢0,,k, | &, m,n =1,...,N),
respectively. Then we define the operators Sﬁ(k), S;E(k), Sf;()»), S54(2) and P_(1) by

S;1(\)(F2, F3, Fy, Fs, Fe)

N +00 ) Rﬂ; oyoikl/z R
=— Z{./o .7’-'5‘,1 |:AMi (xn + ) [Rﬁ'_lFSNE (& 9n) + #Fsm (&"0n)
=1

+0+

N-1
R:t

- Z %fm)ﬁmw (5/:)’N):|:| dyn
m=1

+o00 R]ie 1]/0i)x1/2
+ / Fot| (AeTPONN) 4 AAL M (o +yn)) | ———5—
0

T ’
2Bl Fy (& 9n)
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N-1 R:t lsm)

_ Z /z !
NI

- Z %Fwnmf (5/,}’N):|:| dyN},
m=1

’ R]jzyoyoiﬁ ’
Fame(8',9n) + s 2 (€ 9n)

+
S;5(\)(Fa, F3, F4, Fs, Fe)

£31/2
S( 1Yo A7

N +o0
=— Z i/ ]:S_’l |:Ae¥Bi(xN+J/N) |:S]iz,2F3N£ (SZ}’N) 7PSNIZ (5/;)’1\/)
=1 |/O Hby
S (zsm) A
- Z L Bone (8 ow) | | dyn

+o00 sz 270 )\1/2
:I:/ Fol BiAe¥Bi(xN+yN) ]721: (flryN)
o u+Bi

N-1 o+ + +
_ Z Sre, z(lém Sje1%0

Fame(§',9n) + LB Fae(€',9n)

- Z F6mm£ (& )’N):|:| dyN],

Sjig()h)(FzyFs,szFs,Fs)

+o00 ) 5 L oa ) Tjoyi/\m
o /o Fot| eFFEnon ) T3 By (8, 9n) + 72F5N1(5 JIN)

+B3
N-1
T} (ZE ) - ,
- [O = = Feuny (& »J’N):|:| dyn (2.36)
+o00 T :t)\'l/Z
i/ f?[Bie*Bﬂw [—C By (€' m)
0 +B
Ti (l%‘m Ti y:i: . )
—Z /1 Fsm](f IN) + ]’OBg Fy(&,yn)
mby
N-1
Z F6mm] ,yN):|:| dyN},

‘SIZ(A')(FZ)FS;FAL’FS’P%) = 0;

SIJ\F[4(}")(F21F3)F4;F57F6)

[} U: +)»1/2
= _{/ Fel |:A+M+(xN +yN)|:Nlj¢FSNI(S JIN)
0
\u; m) A
—Z - lg )FwnJ\U(ér )/N)i|j| dyn

+oo
—/ o [A+(e'3*(’“N+yN) + A M, (xy + )
0

U y+ N-1
0
X |: ,u+BZ £, 9n) Z F6mm] 3 )’N):|:|dyN]r

m=1
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P—(A)(FZ»FBrFZL;FS)FG)

N 0
= Z {/ fé—rl |:€A(xN+yN) |:pz,0F3NK (élny) %Fg[\[( (E _)/N)
-1 —00 -bZ

Z by, 1(lfm)ﬁ6mm (E yN):|:| dyn

0
+/ |:AeAxN+yN pEOVO Fgg é_. _)/N) Z%F&M!(s yN)

m=1

_ N-1
PeiYo » , by,
+ ;’13(2) Fu(&'9n) - Z —21 omme (& ,yN):|:| dyN}~

Obviously, by (2.31) and (2.33), we have (2.34).
If we define operators Si.(A) by

4 3
S:(WF =Y (SHAF,...,SH(WF),  S_F =) (SEWF,...,S()F)

i=1 i=1

with ¥’ = (F,, Fs, Fy, Fs, Fg), respectively, by (2.34) we have

u: = S (1)(A*h, Vh, 1k, A2 VK, V2Kk). (2.37)
Moreover, if we set

Z,(RY) = {(Fy, F3,F4, Fs,Fs) | F, Fy € Ly(RY), F3,F5 € Lq(RN)NZ'F6 < Lq(RN)N3 b
then, using Lemma 3.1 and Lemma 3.2 in Section 3, we have

Rﬁ(Z(RN),Lq(R';’)2N+N2+N3)({(Taf)er\Sﬂ()‘) |2 €Acs}) =C (£=0,1), (2.38)
Rﬁ(g(RN)'Lq(RIi)N)({(Tar)ZV/P—()V) | A€ Ae,ko}) = C (E = O: 1)

The estimates (2.38) are proved in Section 6 below.

3 Technical lemmas
To prove the R-boundedness of solution operators, we use the following two lemmas. The
first lemma is used to show the R-boundedness of the compressible part and the second

one to show that of the incompressible part.

Lemma 3.1 Let n and n, be multipliers belonging to M_, », and M_,,, respectively. Let K
(i=1,2,3,4) be operators defined by

K{ (Mg = /0 o m (0 E)AA M. (en + yn)E (& yn) | () dyns

K3 (Mg = f Fet[m(,8")Ae N g (g, y) | (+') dyw,
0
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K3 (Mg = / Fi [ma(h€)A M. (en +yn)Z (5 yn) ] (+) dyw,
0
meiffﬁmus&WWwammm@M
0
Then there exists a constant C such that

R 10.)'GK (W) [AeA})<C (£=0,1,i=1,2,3,4).

L(Lg(RN),Lg(RY)L+N+N?) (f(

Lemma 3.2 Let ns, ng, and ns be multipliers belonging to M_15, M_5, and M_; 1, respec-
tively. Let K/ (i =1,2,3,4) be operators defined by

0
Kr g = [ T (0, JAM o+ 3R (E o) ) i,

0
K{(k)g =/ ‘7_-5—/1[”4(%5/)Aer(xN+yN)§(§/’yN)](x/) dyx,

oo

0
Ky g = [ 7 [s (8 )A%M_ o+ 308(E' ) ()

0
K;(A)g _ / ]_—;1 [1’15 (A, %./)er(xNﬂ’N)g(E/,yN)] (x/) dyN-

—00

Then there exists a constant C such that

¢ _
Rﬁ(Lq(RI_\I)’Lq(RI_\I)1+N+N2)({(far) G}»IQ ()\) | AE A})

<C (£=0,1,i=1,2,3,4). (3.1)

The assertions for K and K; in Lemma 3.1 immediately follows from the following

lemma.

Lemma 3.3 Let m(L) be a multiplier belonging to Mo,. Let Li(X) and Ly (1) be operators
defined by

L= [ F T )AA M. o+ (€ )] () o,
0
o0
Ly(\)g = / fs‘,l [m(k,é)Ae‘B*(”N*yN)Q(S/,yN)] () dyn.
0
Then we have
Req,@y({(Fd) L) |2 eA}) <C (£=0,1,i=12).
Proof Set ¥;(A,x) = .7’-'5‘,1 [m(n, VAN (A, €, xx8)](x) with Ny = A, M, (xx) and Ny = e B+*N
As was seen in Shibata and Shimizu [19, Proof of Lemma 5.4], the lemma follows from the

fact that

|(zd:) Yi(h,x)| < Cla| ™ (£=0,1). (3.2)

Page 20 of 33
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Thus, we prove (3.2). Using the following Bell formula for the derivatives of the composite
function of f(£) and ¢ = g(§'):

I«'|

() = Y1) e @eE) - (@e(@) (33)
£=1 Ky +eetip =k

’
I/ |=1

,,,,,

1 /
8?/ [/ e—((l—é))A++eB+)de9:H < Coz’(|)\|1/2 +A)—I/< ‘e—C(IMU2+A)xN
0

with some positive constant ¢ independent of «’. Thus, we have

|95 N < Cor (1172 4 A) e 2oy (3.4)
To prove the estimate

it ®)| < Clx'| ™, (3.5)

using the identity e ¢ = Y ) ! 7o (i), we write

ixg # ix’.g’i , : , ,
/|2 (2)N-L /RAH NPT (m(2,8")AN; (%, &', xx)) d& .

N-1
Vi) =)
=1

Since m € My, by (2.6) and (3.4) we have

’

¢ o8,

(m(k,é/)ANi(A,é’,xN))‘ < CK/A_l}(/le_(C/z)(l)t‘l/2+A)xN'

Thus, by Theorem 2.2 due to Shibata and Shimizu [20], we have

ix' &' 9 ’ ’ ’ /|-(N-1)
fRN_le § a—&(m(k,f JAN; (A, &' xx)) d ‘ <Cl«/|

from which we have (3.5).
On the other hand, by (2.6) with ¥’ = 0 and (3.4) with «” = 0, we have

vi(hx)| <C g e~ (CI2IE lxn dg’.
RN-1

Thus, using the change of variables xy£' = 1/, we have |y;(A,x)| < C(xn)™, which, com-
bined with (3.5), furnishes (3.2). Analogously, we have |79, v;(%,x)| < C|x|™, which com-
pletes the proof of Lemma 3.3. d

The assertions for K and K; in Lemma 3.1 immediately follow from the following

lemma.
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Lemma 3.4 Let m(A) be a multiplier belonging to My 5. Let L3(1) and L4()) be operators
defined by

g = [ D)4, M.+ R(E )W) o

LaMg = /0 T (8 )e P ) ) o
Then we have

R,y ({79 L) [ e A}) <C (€=0,1,i=3,4).

Proof Set ¢;(A,x) = ]—'g,l [m(h, EYN; (A, &, 28)] (') with Ny = A, M, (xy) and N, = e B+*N_ As
was stated in the proof of Lemma 3.3, the lemma follows from the fact that

(T3 @i(h2)[ < Clal ™ (£=0,1). (3.6)
First, we prove that

|@i(h2)| < Ol ™. (3.7)
By (2.5), (3.4), and the Leibniz rule, we have

0 (2 € YN, (1 ' 5)) | < Cur (A2 4 4) 7200

¥k,

P 1/2
< Co AW g (h P ed)ay

so that by Theorem 2.2 in Shibata and Shimizu [20] we have

< C|x’|_(N_1).

ix' £ i / : / /
fR T e N8 )

Thus, employing the same argumentation as in the proof of Lemma 3.3, we have (3.7).
On the other hand, we have

i, %)| < C/ (1AM + |§/|)e—(c/2)<|x\“2+|s’|)xN dg’
1 ’ = RN71

= C(4/(cxN))/ 67(6/4)(“"1/2*\5/\)961\1 dg’'

N RN-1

< C(4'/(CxN))_Nf e*(c/4)\k|1/2xNe*|7l/\ dn'.
- RN-1
Thus, we have (3.6) with £ = 0. Analogously, we have (3.6) with £ = 1, which completes the
proof of Lemma 3.4. g

The assertions for K (1) in Lemma 3.2 follows from the same observation as in the proof
of Lemma 3.1 for K (1). The assertion for K; (), K; () and K5 (A) in Lemma 3.2 follows
from the following lemma due to Shibata and Shimizu [19, Lemma 5.4].
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Lemma 3.5 Let m()\) be a multiplier belonging to M. Let L;(X) (i = 5,6,7) be operators
defined by

0
LS(A)g:/ f;[m()\,é/)AzM,(xN +ynE(Eon) | (%) dyn,

00

0
Loag= [ Fm(.6)4¢ e g(E )] (<) o

o0

0
L;()g = / Fit[m(r,§) AP NNg (€', yn) | () dyn-

o]

Then we have
Rew,evy({@d) Lid) [ e Al)<C (£=0,1,i=5,6,7).

4 Some estimates of several multipliers
In this section, we estimate several multipliers. For this purpose, we start with the follow-

ing lemma.
Lemma4.1 LetO<e<m/2,10>0,80>0ands>0.
(1) Forany € B¢, & e RN and a, B > 0, we have |ai + B| > (sin 5)(a|A] + B).

(2) There exists a number o € (0,1) depending on s, jLy, Vi, V14, Vor, Mo, S0 and € such
that

(spy + v, +8)he X, foranyre Lo
(3) There exist constants 8, and 8, depending on s, (i, Vy, V14, Varr Ao, 8o and € such that
S(12+ &%) < [t + v+ 8 A+ €] <821l + [€'])
forany (A, &) € Tepy = Tepp x (RN {0)).

Remark 4.2 Lemma 4.1 was proved in G6tz and Shibata [21, Lemma 3.1], so that we may

omit its proof.

First we estimate A%, B%, (A, + B,)* and (u.B, + u_B_)°. For this purpose, we use the

estimates

c(IA"? +A) <ReMy < [Mi| < (A2 +A) (M =A,,Bs) (4.1)
for any (A,£') € f‘do =Tepy X (RN-1\ {0}) with some positive constants ¢ and ¢, which
immediately follows from Lemma 4.1. Here and in the following, ¢ and ¢’ denote some
positive constants essentially depending on 4, vy, Yo+, Y41, Y42, €, Ao and 8. In particular,

by (4.1) we have

c(IA"? +A) <ReMy <My < (IA"? +A)  (Mp=A, + By, uB, +u-B)  (42)
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forany (1,&’) € fe,k0~ As was shown in Enomoto and Shibata [17, Lemma 4.3], using (4.1),
(4.2), and the Bell formula (3.3), we see that

(M3)* € M;; (M3 =A,,B,, Ay + By, )0 By + 1_B_). (4.3)

Especially, we have (2.29).
Second, we estimate (A,B, — A%)7L. For this purpose, we write

1 _ (s + Ve +8) sy P(LE)
A.B, - A? Yo+ (2004 + vy +8)A
A,B, + A2
with P(3,£') = il . (4.4)
Yor Cuy + vy +8)7IA + A2

By Lemma 4.1, (3.3), and (4.3) we have

AB +A €My, (Y0u(2us + iy +8) A+ A%) € My, (4.5)
so that by Lemma 2.2 we have

Pe M()‘l. (4.6)

Since A? — A2 = yo, (s + vy +8)7!A, by (4.4) and (4.6), we have % € My, which,
combined with (4.3), furnishes (2.25).
Applying (4.4) to the formula in (2.15), we have

+V,+0 +V,+0

Lﬁ:“*(“* v, )A+P’ 1= pa(2- Ret V248

2y +Vy + 6 2y +V,+ 8

2 8 A - )
LL: (i +8) + _M+(V+ My +8) AP, (4.7)

2u, +v,+8 By + A, 2U, +Vy + 6

8

L;2:M+(/L++V++ )B+P.

20y +Vp +6

Noting that A € M3, by Lemma 2.2, (2.15), (4.3), (4.6), and (4.7), we have L], € My, L], €
M, L}, € My, and L3, € My;. In addition, since A € M, and B_ € M, 3, by Lemma 2.2
we have A + B_ € Mj; and (A + B_)B_ € My;. Summing up, we have proved (2.16).

5 Analysis of Lopatinski determinant
In this section, we show the following lemma, which implies (2.20).

Lemma 5.1 Let L be the matrix defined in (2.17). Then there exists a positive constant »
depending solely on [y, Vs, €, Yot, Y1i+r Vo4, Ao, and 8o such that

|detZ] > w(|A["? + 4)° (5.1)

forany (&) € Teyy.
Moreover, we have

|85 {(8:) (det L)'} | < Cor (1A172 + 4) AT (£=0,1) (5.2)

for any multi-index ' € N\~ and (1,&') € T . Namely, (detL)™ € M_3,.
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Proof Recalling (1.13) and setting 8, = max(8o, 142+ '), we have § € . and |§| < &,.
Moreover, by Lemma 4.1

.o
(sm §>(su+ + V) < ISty + vy + 8| <SSy + vy + 8o (5.3)

with s = 0,1,2. To prove (5.1), first we consider the case R;|A|'/? < A with large R; > 1.
Let P be the function defined in (4.4). By (4.4) we see easily that P = 2 + O(33), that A, =
A(L + O(83)), and that B+ = A(1 + O(83)) when |yo, (14 + vy + 8)TAA™2| < . ((sin %)(u}r +
V)R < 83 and |yox(pe) TAAT2| < por(paR?)™ < 83 with very small positive num-
ber 83. Thus, by (4.7) we have

2(//L+)2

I - 200 (py + vy +8)A
2Us +Vy +6

= 1+ 0O(83)), ALY, =
u 2y + vy + 6 (+ (3)) 12

A*(1+0(83)),

I+ 2(M+)2

2u, (g + vy +8) 2
ol = — A
2y + vV, + 8

A(1+0(s53)), AL}, = 20 £V 15

(1 + 0(53))

On the other hand, we have B_ — A = uoj/((;}m) = AO(83), so that by (2.15) we have

Ly =2u_A(1+0(8)), ALy =A*0(83),

Ly =AO0@s), Ly =2u_A*(1+0(83)).
Summing up, we have

Lu- (M . zu)A@ +0665),

2, +V, + 68
2(M+)2 2 2(M+)2
AL, =—"——A%(1+ 0O(63)), Lyy=——A(1+0(63)),
R YR (1+0(53)) e YR (1+0(53))

2 1)
L22 = —M+(M+ et ) + 2/1,_ A2(1 + 0(83)),
2y + V. + 8

so that we have

2, (s + v, +8 : 2u)* )
detl = M +2u_) - L A3 (1 + 0(53))
2y + vy + 8 2y + vy + 8

My (vy +6)

=4(u, _
(ot )<2/L++v++8

+ ,u)A3 (1+0(83)).

Mt (V4 +8)

Since s -

=1+ 0O(]8]™") as |8]| — oo, we have

(v +8)

— >
2y +V.+ 8

+u_  when |§| > Ky

N =

+

with some large number K, depending on p, and v,. On the other hand, when § € . and
|§] < Ko, we write

ity + v, +6) = Moo+ (g + ) (g + ) + 8wy + )

20y +Vp +6 2y +Vp + 6
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Since p4 >0 and v, >0 and § € X, by Lemma 4.1(1)

[+ (g + o) (g +v3) + (g + o)

> <sin %) (181Coes + po) + ot + (g + ) (s + )
> (sin %) (i + (s + 1) (g +04)).

On the other hand, |2u, + v, + 8| <2u, + v, + &, so that we have

_ _ 1
detZ] > 20z, + o) mind (sin & (s + (g + )(M++V+))’_+M7 e
2 20 + Vg + 89

provided that A > |A|2R; with some constant R; > 1 depending on (4, Vi, Yot, Yi1s Vorr
€, Lo and 8, which furnishes (5.1) when A > |A|Y2R, with any constant w satisfying

(5.4)

) e\ (oo + (g + ) (s +v4)) 1
0<w=<2(u; +p_)ming | sin = , =+ .
2 2y + vy + 69 2

Secondly, we consider the case RyA < |A|'2 with large R, > 1. In this case, we have
Ap = (s 40, +8) (0, 1) "2 (1 + O(8s)), By = (n) (o )* (1 + 0(84))

when [(uy + vy + 8)(0: M)A < ot (uy + vy + 81)R;? < 84 and |ps(yoxd) A% <
Yoit+R;? < 84 with some very small positive number 8,. By (2.15)

Lu = (e 70)"? + (mopo ) ) A2 (14 06), AL = 2O(Ry') (1 +0(4)),

Loy = (1) (yo-2)2 (1 + 0(84)), Ly = yo-A(1+ O(84)).
Thus, we have
Yo-
|detZ] = == ((ay0) ™ + (o) ) 1"

provided that R,A < |A|Y2 with some constant R, > 1 depending on ji, V,, Yot, Viss Vass
€, Ao, and 8y, which shows that (5.1) holds when R,A < |A|Y2 with any constant w satisfying

Yo-
0<w < 7= (o) + (1-v0-)'"). (5.5)

Thirdly, we consider the case Ry AV < A < Ry|A|V2. Set

(|)L|1/2+A)2’ - |A|1/2+A’

A+ = \/V0+(M+ Vvt 8)_15\ +A2, Ei =4/ Yozx (Hi)_li +A2»

DRy, Ry) = {(LA) [ (L4 R) 2 < A < R3L+Ry)% (L4 R) ™ <A<Ri(1+R)™}

A=
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If (1, &) satisfies the condition R;'|A|"> < A < R;|A|Y2, then (X,A) € D(Ry, R,). We define
Zij by replacing A,, A, and By by ;Lr, A, and Bi in (2.15), respectively. Setting detl =
ZIIZZZ —Azlzim, we have

detL = (|]A|"? + A)* det L. (5.6)

First, we prove that detL # 0 provided that ():,1:1) € D(R1,R,), »e Y. and |§| < 85 with some
small 85 > 0 by contradiction. Suppose that detL = 0. By (5.6) detL = 0, so that in view of
(2.18) there exist w.o(xy) = Pyg(eTBHN — FAEN) 4 Qo,eTB+*N and p_(xy) = y_e™N with
A_ = A such that wy(xy) = (War(xn), ..., wan(xy)) #(0,...,0), and w(xy) and p_(xy) sat-
isfy (2.2) and (2.3) with /;(0) = 0, /iy (0) = 0, and k;(0) = 0, that is, they satisfy the following
homogeneous equations:

N-1

VO+}\W+/' - ZHJJ&KUS/’W% + igﬁwﬂ‘) - ,UuraN(i%_jWJrN + an+j)
=1

— (Ve — s + S)igj(ié/ W, + E)Nww) =0 forxy >0,

N-1

VO+)\W+N - Z /’L+isl(8NW+Z + iEZW+N) - 2//«+ a1%[W+N
£=1

— (Vs — s + 5)3N(if;" W, + BNW+N) =0 forxy>0,

N-1

Vo-hw_j= Y p-ibe(iEw_ + i5w-) (57)
=1

- M,aN(iEjW,N + anj) + ié'l'p, =0 for XN < 0,
N-1

Yo_AW_N — Z U_iEg(ONW_p + iEqw_pN) — ZM_BJ%,W_N +dvp-=0 forxy <O,
=1

£ -w +0ww_n=0 forxyn<0,
l"L+(aNW+j + ing+N)|xN=0+ - M—(aNW—j + igjw—)|xN=0— =0,
20 v Wan + (v — g+ 8) (& W, + OnWin) lay=0s — CU_ONW-_N — P_)lxy-0- = 0.
Set (ﬂ, b)+ = fooo a(xN)b(xN) de! (ar b)— = f_ooo a(xN)bN(xN) de: and ||61||:|: = (ﬂ, a):éz' Mul-

tiplying the equations in (5.7) by w.; and using integration by parts and the jump condi-
tions in (5.7), we have

N N
0= /\(sz lwael® +v0- ) ||W—e||2>
=1 =1

N-1 N-1

, 2 . 2 2

+ M+|: > lligwa 1%+ i w |+ > lonwal?
j=1

jk=1

N-1 N-1 N-1
£ Y (EWan, Ovwan)s + Y EWaN? + ) (Onw, iEwan), + 2||an+N||3]

Jj=1 Jj=1 Jj=1

+ (v — g + O)[ | i€ W, ||i + (Onwen, i - W,), + (i W, 0nwen), + lonwon 2]
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N-1 5 N-1
+ 1 [Z ligew 112 + i - w. ||~ + > low_l2
j=1

jk=1

N-1 N-1 N-1
+ Z(ifjW—N, ONW_N)- + Z lligw_n 12 + Z(aNW—j: iEw_n)- + 2||3NW—N||%:|

j=1 j=1 j=1
N-1
2 2 . 2 . 2
= Myocllwell? + vo-lw_ %) + . [Z ligewali? + i - w, |}
k=1
N-1
. 2 2 Iy, ;112
£ Y llonwy + igwan |2+ 2l onwonll? | + (0 =y + 8) | Onwan +iE W, |
j=1

N-1 N-1
+ U [Z ligew_jl|> + ||i&" - w" ’E + Z lonw_; + iEw_n |l + 2||8NW—N||Ei|' (5.8)

jik=1 j=1
Taking the real part and the imaginary part in (5.8), using the inequality

N-1

. 2 . 2 2
D lligwaill? + i€ w, |+ 2llonwan |
k=1

’ (5.9)

, 2 ,
> 2(||i&" - W, || + 1onwanl1?) = || Onwan +iE - W,
and setting K = o, [|[w, |12 + yo_|lw_||? and L = [|ayw,n + i’ - W/, || for short, we have
(ImA)K + (Im$)L =0, 0> (ReA)K + (v, + Red)L. (5.10)

First, we consider the case § =0. When ImXA #0 or ImA =0 and Re A > 0, we have K =0,
that is, wy = 0. When ImX = 0 and Re X <0, it follows from A € ¥, that A = 0. Choosing
€' >0 in such a way that u, — €’ >0and v, — € > 0, by (5.8) with . =0 and § = 0 and (5.9)

we have

N-1 N-1
, 2 . 2 2 . 2
{Z ligew 1% + i - w, | + 2||8Nw+N||+} e Y llonw. + igwonll?

Jik=1 Jj=1

N-1
+ vy =€) |onwon + i€ W, |7+ e [Z 1anw_j + igw_ylI + 2||anN||2} <0,
j=1

which furnishes [oxywy; + Ewanlle =0 (G =1,...,N — 1) and [[oywsnl|+ = 0. Since
wyy(xy) = 0as txy — oo (J =1,...,N), we have wy = 0, which contradicts wy # 0. Thus,
we have det L # 0 when § = 0, which implies that

a1 = inf{|detL| | (A, A) € D(Ry,R,),A € T, 8 =0} > 0.

Since A, = \/ym(,ud+ +1,)7 1% + A2 + O(|8]), there exists a 85 > 0 such that

inf]|detL| | (x,A) € D(Ri,Ry), % € Z, 18] < 85} > c1/2,
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which, combined with (5.6), implies that
|detZ] > oy (JA]2 + A) (5.11)

with some positive number w; provide that Ry|A|Y? < A < R![A|2? and A € C with
[8] < 8s.

Finally, we consider the case where |§| > Js. First, we consider the case (Cl), that is,
8 = y1.72+271. In this case, it follows from |§| > 85 that |A| < 1,)2.85", so that we prove
that detL # 0 directly provided that A € A, = X, N K. Since Re§ = y1, 1,4 Rex|r|2
and Im§ = —yy, y», Im A|A|72, by (5.10) we have

Im (K = y1,y24 1A 7°L) = 0, 0> (Re MK + (v4 + Y1412+ ReA|A| ) L. (5.12)

When Im X = 0, we have 1o < Re A = A, so that K = 0, that is, wy = 0. If Im A # 0, by (5.12)
K = y1.y2.|A|72L, which, inserted into the second formula in (5.12), furnishes

0= v, A (1A + 2y1424v] ReA)L

= V+|)"|72((Re)‘ + V+1)’+2V;1)2 + (Im)‘)z - ()’1+V2+V;1)2)L-

Since (Re A+ 41742071 + (ImA)* = (1,12, v;1)? > 0 when A € K., we have L = 0, which im-
plies that K = 0, that is, wx = 0. Summing up, we have obtained w_ = 0, which contradicts
w. # 0, and therefore we have detL # 0 when A € ¥ ;, N K. Thus, we have

inf{|detL| | 2 € Ty NKe, Ry A2 <A < RAM2, A < 11124651} > 0,
which, combined with (5.11), furnishes
|detL] = w2V + A)°

with some positive constant w, provided that R;'A[Y2 <A < Ri[A|[Y? and A € K. N Z¢ 5,

Secondly, we consider the case where § € X, §5 < |5| <80, Red <0, |A| > Lo andRe A >
|Re§/Im || Im A|. Note that this case includes (C2) and Im§ # 0. We prove that detL #0
provided that (A, A) € D(R;,R,) and Re A > |Re§/Im || Im | by contradiction. Suppose
that detL = 0, and then by (5.6), detL = 0. Thus, we have (5.10). When Im = 0 and Im§ #
0, we have L = 0, so that 0 > (ReA)K. When Re A > 0, we have K = 0. When A = 0, by
(5.8) with A = 0 and L = 0, we have [|[dywin|l+ = 0 and [[Oxyw4; + i(;?jvvﬂ\zl|2i = 0. Since
wis(xn) — 0 as £xy — 00, we have wi = 0. Thus, we have wy = 0 when ImA = 0 and
Imd #0. WhenImA #0,Imé #0 and (ImX) Im 4§ > 0, we have K = 0 by the first formula of
(5.10). When ImX #0, Im8 # 0 and (Im2) Im4§ < 0, we have K = |Im4/ImA|L by the first
formula of (5.10), so that it follows from the second formula of (5.10) that 0 > (v, + Re§ +
(ReA)|Imé&/ImA|)L. Since Red = —|Re§| and since ReA > |Red/Im§||ImA|, as follows
from Re’ > |Re§/Imd||ImA|, we have Red + (ReA)|Im8/ImA| > —|Red| + |Red| = 0,
which furnishes L = 0. Thus, K = 0. Summing up, we have proved that K = 0, that is,
wx = 0. But this contradicts w. # 0, and therefore detL # 0. In particular,

¢s = inf{|detL| | (,A) € D(Ry,Ry),Re i > [Re§/Im 5| Im ],

8 €2, Red <0,85 <18 <o} >0,
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which, combined with (5.11) and (5.6), implies that
| detZ| > ws(|A["2 + A4)°

with some positive constant w3 provided that R, |A|"? < A < R{}|A|Y? and § € X, Re§ <0,
and ReA > |Red/Im 3| Tm A|.
Analogously, we have

|detL] > wy (|2 + A)°

with some positive constant w, provided that Ry|A[Y2 < A < R{}[A|Y? and § € B, Re s > 0,
and Re A > A¢|Im A|. Therefore, we have proved (5.1).

Since
detL = LyjLyy — ALy Ly,

by (2.19), the Leibniz rule, the Bell formula (3.3) with f(¢) = 1/¢, g(§') = det L, and (5.1), we
have

’ag,/(detL)_l} <C. % | detLI_(l+1)(|k|1/2 +A)3ZA_|K'| < CK/(|)»|1/2 +A)*3A—\K’\’
=1

which shows (5.2) with £ = 0. Analogously, we have (5.2) with £ = 1, which completes the
proof of Lemma 5.1. d

6 Proofs of main results
In this section, we prove Theorem 1.2. For this purpose, first of all we prove (2.38). For the
multipliers appearing in S]i; (A) of (2.36), by Lemma 2.2, (2.8), and (4.3) we have

+ .
Ry M R}y 0o A2 Ry, o(i&m)
A € M_29, " B2A 2,25 7B2A 2,25
+ +D Ay 1AL
Ry 2 Ry, (i)
— 72,070 7¢,0 m
Ry Moz — 7= €Maa, e Moy,
+ + + . 4
R]Z,—IVO A2 R]g,,l(l%—m) R]L71)\1/2
2 -2,2 2 -2,2» 7 (S M—Z,Z;
I"L:l:Bj: B:l: B:l:

so that by Lemma 3.1 with K7 (1) and K3 (1) and Lemma 3.2 with K (1) and K; (1) we have

R (T3)'GiST(A) | L€ Ay }) <C (£=0,1).

L(Z(RN),L,(RY)2+N+N2) ({

For the multipliers appearing in S]j; (A) of (2.36), by Lemma 2.2, (2.8), and (4.3) we have

Si )/Oi)»llz
St €My, LT eM.,,,
Je=2 ]
+ . + +
Sre,1(E&m) M BiSy, _1Vs A2 .
B2 -2,2> LB -2,25
n+b3
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B:Sj; (i) BiS;, v
——5 € M_,,, ——— € M_,,,
By n+BL
BiSE
iBée'_l €EM_y,,
T

so that by Lemma 3.1 with K3 (1) and Lemma 3.2 with K; (1) we have

R (13:) G S;(M) 1L € Aepy}) <C - (£=0,1).

L(Z(RN),L,(RY)2+N+N2) ({

For the multipliers appearing in ng(k) of (2.36), by Lemma 2.2, (2.8), and (4.3) we have

- Tjove M2 T3 (i)
j-1€ M_y, MT -1,1> T -1,1
+D4 +
BiTj vy M2 BiTj oo B.Tj,
G — -1l - -1l >— €M1,
Mﬂ:Bj: M:EB:E B:l:

so that by Lemma 3.1 with K (1) and Lemma 3.2 with K, (1) we have

R (T3:)'GiS5(M) | L € Ay }) <C (£=0,1).

L(Z(RN),L,(RN)2+N+N2) ({

For the multipliers appearing in Sj; (1) of (2.36), by Lemma 2.2, (2.8), and (4.3) we have

Uyovs 2 U (i) _ o

T B -1l TE -1l
WDy +

AUNoYy AUR,

— €M, > €M,
H+B+ B+

so that by Lemma 3.1 with K3 (1) and K (1) we have

R (1) G SH(A) L€ Ay }) <C (£=0,1).

L(Z®RN),Ly(RN)2+N+N?) ({

Finally, for the multipliers appearing in P_(1) of (2.36), by Lemma 2.2, (2.8), and (4.3) we

have
YT P i Pl i
Po A 0,25 —M— B A 0,2 B? A 0,2
1) _ .
- PeaYo A Pg,l(lém)
P € Mo, LB € Mo, B < Mo,

so that by Lemma 3.5 with Lg(1) we have
RL(Z(]RN),Lq(RIy)N)({(TBI)KVP_(A) | S Ae,Ao}) < C (e = 0,1)

Summing up, we have proved (2.38).
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To transfer the problem (1.10) to (2.1), we use the solutions w, and (w_,6_) to the fol-

lowing equations:

AW, — ;i DivS;s(w,) =f, inRY,

VO+ ) ( ) +N (6,1)
Ss+(Wo)nly, 0. =0 on Ry,
Aw_ -y, DivS_(w_,0.)=f, divw_=0 inRY, 62)
S_(wW_,0-)n|,—0-=0 onRY, '

respectively. We know the following two theorems. The first theorem is due to Gétz and
Shibata [21, Theorem 2.5] and the second one is due to Shibata [18, Theorem 3.4].

Theorem 6.1 Let1<g<00,0<e<m/2,8 >0and ryo>0.Let I'c,, be the set defined in
(1.12). Then there exists an operator family V, (1) € Hol(T' 5., L(Ly(RY)N, W;(R{Y)N)) such

that for any f, € Lq(RiV)N and ) € T'¢ ), w, =V, (ME, is a unique solution to problem (6.1),
and V,()) satisfies the following estimates:

¢
Rﬁ(Lq(]RIX)N,Lq(]RIX)ZNJfNZJfNE’)({(Tar) (G)LVJr()\)) | A€ Fe,ko}) =< C (Z = 0: 1)

with some constant C depending on €, Ao, 80, L+ Vs> Yo+r Vilr Va2, g and N.

Theorem 6.2 Let1< g < oo andO0 < e <m/2. Then there exist operator families

V_(A) € Hol(Z,, £(Ly(RY)Y, w2(RN)Y)),

O_(1) € Hol(Sc, L(Ly(RY)™, W1(RY))

~

such that for any . € ¥ and f_ € Lq(Ri\[)N, w_ =V _(Wf and 6_ = O_(Nf_ are unique
solutions to problem (6.2), and V_(1) and O_()) satisfy the following estimates:

RL(Lq(lRI,V)N,Lq(R{V)ZN*NZ*NS)<{(raf)eG)‘V‘()”) [1eX})<C (£=0,1),

RL(Lq(Ry)N,Lq(Rz_v)N)({(I3T)EV(’)_(A) S Ee}) <C (E = 0,1)
with some constant C depending on €, j._, Yo_, g and N.

The composite operator of two R-bounded operators is R-bounded and the sum of two
R-bounded operators is also R-bounded. Extending the operator V, () to RY and the
operators V_(A) and O_(A) to RY by the PL Lions method, respectively, we see that the
resulting operators also R-bounded, so that combining Theorem 6.1 and Theorem 6.2
with (2.38), we have Theorem 1.2. This completes the proof of Theorem 1.2.
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