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Abstract

In this work a Sturm-Liouville operator with piecewise continuous coefficient and
spectral parameter in the boundary conditions is considered. The eigenvalue
problem is investigated; it is shown that the eigenfunctions form a complete system
and an expansion formula with respect to the eigenfunctions is obtained. Uniqueness
theorems for the solution of the inverse problem with a Weyl function and spectral
data are proved.
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1 Introduction

We consider the boundary value problem

" +q)y=2p()y, 0<x=m, 1)
U(y) := ' (0) + (o1 — A%2)¥(0) = 0, )
V(y) := 2% (Bay () + Boy(r)) = B1y/ () — Bay(w) = 0, 3)

where g(x) € L»(0, ) is a real valued function, A is a complex parameter, o;, 8, i = 1,2,
j =1,4 are positive real numbers and

1, 0<x<a,

px) = )
Yo a<x<rm,

where 0 <y #1.

Physical applications of the eigenparameter dependent Sturm-Liouville problems, i.e.
the eigenparameter appears not only in the differential equation of the Sturm-Liouville
problem but also in the boundary conditions, are given in [1-4]. Spectral analyses of
these problems are examined as regards different aspects (eigenvalue problems, expansion
problems with respect to eigenvalues, etc.) in [5-13]. Similar problems for discontinuous
Sturm-Liouville problems are examined in [14—18].
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Inverse problems for differential operators with boundary conditions dependent on the
spectral parameter on a finite interval have been studied in [19-23]. In particular, such
problems with discontinuous coefficient are studied in [24-27].

We investigate a Sturm-Liouville operator with discontinuous coefficient and a spec-
tral parameter in boundary conditions. The theoretic formulation of the operator for the
problem is given in a suitable Hilbert space in Section 2. In Section 3, an asymptotic for-
mula for the eigenvalues is given. In Section 4, an expansion formula with respect to the
eigenfunctions is obtained and Section 5 contains uniqueness theorems for the solution

of the inverse problem with a Weyl function and spectral data.

2 Operator formulation
Let ¢(x, 1) and ¥ (x, A) be the solutions of (1) satisfying the initial conditions

p(0,0) =1  ¢'(0,1) =27z — a1, (4)

YT, A)=Bi—A s, Y (T, h) =27y Bs. (5)

For the solution of (1), the following integral representation as u*(x) = +x/p(x) + a(l
p(x)) is obtained similar to [28] for all A:

e(x,\) = l(l + 1 )eim*(x) + l(l _ 1 )eiku(x) + /M(x) K(x t)e’“ dr
2 NIE)) 2 Vo) —nt )

where K(x,-) € Li(—u*(x), u*(x)). The following properties hold for the kernel K(x,t)
which has the partial derivative K, belonging to the space L;(—u*(x), u*(x)) for every

x€[0,7]:
d 1 1
5 < ) * = )
d _ d B 1 1
%K(x,u (x) +0) - al((x,u (x)-0) = WA (1 - m)@(x). (7)

We obtain the integral representation of the solution ¢(x, 1):

() wra sin At
o(x, 1) = @olx, A) + f A(x, t)cosAtdt + (Azaz - al) / Alx, £) -
0 0

s,  (8)
where
Alx,£) = K(x, t) — K(x,—t),  Alx,t) = K(x,£) + K(x,—t)

satisfying (6), (7).
Let us define

A()") = (QD(x’ )“)r 1/f(x, )")) = 90(96: )‘)w,(xv )") - <P/(x,7\)1ﬁ(x»)»): (9)
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which is independent from x € [0, r]. Substituting x = 0 and x = 7 into (9) we get

AQ) =-U®) =V(p).

The function A(}) is entire and has zeros at the eigenvalues of the problem (1)-(3).
In the Hilbert space H,, = L, ,(0,77) @ C? let an inner product be defined by

(g = /0 T @) dx+ 22 S8

[¢5) 82
where
fi(x) g1(x)
f=1 £ | €Hy =] & | €H) 82 = B1Ba — B3Ba > 0.
3 g3
We define the operator
A () + q(x)fi (%)
L(f):=| A(0)+afi(0)
Buf{ () + Bafi(mr)
with

D(L) = {f € H, : fi(x), £ (x) € AC[0, 7], I(f}) € L,[0, 7],
fo=fi0).fs = Buf{ (1) + Bofi(m) },

where
1 s
I(h) = P {-f] +qx)fi}.

The boundary value problem (1)-(3) is equivalent to the equation LY = A2Y. When A = A,,
are the eigenvalues, the eigenfunctions of operator L are in the form of

(%, Ay)

D(x,Ay) = D, i= ar@(0,A,) , n=12.
Ba@' (7T, 1) + Pop(7r, M)

For any eigenvalue 1, the solutions (4), (5) satisfy the relation
V(% An) = knp(%, 1) (10)
and the normalized numbers of the boundary value problem (1)-(3) are given below:
ai= [ o dr s a04)
0

+81_2(184(:0,(777)"71)+,62§0(7T,)\,,,))2, W)
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Lemma 1 The eigenvalues of the boundary value problem (1)-(3) are simple, i.e.
A = 20,k 12)
Proof Since

—go”(x, )"n) + Q(x)</’(x» )"n) = )‘ip(x)(/)(x’ )\n):
¥ (x, 1) + q(x) P (x, 1) = 22 p(x) P (x, 1),

we get

d
d—x[w(x,kn)w’(x,k) =@ (% ) (5, 1)] = (A2 = 22) p () (%, M) (, ).

With the help of (2), (3) we get

Ahy) = D) = (3= 22) /0 o(x, 1)V (x, 1) p () .
Adding
()Vi - )Vz)aZ(/)(O’ )Vn)l/f(o’ )‘)
()"%1 - )"2) ’ ’
+ T(ﬁw (7, hn) + Bo(, 1)) (Bt (0, 1) + Bt (7, 1))
to both sides of the last equation and using the relations (10), (11) we have
A(hy) = A = (A + M)Ay = Mkt

Taking A — X,, we find (12). (I

3 Asymptotic formulas of the eigenvalues
The solution of (1) satisfying the initial conditions (4) when g(x) = 0 is in the following

form:
So(x, A
¢0(x,)\)=00(x,)\)+()\,2012—011) 0()\ ), (13)
where
COS AX, 0<x<a,
colxA) =1, 1 + 1 1 -
5 E - ’ = ’
(l+m)cosku x)+:5(1 m)cosk,u x), a<x=<m
and
sin A
o) SRR, 0<x<a,
o A) = L1+ L ))sinxf\ﬁ(x) la- 1())5“‘"{(’6), a<x<m.
px
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The eigenvalues A2 (n = 0,1, F2,...) of the boundary value problem (1)-(3) when g(x) =

0 can be found by using the equation
Ao(2) = (A*Ba = B3)po(m, 1) — (Br = A*Ba) @y (mr, ) = 0
and can be represented in the following way:
W=n+y(m), n=0,FL,F2,...,

where sup,, |{(n)| < +00.

Roots A of the function Ag() are separated, i.e.,
inf[A0 - 19| =7 >0.
g2 - o>

Lemma 2 The eigenvalues of the boundary value problem (1)-(3) are in the form of

d
n >0, (14)

=20+ 24
A m

where (d,) is a bounded sequence,

dt

d - 1 /” (1 1 ) q(t) sin(ASu~ (7))
" 4a9A0) Jo Vo(t) N30

I i (1 N 1 ) q(t) cos(Ayu ()
425A Q) Jo V() V()

dt

and {n,} € b.

Proof From (8), it follows that

wh(m)
@(m,A) = @o(m, A) +/ A(rr, t) cos At dt
0

wr(m) in At
+ (M 2ay ) f A, 1) Smk dt. (15)
0

The expressions of A(A) and Ag(1) let us calculate A(A) — Ag(X):

A(L) = Ag(A) = —)u:l(n,,tf(n)) (a +a+ il ;1) sinAu* ()

-1
+ <oc ta+ n2 )A(n,u*(n)) cos At () + I(M)A3,
o
where

wrm) g el Im Al ()
I(0) =0l2/34/ —A(m, t)sin At dt + 0(72)
0 ox A
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Therefore, for sufficiently large #, on the contours

r,= {x:m = |29+ 3},
2
we have
|AM) = Ao(W)] < [Ao(1)].
By the Rouche theorem, we obtain the result that the number of zeros of the function
{AQ) = Ao} +A0(1) = AR)

inside the contour I',, coincides with the number of zeros of the function Ag(A). Moreover,
applying the Rouche theorem to the circle ,(8) = {% : |» — 22| < §} we find, for sufficiently
large #, that there exists one zero A, of the function A(A) in y,(8). Owing to the arbitrari-
ness of § > 0 we have

P )»2 + €, €,=0(), n— oo. (16)

Substituting (16) into (15), as # — oo taking into account the equality Ag(19) = 0 and
the relations sine,u* (w) & €,u* (), cos€,u* () ~ 1, integrating by parts and using the
properties of the kernels A(x, £) and A(x, t) we have

€ & dy + Nn
n "~ 0 _07
Ap+e€r A
where
()

ut(m) m
Ny :f Ay, t) sinkgtdt+ (o —Olg)/ At(n,t)cos)»?ltdt.
0 0

Let us show that 1, € . It is obvious that 7, can be reduced to the integral
w*(m) )
/ R(t)e™ dt,
—u* ()
where R(t) € Ly(—u* (), u* (;r)). Now, take
u* () )
()= / R(t)e™ dt.
-t ()

It is clear from [28] (p.66) that {¢,} = {(A,) € [y. By virtue of this we have {n,} € [,. The

lemma is proved. g

4 Expansion formula with respect to eigenfunctions
Denote

G(x, t; 1) «=_L et MY (x,2), =<z, )
o A) Y, Nplx, L), t>x
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and consider the function

A
A(A)

Wx,A) + f—zgo(x,k). (18)

y(x, X) = /0 G(x, & AM)f (t)p(t) dt - AG)

Theorem 3 The eigenfunctions ®(x, A,) of the boundary value problem (1)-(3) form a com-
plete system in L ,(0,7) & C2.

Proof With the help of (10) and (12), we can write

Ay
21,00,

VX, Ay) = (%, Ay). (19)

Using (17) and (18) we get

Resyos, 9 0) =~ -l ) /0 ol A (Dp(0)dt

1 f
- 2Anan¢(x’A”)( - E) (20)

Now let f(x) € L ,(0,7) ® C? and assume

(D06, 1,),/ () = /0 o5, L) dx + 90, 1o

n (5490/(77: )‘n) + /32(/)(7'[: }WI))E
8

=0. (21)

Then from (20), we have Res;_; , y(x, 1) = 0. Consequently, for fixed x € [0, ] the func-
tion y(x, A) is entire with respect to A. Let us denote

Gs:={r:[A -2 =8,n=0,FLF2,...},
where § is sufficiently small positive number. It is clear that the relation below holds:
|AR)| = ClafPe ™) 3 e Gy, C = cons. (22)
From (18) it follows that for fixed § > 0 and sufficiently large A* > 0 we have
’y(x,k)‘ < %, A€ Gs,|A| > A%, C = cons.
Using maximum principle for module of analytic functions and Liouville theorem, we

get y(x,1) = 0. From this we obtain f(x) = 0 a.e. on [0,7]. Thus we conclude the com-
pleteness of the eigenfunctions ®(x,A,,) in L ,(0,7) & C>. O

Theorem 4 Iff(x) € D(L), then the expansion formula

@)= anp,1n) (23)

n=1

Page 7 of 13
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is valid, where

a, =

o /O (b M) (Op(6) dt,

and the series converges uniformly with respect to x € [0,7]. For f(x) € Ly ,(0, ), the series

converges in Ly ,(0,1), moreover, the Parseval equality holds:

/0 @[ o) dx =" aylan.
n=1

Proof Since ¢(x, 1) and ¥ (x, 1) are the solutions of the boundary value problem (1)-(3), we

have

y(x,h) = _YxA) {/n [—@"(t, M) + q(t)p(t, 1) (t) dt}

AGY) 22
(x,)\){f [-y"(t, k)+q(t)1/f £,A) lf(t }

! Yx, A) + J2

- AL m‘ﬂ(x»)»)~ (24)

Integrating by parts and taking into account the boundary conditions (2), (3) we obtain

Yo ) = 5 ()5 (710 2) + 2w, )]

h f2
- A(A)I//( xX,A) + mﬁl)(%)&) (25)

where

Zi(x,A) = L1,&(96,)»)/ (p’(t,)\)f/(t)dt+ (p(x,)»)/ ¥t M) (t) dt,

A(R)

1
ZZ(x’)“) A()\.) [( al)vf(xr)‘)f(())] A()\) [(}\2132 - ﬁB)‘p(xr)‘)f(n)]

a0 [ enaerodes e [ unaeroa

A(A)

If we consider the following contour integral where I';, is a counter-clockwise oriented

contour:
L) = —— f Ap(e,2) d
Ty

and then taking into consideration (20) we get

In(x) = Z RCS)\=)LM [Ay(x, )\.)]

n=1

R > Anfl
= ;ﬂnw(x,)\n) + HXZI: A()\, ) X n) Z A(An)w(x,kn), (26)
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where

a =L f ot A (D)pl0) dt
oy Jo

On the other hand, with the help of (25) we get

1
2mwi

L(x) = f(x) - — 4 [Z1(x, 1) + Za(, 1)) dr+ A)\(—“){l)w(x,xn)
n n=1 n

Z A()»n)

Comparing (26) and (27) we obtain

Z anp(®, 1) = f (%) + €,(),

where

en(x)z—% i [Zl(x, )+Zz(x,k)] dh.

The relations below hold for sufficiently large A* > 0

max |Zz(x,k)| < C

xel0.1] |)\|2; AGGSJM 5)\*;

C;
max |Zl(x,)»)| <L, AeG A <A
x€[0,7] |)”|2

The validity of

lim max |6,,(x)| =0
n—00 xe[0,r])

(28)

(29)

can easily be seen from (28) and (29). The last equation gives us the expansion formula

f®) =) anp(@, 1)

n=1

Since the system of ®(x, A,,) is complete and orthogonal in L, ,(0, ) & C?, the Parseval

equality

[ el owds =Y el
n=1

holds.

Page9of 13
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5 Uniqueness theorems
We consider the statement of the inverse problem of the reconstruction of the boundary
value problem (1)-(3) from the Weyl function.

Let the functions c(x, 1) and s(x, ) denote the solutions of (1) satisfying the conditions
c(0,A) =1, ¢'(0,1) =0, 5(0,1) = 0 and s'(0, 1) = 1, respectively, and ¢(x,A) and ¥ (x,A) be
the solutions of (1) under the initial conditions (4), (5).

Further, let the function ®(x, 1) be the solution of (1) satisfying U(®) =1 and V(P) = 0.
We set

_¥(0,1)
A0

M) :
The functions ®(x, 1) and M(1) are called the Weyl solution and the Weyl function for
the boundary value problem (1)-(3), respectively. The Weyl function is a meromorphic

function having simple poles at points A,, eigenvalues of the boundary value problem of
(1)-(3). The Wronskian

W) = p(x, 1), D, 1))
does not depend on x. Taking x = 0, we get
W(0) = ¢(0,A)®'(0,1) — ¢'(0,1)®(0,A) = 1.
Hence,
W (x) = (p(x, 1), D(x, 1)) = 1. (30)
In view of (4) and (5), we get for A # 1,

D, A) = WA(’(C’S). (31)

Using (31) we obtain

A%()

M()") == A()\,) )

where A%(L) = —(0, A) is the characteristic function of the boundary value problem Ly:

ly:AZy, 0<x<m,

¥(0) =0, V(y) = 0.
It is clear that
D(x, A) = s(x, A) + M(A)p(x, A). (32)

Theorem 5 The boundary value problem of (1)-(3) is identically denoted by the Weyl func-
tion M(A).
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Proof Let us denote the matrix P(x, A) = [P (%, A)]jx-12 as

p(x,x)<‘fj("’” Sb(x,x)):(w(x,,\) d>(x,)\)>' 33)
@'(x, 1) D'(x,)) @' (x,A) D(x,A)

Then we have

(p(x, )‘) = Pll (x: )‘-)é(xi )") + P12(x’ )‘)(Z)/(x! }V);

@ (x, A) = Pry(x, M) D(x, &) + Pro(x, A) D (x, 1)

(34)

or

Pll(xr)\) = ‘/)(x: )‘)&)/(x, )‘-) - (ZJ,(JC, )‘)(D(x»)\)’ (35)
Pro(x, 1) = @(x, A)D(x, 1) — (%, A)D(x, 1).

Taking (31) into consideration in (35) we get

1 ~
Pll(xr )V) =1+ A()\) W(x»)»)[w/(x»)») - (ZJ/(JC,)»)] + A(A)w(%)\) [W’(x:)») - l/f/(x!)\)]’ (36)
1 .
Pry(x,A) = A0 —— @ DY (x, 1) — p(x, 1) (%, 1)].
From the estimates as [A| — oo
{w/(% )— (x:)\)‘ ( 1 ol Al ())
A PR ’
‘1/’ (0 2) -y (’“)‘ ( Smil <n)m<x>))
|A[2 ’
we have from (36)
lim max |P11(x,)L) 1| lim max |P12(x,k)| (37)
[A]—>00x€[0,7] [A]—>00 xe
for A € G;.

Now, if we take into consideration (32) and (35), we have

Pll (x: ) (xr ) (x: )‘) - (ZJ,(JC, )‘)5(9@ )‘) + (Z)/(xr )»)go(x,k)[M(A) - M()V)]:

Piy(x, 1) = @(x, A)s(x, 1) — @, L)3(x, 1) + 9 (%, M) (6, ) [ M() — M(2)].
Therefore if M()) = M(), one has

Pll (x) )") = w(xx }")g/(x) )") - S(xx }")(ﬁ/(xy )");
Py (x: )‘) = <P(x» )")g(xr )") - S(x, )\)(ﬁ(x) )\)
Thus, for every fixed x functions Pi;(x, 1) and P2 (x, 1) are entire functions for A. It can

easily be seen from (37) that Pj;(x, 1) =1 and Pjp(x, 1) = 0. Consequently, we get ¢(x, 1) =
@(x, 1) and ®(x, 1) = D(x, 1) for every x and A. Hence, we arrive at g(x) = g(x). (]

Page 11 0f 13
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The validity of the equation below can be seen analogously to [29]:

0 2
M) =M(©0)+ ) m (38)
n=1 n n

Theorem 6 The spectral data identically define the boundary value problem (1)-(3).

Proof From (38), it is clear that the function M()) can be constructed by A,,. Since A = A
for every n € N, we can say that M(A) = M(%). Then from Theorem 5, it is obvious that
L=L. O
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