

ERRATUM Open Access

Erratum: Existence and uniqueness of anti-periodic solutions for prescribed mean curvature Rayleigh equations

Jin Li^{1*} and Zaihong Wang²

*Correspondence: lijin7912@gmail.com ¹ School of Science, Jiujiang University, Jiujiang, 332005, China Full list of author information is available at the end of the article

Abstract

In this paper, we give a complementary proof on the paper 'Existence and uniqueness of anti-periodic solutions for prescribed mean curvature Rayleigh equations'.

Keywords: complementary proof; prescribed mean curvature Rayleigh equations

1 Introduction

In [1], the authors were concerned with the existence and uniqueness of anti-periodic solutions of the following prescribed mean curvature Rayleigh equation:

$$\left(\frac{x'}{\sqrt{1+x'^2}}\right)' + f(t,x'(t)) + g(t,x(t)) = e(t), \tag{1.1}$$

where $e \in C(R,R)$ is T-periodic, and $f,g \in C(R \times R,R)$ are T-periodic in the first argument, T is a constant.

The paper mentioned above obtained the main result by using Mawhin's continuation theorem in the coincidence degree theory. Unfortunately, the proof of main result Theorem 3.1 (see [1]) has a serious problem: $F_{\mu}(x) = \mu L(Q_1(t,x_1,x_2))$ where Q_1 depends on $\psi(x_2)$ and $\psi(x) = \frac{x}{\sqrt{1-x^2}}$ which is only defined for |x| < 1 and cannot be continuously extended; therefore, F_{μ} should not be defined on $\overline{\Omega} = \{x \in X : \|x\| < M\}$ since $|x_2(t)| > 1$ can occur, where $\|x\| = \max\{\|x_1\|_{\infty}, \|x_2\|_{\infty}\}$ and $M = 1 + \max\{D_1, D_2\}$.

In this paper, we shall give a complementary proof to correct the errors.

2 Complementary proof

Rewrite (1.1) in the equivalent form as follows:

$$\begin{cases} x_1'(t) = \psi(x_2(t)) = \frac{x_2(t)}{\sqrt{1 - x_2^2(t)}}, \\ x_2'(t) = -f(t, \psi(x_2(t))) - g(t, x_1(t)) + e(t), \end{cases}$$
 (2.1)

where $\psi(x) = \frac{x}{\sqrt{1-x^2}}$. In [1], the authors embed (2.1) into a family of equations with one parameter $\lambda \in (0,1]$,

$$\begin{cases} x_1'(t) = \lambda \frac{x_2(t)}{\sqrt{1 - x_2^2(t)}} = \lambda \psi(x_2(t)), \\ x_2'(t) = -\lambda f(t, \psi(x_2(t))) - \lambda g(t, x_1(t)) + \lambda e(t). \end{cases}$$
(2.2)

They have proved that there exists a constant $D_1 > 0$ such that

$$|x_1'|_2 \le D_1$$
, and $|x_1|_\infty \le D_1$, (2.3)

and there exists $\eta \in [0, T]$ such that $x_2(\eta) = 0$.

In fact, to use the continuation theorem, it suffices to prove that there exists a positive constant $0 < \varepsilon_0 \ll 1$ such that, for any possible solution $(x_1(t), x_2(t))$ of (2.2), the following condition holds:

$$\left|x_2(t)\right| < 1 - \varepsilon_0. \tag{2.4}$$

In what follows, we shall give a complementary proof for the main result in [1] by giving a proof of (2.4).

In [1], the authors assume that

- (H_1) $(g(t,x_1)-g(t,x_2))(x_1-x_2)<0$, for all $t,x_1,x_2\in R$ and $x_1\neq x_2$;
- (H₂) there exists l > 0 such that

$$|g(t,x_1)-g(t,x_2)| < l|x_1-x_2|$$
 for all $t,x_1,x_2 \in R$;

(H₃) there exists β , γ such that

$$\gamma \leq \liminf_{|x| \to \infty} \frac{f(t,x)}{x} \leq \limsup_{|x| \to \infty} \frac{f(t,x)}{x} \leq \beta$$
, uniformly in $t \in R$;

 (H_4) for all $t, x \in R$,

$$f\left(t+\frac{T}{2},-x\right)=-f(t,x), \qquad g\left(t+\frac{T}{2},-x\right)=-g(t,x), \qquad e\left(t+\frac{T}{2}\right)=-e(t).$$

Under the conditions mentioned above, we prove that (2.4) holds.

Since $|x_1|_{\infty} < D_1$ and g, e are continuous, we find that there exists $M_3 > 0$ such that

$$-M_3 < -g(t, x_1(t)) + e(t) < M_3, \quad \forall t \in \mathbb{R}.$$
 (2.5)

By (H₃), there exists a positive constant $M_4 > 0$ such that

$$f(t,x) \ge \gamma x - M_4, \quad \forall x > 0 \text{ and } \forall t \in R.$$
 (2.6)

Next, we shall prove that

$$x(t) \le \frac{M_3 + M_4}{\sqrt{(M_3 + M_4)^2 + \gamma^2}}, \quad \forall t \in R.$$

Assume by contradiction that there exist $t_2^* > t_1^* > \eta$ such that

$$x_2 \left(t_1^* \right) = \frac{M_3 + M_4}{\sqrt{(M_3 + M_4)^2 + \gamma^2}}, \qquad x_2 \left(t_2^* \right) > \frac{M_3 + M_4}{\sqrt{(M_3 + M_4)^2 + \gamma^2}},$$

and

$$x_2(t) > \frac{M_3 + M_4}{\sqrt{(M_3 + M_4)^2 + \gamma^2}}, \quad \text{for } t \in (t_1^*, t_2^*).$$

Noticing that $\lambda \in (0,1]$, we have, $\forall t \in (t_1^*, t_2^*)$,

$$x_2'(t) = \lambda(-f(t, \psi(x_2(t))) - g(t, x_1(t)) + e(t)) < 0,$$

which is a contradiction.

By (H₃), there exists a positive constant $M_5 > 0$ such that

$$f(t,x) \le \beta x + M_5$$
, $\forall x < 0$ and $\forall t \in R$.

By using a similar argument, we can prove that

$$x_2(t) \ge -\frac{M_3 + M_5}{\sqrt{(M_3 + M_5)^2 + \beta^2}}, \text{ for } t \in \mathbb{R}.$$

Therefore, we get from the continuity of $x_2(t)$, for any solution $(x_1(t), x_2(t))$ of (2.2),

$$-\frac{M_3+M_5}{\sqrt{(M_3+M_5)^2+\beta^2}} \leq x_2(t) \leq \frac{M_3+M_4}{\sqrt{(M_3+M_4)^2+\gamma^2}}, \quad \forall t \in R.$$

Consequently, (2.4) holds.

Putting

$$\Omega = \left\{ x = (x, x) \in C_T^{0, \frac{1}{2}} (R, R^2) = X : ||x|| < M, |x_2(t)| < 1 - \varepsilon_0 \right\},\,$$

we can use Mawhin's continuation theorem on Ω .

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

¹ School of Science, Jiujiang University, Jiujiang, 332005, China. ² School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China.

Acknowledgements

The authors would like to thank Professor J Webb for pointing out the errors of the paper [1].

Received: 18 August 2014 Accepted: 18 August 2014 Published online: 25 September 2014

References

1. Li, J, Wang, Z: Existence and uniqueness of anti-periodic solutions for prescribed mean curvature Rayleigh equations. Bound. Value Probl. 2012, 109 (2012)

doi:10.1186/s13661-014-0204-5

Cite this article as: Li and Wang: Erratum: Existence and uniqueness of anti-periodic solutions for prescribed mean curvature Rayleigh equations. *Boundary Value Problems* 2014 2014:204.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com