Bi et al. Boundary Value Problems 2014, 2014:209 0 BOU nda ry Va | ue PrOblemS

http://www.boundaryvalueproblems.com/content/2014/1/209 a SpringerOpen Journal

RESEARCH Open Access

Global attractor for the generalized
hyperelastic-rod equation

Yunrui Bi'??, Xiaobo Lu'?", Weili Zeng'? and Zhe Sun*

"Correspondence:
xblu2013@126.com Abstract
'School of Automation, Southeast . ) . . . o
University, Nanjing, 210096, China In this paper, we investigate the dynamical behavior of the initial boundary value
*Key Laboratory of Measurement problem for a class of generalized hyperelastic-rod equations. Under certain
and Control of CSE, Ministry of conditions, the existence of a global solution in H* is proved by using some prior
Education, Southeast University, . . ; .
Nanjing, 210096, China estimates and the Galerkin method. Moreover, the existence of an absorbing set and
Full list of author information is a global attractor in H* is obtained.
available at the end of the article
Keywords: generalized hyperelastic-rod equation; global solution; global attractor

1 Introduction
Camassa and Holm [1] first proposed a completely integrable dispersive shallow water
equation as follows:

Us — Uy + Uy + Kihy = 2Uylyy + Ullyyy.. (1.1)

The C-H equation (1.1) was obtained by using an asymptotic expansion directly in the
Hamiltonian for the Euler equations in the shallow water regime and possessed a bi-
Hamiltonian structure and an infinite number of conservation laws in involution. Research
on the C-H equation becomes a hot field due to its good properties [2—4] since it was pro-
posed in 1993. Some equations also have similar characters to the C-H equation, which
are called C-H family equations. Because of the wide applications in applied sciences such
as physics, the C-H family equations have attracted much attention in recent years.

In 1998, Dai [5] derived the following hyperelastic-rod wave equation for finite-length
and finite-amplitude waves in 1998 when doing research on hyperelastic compressible ma-
terial:

Vr + O1VVe + 09Vegr + 03(2Ve Vg + Vege) = 0, (1.2)

where v(&, T) represents the radial stretch relative to a pre-stressed state. The three coef-
ficients o1, 03, and o3 are constants determined by the pre-stress and the material param-
eters, 01 70,0, < 0,03 <O0.

Ift = S—j‘;”t and & = ,/=0,x, then the following equation can be obtained by (1.2):
30’3
Up — Uyyr + ULy = V(Zuxuxx + uuxxx): y=—"—- (13)
0102

The constant y is called the pre-stressed coefficient of the material rod.
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There have been many research results as regards the hyperelastic-rod equation (1.3)
[6-12], such as traveling-wave solutions, blow-up of solutions, well-posedness of solu-
tions, the existence of weak solutions, the global solutions of Cauchy problem, the periodic
boundary value problem, etc.

In 2005, Coclite et al. [13, 14] studied the following extension of (1.3):

Ut — Uxxt +g(u)ux = y(zuxuxx + Muxxx)r g(O) =0. (14)

The existence of a global weak solution to (1.4) for any initial function uy belonging
to H'(R) was obtained. They showed stability of the solution when a regularizing term
vanishes based on a vanishing viscosity argument and presented a ‘weak equals strong’
uniqueness result.

It is easy to observe that if y = 0 and g(u) = 2ku + a, (1.4) becomes the BBM equation
(1.5) [15, 16],

Up = Uy + athy + k(u”) =0. (1.5)

Here y =1 and g(u) = 3u + k, (1.4) is transformed into the C-H equation (1.1).
If y =1 and g(u) = (b + 1)u, (1.4) can be changed to the D-P equation (1.6) [17-20],

Uy — Upyr + (D + 1)Uthy = 2Uylhyy + Ullyyy. (1.6)

Actually, the KdV equation [21], the C-H equation, the hyperelastic-rod wave equation
etc. are all considered as special cases of the generalized hyperelastic-rod equation. So
many researchers focused on this class of equations [22-24]. Among them, Holden and
Raynaud [22] studied the following generalized hyperelastic-rod equation:

Ut — Uxxt +f(u)x _f(u)xxx + <g(”) + %f//(u)(ux)2> = 0 (17)

X

They considered the Cauchy problem of (1.7) and proved the existence of global and con-
servative solutions. It was shown that the equation was well-posed for initial data in H*(R)
if one included a Radon measure corresponding to the energy of the system with the initial
data.

However, there are few works with respect to the global asymptotical behaviors of so-
lutions and the existence of global attractors, which are important for the study of the
dynamical properties of general nonlinear dissipative dynamical systems [25-27]. Moti-
vated by the references cited above, the goal of the present paper is to investigate the initial
boundary problem of the following equation:

U — Uy + [G(11) &4) = QU lhy + Ulhyyy, >0, € 2, (1.8)
u(0,x) = up(x), x€Q, '

where Q = [0, L]. We will study the dynamics behavior of (1.8) and discuss the existence of
the global solution and the global attractor under the periodic boundary condition when
G(u) satisfies the particular conditions.
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The rest of this paper is organized as follows: Section 2 describes the main definitions
used in this paper. The existence of the global solution is discussed in Section 3. The ex-
istence of the absorbing set is detailed in Section 4. Section 5 shows the existence of the
global attractor.

2 Preliminaries

In this work, (-,-) stands for the inner product in the usual sense and | - || represents the
norm determined by the inner product, |ullym@) = [1D"ull;2(q). Apparently, this norm
is equal to the natural norm in H™(£2). The following signs are adopted in this paper to
express the norms of different spaces: ||u| ;2(q) 2 |ul, [ Dull 2 2 llull, 1D ull 2 2 |D"u|.

The notion of bilinear operator is introduced, B(u,v) = uVv, where V is called a first
order differential operator. Then we can get b(u, v, w) = (B(i, v), w) = fQ(uVV)w dx.

The generalized hyperelastic-rod equation we studied is one-dimensional, and the op-
erator V acting on u(x,t) is not identically vanishing, so b(u,v,®) = 0 cannot be found.
However, the following formulas can be derived by the periodic boundary condition and
formula of integration by parts:

(B(u, V),a)) = —(B(u, a)),v) - (B(a), u),v),

(B(v,u), ) = —(B(w,v),u) - (B(v,w), u),

furthermore, (B(u, v), u) = —2(B(u, u),v), (B(u,v), u) = —2(B(v, u), u), so we get (B(u, u),v) =
(B(v,u),u) and (B(u, u), u) = 0.

Suppose A = —A is a second order differential operator, v = u + Ay, then A is a self-
adjoint operator, which possesses the eigenvalues like (k¥ + k%)(%”)z, where ki, ky € Ny
and k} + k3 # 0. A; represents the smallest eigenvalue of A.

Based on the above statements, the initial boundary value problem of (1.8) under the
periodic boundary condition can be rewritten as follows:

% + [G(u)]f) + B(u,v) + 2B(v,u) — 3B(u, u) = 0, (2.1)
u(x,0) = ug, (2.2)
u(0,¢) = u(L, t). (2.3)

In this work, we assume that H = {u | u € L*(Q) and u(0,£) = u(L,8)}, V = {u | v’ €
L2(2) and u(0,¢) = u(L,t)}, G, (1) > go > 0 and IG® ()| < Clul>*, k=1,2,3,4, C isa con-
stant.

3 The existence of global solution
Theorem 1 Ifuy €V, G, (1) > gy >0, and |G§,k)(u)| < Clul*™*, k=1,2,3,4, then (2.1)-(2.3)
possess the global solution u = u(-, uy) € C([0, 00); H3(R)) N CL([0, 00); H*(R)).

Proof The Galerkin method is adopted to prove this theorem. Assume that {@i} is
an orthogonal basis of H constituted by the eigenvectors of the operator A, H,, =
span{¢1, @2, ..., Pm}, Py is the orthogonal projection from H to H,,. Through the Galerkin
method, we can obtain the following ordinary differential equations by (2.1), (2.2):

dv,,
S [Gtn)]\” + Pt Vi) + 2P BV ) = 3Py Btk ) = O, (3.1)
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4,(0) = P,,,u(0), (3.2)

where v,, = u,, + Au,,. Considering the expressions of B(u, V1), BV i), B(thiy Uyy), ac-
cording to the qualitative theories of ordinary differential equations, (3.1)-(3.2) have a
unique solution u,, in (0, T,). In order to prove the existence of a global solution, we need
to do some prior estimates as regards u,.

Taking the inner product of (3.1) with u,, in 2, we have

((Z/—;”,um> + ([G(um)]i‘l),um) + Py (Bt Vi), th)

+ 2Py (B o) i) — 3Py (B(thyas thyn), thrn) = 0.

By using integration by parts and the periodic boundary conditions, we get

B N1 g} o
(dt ,um>-Zdt</g(um+um)dx>—2dt(|um| o),
p, (B(um: Vm)’ um) + 2P, (B(Vm: Mm); um) - 3Py, (B(um, um): um) =0,

([G(um)]jf): Mm) = / [G(um)]i:})um dx = _/ G;m (787 —
Q Q

: _ 2 /
Moreover, in terms of fQ Ui U AX = — fQ u,,..dx <0and G, (u) > gy >0, we have

([G(um)]jf): Mm) = _gO/ UmxUmxxx dx,
Q

1d
= (ltby|® + 1t ||2—0/u u dx <0.

Employing fQ U Uy AX = — fQ ufnxx dx again, the following formula can be obtained:

)
E(mmﬁ + lltm1?) + 280l Au)* < 0.

By the Poincaré inequality, |Au,,|? > A1 || 4 ||%, we have

d
E(mmﬁ + Ntmll*) + gort lstmll* + golAus,|* < 0.

Let g1 = min{goA1, g0}, then

d
E(mmﬁ + 1) + g1 (lsmll* + |Ans,|*) < 0. (3.3)

Using the Poincaré inequality again, ||u,,[|? > A1|t|* and |Au,,|? > Ay || um||?, (3.3) can be

changed to

d
E('umﬁ + ||Mm||2) +g1)»1(|um|2 + ”um”2) <0.

So we can obtain

il + Nt 1 < (| (0)|” + [0 (0)]*) expi=grrat} < |m(0)|* + | 4 (0)]* & 11.

Page 4 of 14
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Integrating (3.3) over the interval [¢,£ + 7],

& / () [+ At ()]?) s < . (3.4)

Taking the inner product of (3.1) with Au,, in 2, we have

<ddL;n,AMm> + ([G(um)]f:h,Aum) + P, (B(um, Vm):Al/lm)

+ 2Py (BWyny tim), Athy) — 3Py (B(tyms thyn), Athyy) = 0.
By using integration by parts and the periodic boundary conditions, we get
dav,, 1d
(W’Aum) = E%(”umﬂz + |Aum|2):
4) 4 ’
([G(um)]x xAum) = / [G(um)]x Aty dx = / Gum (U ) U Umnz A%.
Q Q

Moreover, [, Upmslhmxxsxs A% = [ U2, dx > 0 and G| (1) > go > 0. So

d
%(numn2 + |Au)?) + o /R Upnstmazaxs A% + Py (B(tyns Vi), Alhyy)

N =

+ 2P,y (BWyn» ti), Athis) = 3Py (B(thyy i), Athy) < 0.

Employing [o, tmxlhmxxex d% = [ U2, dx again, we obtain

(1t lI* + 1At *) + g0 |V Aty |* + Py (B(thys Vi), Athy)

| =
S5

+ 2Py (B(Vis ), Athins) = 3Py (B(thos ), Athyy) < 0. (3.5)
By computing, we have
Pm(B(um; Vm):Aum) + 2P, (B(Vm, um);Aum) - Bpm(B(umr um),Aum)
= 2P,y (B(Athys, thn), Athon) + Pr(B(thyn, Athyn), Athyy).

1

1 1
According to the Agmon inequality when n =1, ||¢||1~ < c||go||L22 llel

1> where c is a con-

stant which only depends on Q2. Furthermore, we can get

2 1 5
Py, (B(Aum’ um)»Aum) S WVl lAwn|” < callnl 2 1A 2,

1 (%) 1 5
Py (B(ttyy Atty), Attyy) < E”VMmHL"O |Aut,|* < Ellumll 2|Au|2.

So the following inequality can be gotten by (3.5):

| &

2 4 1Au, | VAu,|? < w3 + 2,2 1A,
(12t I” + 1Ath|*) + 0| VAU > < c1llttll 2 | Aty 2 + 2||um|| |Asty,|2.

N =
QU

t

Page 5 of 14
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By the Poincaré inequality, |VAu,,|? > A1|Au,,|?, together with g, = min{gyA1,go}, we have
ld 2 PR 2 2 1 5 € 1 5
5&(”%«” +[Aup)?) + 5(|Aum| + VAU, %) < crlltmll? |As|? + 5||Mm||2 |Atdyn] 2.

By the Young inequality, the following inequality can be obtained:

(it 1* + 1Azt |?) + ‘%(IAumIZ +|VAu,|?)

(ST
S

1
< Eglxl(numnz + At ) + c3lltmllAtt| (16 ]|* + |Asty]?), (3.6)

where

[min{c, 2}2

C3 =
2g1M

and, by using the Poincaré inequality, we have

d
E(Ilumll2 + At ?) < 23t 1 Attya| (11 ]I + |Atti]*).

Using the Young inequality again, we can further get

d
E(Ilumll2 + 1At ?) < c3 (Il + |Awnl?)’. 3.7)

Denoting y = ||t4,,(s)112 + |Atts(5)1?, & = c3(| 4 (8) 1% + |Attu(s)|?). According to (3.4),

t+r t+r
/ yds <2, f gds< 21
t & t g1

Based on the uniform Grownwall inequality, we have

T [6:34
lttmll? + At < —expl =2 27y, £>tg+7, (3.8)
rg1 F41

where r, r1, and c¢3 are nonnegative constants.
Integrating (3.6) over the interval [¢, ¢ + r] to obtain

1 t+r
Eglf (|At|* + VAU, |*) ds
t
e 2 2y, 3 2 2)2 2 2
< Egl)\l(”um” +|Aw|*) + E(Ilumll + 14w *)" | ds + (llmll® + |Auu]?)
t
1 9 A
< i(gl)qrz +C3r3)r+ T2 = 1. (3.9)

Taking the inner product of (3.1) with A%u,, in Q, together with integration by parts, the
periodic boundary conditions, and G| (&) > g > 0, we have

| &

(1Atty? + |V Aty ) + 0| A2t |” + Pry (Bl Vi), A%14,)

M| =
&

t
+ 2P,y (B> ) A* ) = 3Py (B(thyny ), A% thy) < 0.

Page 6 of 14
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Through the Young inequality, the Holder inequality and the Poincaré inequality, we de-

duce that
11 2 2y, &1 2 2 12
2dt(|Aum| +|VAu,|*) + 5 (IVAu > + |[Aup|")
< %gm(lz‘luml2 + VAU ) + calltbm || Athyn (| At |* + |V Atty|).

According to the Poincaré inequality and the Young inequality again, we have

d
E(|Aum|2 + VAU, %) < 2¢allttn || Aty (JAtty* + |V An]?)

< caltmll? + 1A *) (14U |* + |V Att ).

From (3.4) and (3.9), we get

t+r ) ) res
64/ (”um(s)H + ‘Aum(s)’ )ds < ==
t gl

t+r
/ (At + 1V At ) ds < 222,
t gl

Based on the uniform Grownwall inequality, we have

|Aut,n)? + |VAu,|* < % exp{ E} 2 ry, t>to. (3.10)
rd1 81
Overall, |t4,,|% < 11, thm || < 12, |Ath|> < 13, [V Aty |> < 1y, thatis, [v,,]> <1 +713, |[Viml]? <
o+ ra.
According to the qualitative theories of ordinary differential equations, (3.1)-(3.2) have
a global solution u,,.
From the above discussion, we have

1
| LBty Vi) | < |t [V ]] < (r1(r2 + 7))

1
|PinBins )| < Vit | < (ra(ry + 15)) 2

A

1
’PmB(um;um” < |ttt < (r1r2)2 =17

Then (3.1) can be rewritten as

dv,,
= = 8P,y Bltbs ) = PrnB1bs Vi) = 2P (Vs ) = [ G0

Because of |G (u)| < Clul>*, k=1,2,3,4,

av,,

< 3|PyuB(thmy tim)| + |PruB (s Vi) | + 2| P By th) | + ‘PW,B([G(M,,,);”];,M,,,)’

1
<3r7 + 15+ 216 + W(C, 11,72, 13, ra) |tt || < 317 + 15 + 26 + hry 2 k, (3.11)

where /% is a constant which depends on C, ry, 1y, r3, 14.
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According to the Aubin compactness theorem, we conclude that there is a convergent
subsequence u,,, so that u,, — u, or equivalently v, — v. Suppose that u,, and v,, are
replaced by u,, and v,,, then we need to prove that u, v satisfy (2.1).

Selecting w € D(A) randomly, |w| is bounded as we see from the above discussion. By
the ordinary differential equation (3.1), we have

t

(vm(t),a)) + /t(G(um(s)),Azw) ds +/ (B(um(s),vm(s)),Pma)) ds

to to
t

+2 /t(B(Vm(s), um(s)),Pma)) ds — 3/ (B(um(s), um(s)),Pma)) ds = (vm(to), a))

] to

Obviously, lim,,,_, ;00 [P — @] = 0, 1im,,,_, 400 |PA%w — A%w| = 0, according to the conver-
gence,

tim [ (Glun(),A%) ds - [ ' (G(u(s), A%0) ds,

m—+00 to tO

t

/t(B(um(s), Vm(S)),Pma)) ds —/ (B(u(s),v(s)),w) ds

Lo to

/‘t(B(um(S)’ Vm(S)),Pma) - a)) dS

to

< +

/t(B(uV”(S) - M(S), Vm(S)), CU) dS

Lo

+

’

/t(B(“(S)’ Vin(s) = v(s)), w) ds

]

where

12) = /t(B(um(s):Vm(S))!me_w) ds

Lo

t
= / |B(um(s): Vm(S)) | |me - w| ds.
to
Considering the boundness of |B(u,,(s), V,u(s))|, so Ii,? — 0,

1= [ (Blunts) - t5h (). 0 s

Lo

5/ |B(1tn(5) = (), viu(s)) ||| ds

5/ |um(s)—u(s)|||vm(s)|||a)|ds—> 0,

I® =

m

/ (Buls) vnls) — v(9), ) s

Lo

5/ |B(u(s),vm(s)—v(s))||w|ds

< / 14(5)| | () = v(5) 1] ds — O,

t

ft(B(vm(s), Um(8)), Pmw) ds — / (B(v(s), u(s)), w) ds

0 to

< +

/ (Bw6) ~ (9 10,6, ) ds

0

/t(B(Vm (S)’ MWI(S))erCU - Cl)) dS

0

Page 8 of 14
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where
19 - /t:(B(Vm(s),um(s)),me—w) ds| < /tot|B(vm(s),um(s))!Ime—wlds—>0,
1 = /t:(B(vm(s)—V(s),um(s)),a)) ds| < /t:|B(vm(s)—v(s),um(s))llwlds
< /t:|vm<s>—v<s>|||um<s>n|w|dH 0,
19 = ft:(B(v(s),um(s)-u(s)),w) ds| < /t0t|B(v(s),um(s)—u(s))llwlds

< [ 1] fnls) - ut9)l01 s > 0,

t

[t(B(um(s), U (S)), Pw) ds — / (B(u(s), u(s)), w) ds

0 to

<

+

/t(B(um(S) - M(S), um(s))y Cl)) dS

0

/t(B(um(s)’ MWI(S))7 Pma) - (1)) dS

0

+

/t(B(u(S)’ MW,(S) - M(S)), Cl)) ds

to

=174+ 1O 410 0.

m

From the above discussion, we can deduce that #, v satisfy the following equation:

t t

(G(u(s)), A’w) ds + / (B(u(s), v(s)), ) ds

to

(v(t), w) + /

to
t

+ 2/ (B(v(s), u(s)), w) ds — 3/ (B(u(s), u(s)), w) ds = (v(to), w).

0 to

Above all, u is the solution of (2.1)-(2.3), that is, their global solution exists. O

4 The existence of the absorbing set
Theorem 2 If uy € V, the semi-group of the solution to (2.1)-(2.3), i.e. S(t) : H*(Q) —
H2(2), u(t) = S(t)uo, has an absorbing set.

Proof Taking the inner product of (2.1) with u in €2 we obtain
dv 9
o) (A*G(w),u) + 2(B(v, ), u) + (B(u, v), u) — 3(B(u, u),u) = 0.

Because of G/ (1) > gy, go > 0, we have

| &

(lul® + 112¢l®) + golAul* < 0.

N =
Q

t

By the Poincaré inequality, [Au|? > A ||u||?, we get

d
E(Iul2 + ull?) + gollul® + golAul® < 0.

Page 9 of 14
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Let g1 = min{goA1, g0}, then

d
E(|u|2+ leel®) + g (llul® + |Aul®) < 0. (4.1)

Using the Poincaré inequality, ||u||? > A|u|? and |Au|? > A1||u||?, (4.1) is changed to

d
- (ll? + ) + gk (1 + lP) <.

By the Grownwall inequality, we obtain
lul® + ||ul® < (‘u(O)‘2 + Hu(O)HZ) exp{—-g1At}. (4.2)

Itis easy to see that |u(x, £)| and ||u(x, £)|| are uniformly bounded from (4.2). In other words,
the semi-group S(¢) is uniformly bounded in 22(£2) and H*(2).
Integrating (4.1) over the interval [¢,£ + r], we have

lim

t+r
s—>+00 J,

1
(||u(x,s)||2 + |Au(x,s)|2) ds < 5(%'2 + lluoll?),
ts 2 2 1 2 2 Lo
/ (|, 8) || + [Autx,9)|7) ds < — (luo|* + lluolI*) < =.
¢ & &

If B(0, p) is an open ball in L?($2) and H'(S2) whose radius is p, it is easy to calculate that
S(H)ug € B(0, p) when ¢ > ty, to = max —gl%l In pio’ 0).

We will make a uniform estimate of (2.1)-(2.3) in H*().

Taking the inner product of (2.1) with Au in 2, and denoting F(u, Au) = (B(u,v), Au) +

2(B(v, u), Au) — 3(B(u, u), Au), we have

| &

(lull® + |Aul?) + go| VAu|* + F(u, Au) < 0. (4.3)

N =
QU

t

By computing, F(u, Au) = 2(B(Au, u), Au) + (B(u, Au), Au), through the Agmon inequality,
we get

1 5
| (B(Au, u), Au)| < [Vl oo | Autl| 7o g < csllull 2 |Aul 3,
1 2 Co 1 5
|(Blw, Aw), Au)| < 211Vl 14Ul ) < llull? | Aul 2.
So we have

|F(u, Au)| < 2| (B(Au, ), Aut) | + | (Bu, Au), Aus) | < 7 llull 2 |Aul (lul® + |Aul?)

1
< Eglh(llull2 + |Aul?) + cgllull|Aul(|ull® + |Aul?),

where
2
C c
C7 = max 2C5,—6 , cg = 7.
2 2g1)\1
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By the Poincaré inequality, |[VAu|? > A;|Au|?, g = min{goA1, g0}, and (4.3) it can be deduced
that

(lell® + |Auf?) + g2—1(|Au|2 +|VAul?)

N | =
Sl

1
< igl)\l(”unz + [Aul®) + cgllull|Aul (lu])? + |Aul?). (4.4)
Employing the Poincaré inequality again, we obtain

d
E(Ilull2 +|Aul?) < 2cgllull|Aul (lul® + |Aul).

Using the Young inequality, the following inequality can be gotten:
d 2 2 2 2)2
E(Ilull + [ Aul?) < cs(llull® + |Aul®)".

By denoting y = [[ull® + |Aul?, g = cs(lul® + |Aul?),

t+r 1 t+r cs
/ y(s)ds < —(luol” + lluo|*) = en, / g(s)ds < — (luol* + l|uo|*) = cser.
t &1 t 8
According to the uniform Grownwall inequality, we get
2 2 _ %
lloell” + |Au|” < — exp{csan}, t>to +7,
r

where r, o1, cg are nonnegative constants. Let p; = “—rl exp{csay}, and then |Au|? < p;. In
other words, B(0, p;) is the attracting set of S(¢) in H*(S2). This completes the proof of
Theorem 2. O

5 The existence of global attractor
Theorem 3 [fuy € V, the semi-group of the solution S(t) to (2.1)-(2.3) has a global attractor
in HX(Q).

Proof Based on the proof of Theorem 2, we only need to prove that S(¢) is a completely
continuous operator, thus the existence of global attractor can be proved.

Taking the inner product of (2.1) with 2 AAu in , furthermore, according to integration
by parts and the Green formula, we have

(%, tZAAu) + (A*G(w), > AAu) + (B(u,v), > AAu)

+2(B(v, ), * AAu) - 3(B(u, u), * AAu) = 0, (5.1)
dv 1d 12,1 2
(%tzAAu) = —EE(|tAu|2 +|tVAul®) + (|2 Au|” + |t2VAu|").
By the assumption of G}, (x) > go, go > 0, we can get

(A*G(w), > AAu) < —go|tAAul?,
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(B(u, V), t? AAu) + 2(B(v, u), £ AAu) — 3(B(u, u), t* AAu)

5
= (B(u,Au),tzAAu) + 2(B(Au, u),tzAAu) = —E/ tzuxufm dx
Q

and through the Agmon inequality and the Poincaré inequality, we obtain

|(B(u,v), £ AAu) + 2(B(v, u), > AAu) — 3(B(u, ), £* AAu)|

5 5

= —/tzuxufmdx 5—/t2uxufmdx+/t2uxu§xdx
2 Ja 2]/e Q
5 1 1 2 2

< §c9||u||2|Au|2(|tAu| +[tVAul?).

By (5.1), we can get the following inequality:

d
Z(|tAu|2 + [tVAul®) +2go |t AAul?

< 5eollull? |Aul? (JtAu] + [V Aul) + 2(|3 Aul* + |62 VAu]).
Based on the Poincaré inequality: |t AAu|? > A |[tVAu|?, [tVAu|? > 1, |tAul?, g1 = min{goAs,
2o}, and the Young inequality, we have
d
E(|tAu|2 +|tVAul?) + gih (|tAul® + [tV Aul?)
< 5o ull*|Aul? (|tAuf + [V Aul®) + 2(|e2 Aul* + |2 VAu|?)
<@h(ItAul® + [tVAu?) + crollull|Au| (ItAul® + |V Au)?)
+cn (JAul® + | VAul?), (5.2)
where

25¢2 8
= ) ‘n=—:
4g1M aMm

€10
By (4.4), the following inequality can be obtained:

d
%(Ilull2 +1Au?) + g (|Aul® + [VAuP) < gida (el + | Aul®) + e (lull? + |Auf?)?,

t>ty.

Integrating the above inequality over the interval [t, ¢ + r], we get

b 2 2 csp} o1
/ (|Au(x,s)’ +‘VAu(x,s)‘ )dsf (k1p1+—)r+—.
¢ & &

Equation (5.2) can be rewritten as follows:

d
E(|tAu|2 +[tVAul?) < crollull|Aul (|tAul® + 1EVAul®) + cui (JAul® + |[VAul?).
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2
8Py

By denoting (A0 + o

)r+ &L= 0o(hy, p1,1), we have

t+r

/ " c10 Hu(x, s) || |Au(x,s)| ds < %)/ (||u(x,s)||2 + |Au(x,s)|2) ds

1000 A
= = az(po,&1),
2g1 g

t+r
/ (|sAux,s)|* + |sVAu,$)|*) < (¢ + r)2as £ aalhn, p1,20)-
t
By the uniform Gronwall inequality, we have
2 2 %
|tAu|” + [tVAu|” < (— + Cuag) exp(os).
r

Let (% + ciyorp) exp(es) = E(A1, p1,81, £), then we can obtain |VAu| < M.

Therefore, we can conclude that S(¢) is equicontinuous. From the Ascoli-Arzela theo-
rem, S(¢) is a completely continuous operator. Thus, we have proved that S(¢) has a global
attractor in H2(2). O
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