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Abstract
The problem of unsteady MHD flow near a stagnation point of a two-dimensional
porous body with heat and mass transfer in the presence of thermal radiation and
chemical reaction has been numerically investigated. Using a similarity
transformation, the governing time-dependent boundary layer equations for the
momentum, heat and mass transfer were reduced to a set of ordinary differential
equations. This set of ordinary equations were then solved using the spectral local
linearization method together with the successive relaxation method. The study
made among others the observation that the local Sherwood number increases with
increasing values of the unsteadiness parameter and the Schmidt number. The fluid
temperature was found to be significantly reduced by increasing values of the Prandtl
number and the thermal radiation parameter. The velocity profiles were found to be
reduced by increasing values of the chemical reaction and the Schmidt number as
well as by the magnetic parameter.

1 Introduction
Uniform fluid flow over bodies of various geometries has been considered by many re-
searchers over the years due to their numerous applications in industry and engineering.
Due to complexity and non-linearity of the modeling governing equations exact solutions
are difficulty to obtain. To that end, many researchers have employed different analytical
and numerical methods. In recent years, the study of stagnation flow has gained tremen-
dous research interest. Stagnation flow is the fluid motion near the stagnation point. The
fluid pressure, and the rates of heat and mass transfer are highest in the stagnation area.
A flow can be stagnated by a solid wall or a free stagnation point or a line can exist in the
interior of the fluid domain. The study of stagnation point flowwas pioneered byHiemenz
in  []. Wang [] investigated the stagnation flow toward a shrinking sheet and found
that the convective heat transfer decreases with the shrinking rate due to an increase in the
boundary layer thickness. Motsa et al. [] studied the Maxwell fluid for two-dimensional
stagnation flow toward a shrinking sheet. Shateyi andMakinde [] investigated the steady
stagnation point flow and heat transfer of an electrically conducting incompressible vis-
cous fluid with convective boundary conditions.
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The study of heat generation or absorption in moving fluids is of great importance in
problems dealing with chemical reactions and those concerned with dissociating fluids.
Heat generation effects may alter the temperature distribution and consequently, the par-
ticle deposition rate in nuclear reactors, electronic chips. Chamkha andAhmed [] studied
the problem of MHD heat and mass transfer by mixed convection in the forward stagna-
tion region of rotating sphere in the presence of heat generation and chemical reaction
effects. Bararnia et al. [] investigated analytically the problem of MHD natural convec-
tional flow of a heat generation fluid in a porous medium.
Fluid flows with chemical reaction have key importance in many processes such as dry-

ing evaporation at the surface of a water body, energy transfer in a wet cooling electric
power, food processing, groves of fruit trees, etc. The molecular diffusion of species in the
presence of a chemical reaction within or at the boundary layer always exists during sev-
eral practical diffusive operations. Several researchers have studied flows with chemical
reaction reactions. Pal and Talukdar [] presented the combined effects of Joule heating
and a chemical reaction on unsteadyMHDmixed convectionwith viscous dissipation over
a vertical plate in the presence of a porous medium and thermal radiation. Hayat et al. []
examined the mass transfer effect on unsteady three-dimensional flow of a coupled stress
fluid over a stretching surface with chemical reaction. Najib et al. [] investigated the stag-
nation point flow and mass transfer with a chemical reaction past a stretching shrinking
cylinder.
Unsteadymixed convection flows do not necessarily possess similarity solutions inmany

practical applications. The unsteadiness andnon-similarity in suchflowsmay be due to the
free stream velocity or due to the curvature of the body or due to the surface mass transfer
or even possibly due to all these effects. Many investigators have confined their studies to
either steady non-similar flows or to unsteady semi-similar flows because of the math-
ematical difficulties involved in obtaining non-similar solutions for such problems. Patil
et al. [] numerically studied the combined effects of thermal radiation and Newtonian
heating on unsteady mixed convection flow along a semi-infinite vertical plate. Admon
et al. [] studied the behavior of unsteady free convection of a viscous and incompress-
ible fluid in the stagnation point region of a heated three-dimensional body considering
the temperature-dependent internal heat generation. Ahmad and Nazar [] investigated
the unsteady MHD mixed convection boundary layer flow of a viscoelastic fluid near the
stagnation point for a vertical surface. Chamkha andAhmed [] investigated the effects of
heat generation/absorption and chemical reaction on unsteady MHD flow heat and mass
transfer near a stagnation point of three-dimensional porous body in the presence of a
uniform magnetic field.
The effect of radiation is important in many non-isothermal situations. If the entire sys-

tem involving the polymer extrusion process is placed in a thermally controlled environ-
ment, then radiation could become very important. Understanding radiation heat transfer
in the system can lead to a desired product with a sought characteristic. Mahmoud []
considered the effects of variable thermal radiation on the flow and heat transfer of an
electrically conducting micropolar fluid over a continuously stretching surface with vary-
ing temperature in the presence of a magnetic field. Recently, Rashidi et al. [] found
the analytic solutions using the homotopy analysis method for velocity, temperature, and
concentration distributions to study the steady magneto hydrodynamic fluid flow over a
stretching sheet in the presence of buoyancy forces and thermal radiation. Hassan and
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Rashidi [] presented an analytical solution for three-dimensional steady flow of a con-
densation filmon an inclined rotating disk by the optical homotopy analysismethod. Basiri
Parsa et al. [] applied the semi-numerical techniques known as the optimal analysis
method (HAM) and the Differential Transform Method (DTM) to study the magneto-
hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous
channel under a transverse magnetic field. Recently Khan et al. [] studied the numerical
simulation for unsteadyMHDflow and heat transfer of a couple stress fluid over a rotating
disk.
The present study aims to investigate the combined effects of thermal radiation, heat

generation, viscous dissipation, and chemical reaction on an unsteady mixed convection
flow near a stagnation point of two-dimensional porous body. The unsteadiness is induced
due to the time-dependentmoving plate velocity as well as by the free stream velocity. The
paper seeks to compare the performance of two recently developed methods, namely the
spectral local linearization method (SLLM) and the spectral relaxation method (SRM).
The results generated from these twomethods are also validated against theMatlab bvpc
routine technique.

2 Mathematical formulation
We consider unsteady laminar incompressible boundary layer flow of a viscous electrically
conducting fluid at a two-dimensional stagnation point with magnetic field, thermal radi-
ation, heat generation/absorption and suction/injection effects. It is assumed that near the
stagnation point the free stream temperature is constant and a uniform transverse mag-
netic field is applied normal to the body surface. The fluid properties are assumed to be
constant and a uniform chemical reaction is taking placewithin the flow. Following Eswara
andNath [], the velocity components of the inviscid flow over the two-dimensional body
surface are given by

ue(x, t) =
ax

( – λτ )
, ve(x, t) =

by
( – λτ )

. ()

We also assume that near the stagnation point, the free stream temperature and concen-
tration are constant. We note that for Tw > T∞ and/or Cw > C∞ the buoyancy forces, will
aid the flow. On the other hand, forTw < T∞ and/orCw < C∞, the resulting buoyancy force
will oppose the forced flow. Under these assumptions as well as the Boussinesq approxi-
mation, and following Chamkha and Ahmed [], the governing equations for the current
study are given by

∂u
∂x

+
∂v
∂y

= , ()

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=
∂ue
∂t

+ ue
∂ue
∂x

+ ν
∂u
∂y

–
σB


ρ

(u – ue)

+
[
gβ(T – T∞) + gβc(C –C∞)

]x
l
, ()

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp
∂T
∂y

+
μ

ρcp

(
∂u
∂y

)

–


ρcp
∂qr
∂y

± Q

ρcp
(T – T∞), ()

∂T
∂t

+ u
∂C
∂x

+ v
∂C
∂y

=D
∂C
∂y

– kr(C –C∞). ()
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The initial and boundary conditions are

t =  : u(x, y, t) = ui(x, y), v(x, y) = vi(x, y), T(x, y, t) = Ti(x, y),

C(x, y, t) = Ci(x, y),

t >  : u(x, y, t) = , v(x, y, t) = Vw, T(x, y, t) = Tw,

C(x, y, t) = Cw, at y = ,

t >  : u = ue(x, y, t), v = ve(x, y, t), T(x, y, t) = T∞,

C(x, y, t) = C∞, as y→ ∞.

()

3 Similarity analysis
We assume that the velocity varies inversely as a linear function of timemaking it possible
to transform equations ()-() into a set of self-similar equations.
Applying the dimensionless quantities

η =
(

a
ν( – λτ )

) 

y, τ = at, u =

ax
( – λτ )

f ′(η),

v = –
(

aν
( – λτ )

) 

f (η), θ (η) =

T – T∞
Tw – T∞

, φ(η) =
C –C∞
Cw –C∞

()

to ()-() yields the following similarity equations:

f ′′′ + ff ′′ –
λη


f ′′ – λf ′ – f ′ –M

(
f ′ – 

)
+ λθ + λφ + (λ + ) = , ()

(
 + R
PrR

)
θ ′′ +

(
f –

λη



)
θ ′ + δθ + Ecf ′′ = , ()


Sc

φ′′ +
(
f –

λη



)
φ′ – γφ = , ()

where M = σB
/ρa is the magnetic field parameter, λ is the unsteadiness parameter,

λ = Gr/Rel , λ = Grc/Rel are the buoyancy parameters, Pr = μcp/k is the Prandtl num-
ber, Gr = gβl(Tw – T∞)/ν is the Grashof number, Grc = gβl(Cw – C∞)/ν is the mod-
ified Grashof number, Rel = al/ν is the Reynolds number, δ = Q/ρcpa is the heat gen-
eration/absorption parameter, Ec = νax/cp( – λτ )(Tw – T∞), Sc = ν/D is the Schmidt
number, γ = kr

a ( – λτ ).
The transformed boundary conditions () become

f () = fw, f ′() = , θ () = , φ() = , ()

f ′ → , θ → , φ →  as η → ∞, ()

where fw = –Vw(( – λτ )/aν)  is the suction/injection parameter.
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4 Methods of solution
4.1 Spectral local linearizationmethod (SLLM)
.. Basic idea
Let r = , , , . . . . Suppose that r +  iterations of the SLLM have been used to solve a
given a system of differential equations such as equations ()-(). Also, suppose that each
equation can be written in the form

L|r+ +N |r+ =H , ()

where L and N are the linear and non-linear components, respectively, and H is a given
function of η. Letw be the n-tuple consisting of independent variable z and its derivatives.
If we assume that N is a function of w only, then equation () may be replaced with the
linearized form

L|r+ +N |r +∇N |r · (wr+ –wr) =H , ()

which shall be solved using the Chebyshev Spectral Collocation Method []. We chose
this method due to its ease of implementation and relatively high rate of convergence.

.. Application
Upon using the transformation p = f ′, equations () and () become

p′′ + fp′ – λ
η


p′ – λp – p –M(p – ) + λθ + λφ + (λ + ) = , ()

(
 + R
PrR

)
θ ′′ +

(
f – λ

η



)
θ ′ + δθ + Ecp′ = , ()

but equation () remains unchanged.
Equation () may be written in the same form as equation () with

L = p′′ – λ
η


p′ – (λ +M)p + λθ + λφ + (λ + ), ()

N
(
p,p′) = fp′ – p and H = –M. ()

The corresponding linearized form () is

L|r+ + ∂N
∂p

∣∣
∣
r
pr+ +

∂N
∂p′

∣∣
∣
r
p′
r+ =H +

∂N
∂p

∣∣
∣
r
pr +

∂N
∂p′

∣∣
∣
r
p′
r –N |r , ()

which upon making use of equations () and (), and simplifying becomes

p′′
r+ – λ

η


p′
r+ – (λ +M)pr+ + λθr+ + λφr+ – prpr+ + frp′

r+

= –M – pr – (λ + ). ()

Similarly, equations () and () yield

(
 + R
PrR

)
θ ′′
r+ – λ

η


θ ′
r+ + δθr+ + frθ ′

r+ = –Ecp′
r , ()
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
Sc

φ′′
r+ – λ

η


φ′
r+ – γφr+ + frφ′

r+ = . ()

Before we solve iterative equations (), (), and () for each r = , , , . . . , we take the
following preliminary steps.
. The infinite interval [,∞) on the η axis is replaced by the finite interval [,L],

where L is sufficiently large.
. The truncated problem domain [,L] on the η axis is mapped onto the

computational domain [–, ] on the ξ axis.
. The computational domain is partitioned using the Chebyshev collocation points

ξ, ξ, . . . , ξN , where – = ξN < ξN– < · · · < ξ = .
For a more detailed explanation of these steps, see for example [] and [].
Equations () through () are subject to the boundary conditions

pr+(ξN ) = , pr+(ξ) = , ()

θr+(ξN ) = , θr+(ξ) = , ()

φr+(ξN ) = , φr+(ξ) = , ()

respectively. Applying Chebyshev differentiation [], as done in e.g. [], transforms
equations ()-() and ()-(), by the transformation f ′ = p with boundary condition
f () = fw, to the discrete system

A�r+ = B, φr+(ξN ) = , φr+(ξ) = , ()

A�r+ = B, θr+(ξN ) = , θr+(ξ) = , ()

Apr+ = B, pr+(ξN ) = , pr+(ξ) = , ()

Afr+ = B, fr+(ξN ) = fw, ()

where

A =

Sc

D +
(
–

λ


ηI + diag{fr}

)
D – γ I, B = , ()

A =
(
 + R
PrR

)
D +

(
–

λ


ηI + diag{fr}

)
D + δI, B = –Ecp′

r
, ()

A =D +
(
–

λ


ηI + diag{fr}

)
D – (λ +M)I – diag{pr}, ()

B = –M – (λ + ) – p
r – [λ�r+ + λ�r+], ()

A =D, B = pr+. ()

The solution of each linear system in equations ()-() is preceded by including the
corresponding boundary conditions. We do this in the same manner as []. For example,
the linear system in equation () becomes

⎛

⎜⎜
⎝

  · · · 

A

 · · ·  

⎞

⎟⎟
⎠

⎛

⎜
⎜⎜
⎝

φr+(ξ)
...

φr+(ξN )

⎞

⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎝



B



⎞

⎟⎟
⎠ .
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Equations () and () are modified in a similar manner, while equation () becomes

⎛

⎜⎜
⎝ A

 · · ·  

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

fr+(ξ)
...

fr+(ξN )

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝B

fw

⎞

⎟⎟
⎠ .

The SLLM is driven by initial approximations

f(η) = η + e–η + fw – ,

p(η) =  – e–η,

θ(η) = φ(η) = e–η,

which are chosen so that they satisfy boundary conditions () and (). Successive appli-
cation of the SLLM generates approximations fr+, pr+, θr+, φr+ for each r = , , , . . . .

4.2 Successive relaxationmethod (SRM)
Just like the SLLM, the SRM also makes use of the transformation p = f ′ on the governing
equations ()-(). Hence, we begin with the transformed equations () and (), and
equation (), which is invariant under this transformation.
As done in [] and [], we proceed in a manner similar to the Gauss-Seidel method for

solving a linear system. Consequently, we replace the transformation p = f ′ and equations
(), (), and () with the iterative equations

f ′
r+ = pr , ()

p′′
r+ +

(
fr+ – λ

η



)
p′
r+ – (λ +M)pr+ = pr –M – (λθr + λφr) – (λ + ), ()

(
 + R
PrR

)
θ ′′
r+ +

(
fr+ – λ

η



)
θ ′
r+ + δθr+ + Ecp′

r+ = , ()


Sc

φ′′
r+ +

(
fr+ – λ

η



)
φ′
r+ – γφr+ = , ()

subject to boundary condition

fr+(ξN ) = fw, ()

and boundary conditions ()-(), respectively.
Just like with the SLLM, we use Chebyshev differentiation to replace equations ()

through () with the discrete form

Afr+ = B, fr+(ξN ) = fw, ()

Apr+ = B, pr+(ξN ) = , pr+(ξ) = , ()

A�r+ = B, θr+(ξN ) = , θr+(ξ) = , ()

A�r+ = B, φr+(ξN ) = , φr+(ξ) = , ()
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where

A =D, B = pr , ()

A =D + diag{fr+}D – λ
η


D – (λ +M)I,

B = p
r –M – (λ�r + λ�r) – (λ + ),

()

A =
(
 + R
PrR

)
D + diag{fr+}D – λ

η


D + δI, B = –Ecp′

r+
, ()

A =

Sc

D + diag{fr+}D – λ
η


D – γ I, B = . ()

Just like with the SLLM, the following steps are done in a similar manner for the SRM:
• For each linear system in equations ()-(), include the corresponding boundary
conditions.

• Choose suitable initial approximations f, p, θ, φ required by the SRM to generate
subsequent approximations fr+, pr+, θr+, φr+ for each r = , , , . . . .

5 Results and discussion
In this section we present a comprehensive numerical parametric study is conducted and
the results are reported graphically and in tabular form. Numerical simulations were car-
ried out to obtain approximate numerical values of the quantities of engineering interest.
The quantities are the surface shear stress f ′′(), surface heat transfer θ ′(), and surface
mass transfer φ′(). In both the SLLMand the SRMnumerical simulations, a finite compu-
tational value of η∞ =  was chosen in the η direction. This was reached through numer-
ical experimentations. This value was found to give accurate results for all the governing
physical parameters and beyond the value, the results did not change within prescribed
significant accuracy. The number of collocation points used in both SLLM and SRM was
Nx =  in all the cases considered in this investigation. We set our tolerance level to be
ε = – which we regard to be good enough for any engineering numerical approxima-
tion.
We compare the performance of the two methods against each other as well as to the

bvpcmethod. Table  displays the results generated by the three methods.When varying
the magnetic fields strength, it can be clearly observed in the table that, for the current
problem, the SLLM is superior to both the SRM and the bvpcmethods.
The table shows the total computational time needed to generate the results to the de-

sired accuracy. The results displayed in these table are quite interesting. First, it can be
clearly seen that the computational run for the SLLM takes far less computer time than
both the SRM and the bvpc of the three methods, the bvpc is the slowest. The SLLM
converges much faster than the other two methods. For some default values of the pa-
rameters, the SLLM takes a maximum of nine iterations before convergence is achieved,
whereas the SRM requires as many as  iterations for the same default values. We there-
fore conclude that the SLLM is the best of the three methods for the current problem. To
that end, all the subsequent results displayed on tabular and graphical forms were gener-
ated using the SLLM. Table  displays the effect of increasing the magnetic field strength
on the surface shear stress, heat, andmass transfer on the surface.We observe in this table
that the skin friction is greatly increased as the values of themagnetic parameter increases,
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Table 1 Comparison of the SLLM results of f ′′(0) with those obtained by SRM as well as by
bvp4c for different values of the magnetic parameterM, with λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5;
λ2 = 0.5; Ec = 0.1; γ = 0.1; δ = 0.1; fw = 0.5; Sc = 0.22

SLLM SRM bvp4c

M it time (sec) f ′′(0) it time (sec) f ′′(0) time (sec) f ′′(0)
1 9 1.37 2.48466051 34 3.74 2.48466051 15.27 2.48466051
3 8 0.74 2.88909949 21 3.32 2.88909949 17.86 2.88909949
5 8 0.96 3.24098431 17 2.81 3.24098431 18.53 3.24098431
10 7 0.82 3.98172655 13 1.76 3.98172655 18.37 3.98172655

Table 2 Effect of the magnetic parameter on f ′′(0), –θ ′(0), –φ′(0) with λ = 0.5; R = 1; Pr = 0.71;
λ1 = 0.5; λ2 = 0.5; Ec = 0.1; γ = 0.1; δ = 0.1; fw = 0.5; Sc = 0.22

M f ′′(0) –θ ′(0) –φ′(0)
0 2.25937547 0.37888463 0.49382391
2 2.69541174 0.37785044 0.49091212
5 3.24098431 0.37663629 0.48843976

Table 3 Effect of the transpiration parameter fw on f ′′(0), –θ ′(0), –φ′(0) with λ = 0.5; R = 1;
Pr = 0.71; λ1 = 0.5; λ2 = 0.5; Ec = 0.1; γ = 0.1; δ = 0.1;M = 2; Sc = 0.22

fw f ′′(0) –θ ′(0) –φ′(0)
–0.5 2.12463544 0.18753160 0.36279720
0.0 2.39659776 0.27651084 0.42802020
0.5 2.69541174 0.37785044 0.49091212
1.0 3.01855731 0.48914126 0.56352188

Table 4 The influence of the heat generation/absorption parameter δ on f ′′(0), –θ ′(0), –φ′(0)
with λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5; Ec = 0.1; γ = 0.1;M = 2; fw = 0.5; Sc = 0.22

δ f ′′(0) –θ ′(0) –φ′(0)
–0.5 2.67966177 0.56304464 0.48999569
0.0 2.71117974 0.41294180 0.49072523
0.5 2.74660998 0.13156107 0.49424792

while both the heat and the mass transfer on the surface are reduced. Physically, the ap-
plication of a magnetic field in the normal direction to the flow produces a drag force
which tend to retard the fluid flow velocity, thus increasing the temperature and mass
distribution within the fluid flow. In Table , we display the influence of the transpiration
parameter fw on the skin friction, theNusselt number and the Sherwood number. Blowing
fluid, with fw < , into the system reduces these three physical quantities whereas sucking
fluid, fw > , out of the system increases the three physical quantities under consideration.
Generating heat within the flow system significantly affects the heat transfer on the sur-

face. The Nusselt number is greatly reduced as heat is generated, but the skin friction as
well as the Sherwood number is increased as the heat is generated. These can easily be
seen on Table .
Table  displays the effect of the unsteadiness parameter λ on the shear surface stress,

heat transfer on the surface and mass transfer. We consider the accelerating cases only,
λ > . Increasing the unsteadiness parameter greatly increases the skin friction but reduces
both the heat and the mass transfer on the surface.

http://www.boundaryvalueproblems.com/content/2014/1/218
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Table 5 The influence of the unsteadiness parameter λ on f ′′(0), –θ ′(0), –φ′(0) with δ = 0.1;
R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5; Ec = 0.1; γ = 0.1;M = 2; fw = 0.5; Sc = 0.22

λ f ′′(0) –θ ′(0) –φ′(0)
0 2.61770412 0.44070738 0.52781664
0.5 2.69541174 0.37785044 0.49091212
1.0 2.77234572 0.30219385 0.45252502
1.5 2.84976599 0.20022768 0.41157441

Table 6 The effect of the temperature buoyancy parameter λ1 on f ′′(0), –θ ′(0), –φ′(0) with
δ = 0.1; R = 1; Pr = 0.71; λ = 0.5; λ2 = 0.5; Ec = 0.1; γ = 0.1;M = 2; fw = 0.5; Sc = 0.22

λ1 f ′′(0) –θ ′(0) –φ′(0)
–0.5 2.23773235 0.36058187 0.52781664
0.0 2.46917284 0.36975021 0.49091212
0.5 2.69541174 0.37785044 0.45252502

Table 7 The influence of the Eckert number Ec on f ′′(0), –θ ′(0), –φ′(0) with δ = 0.1; R = 1;
Pr = 0.71; λ = 0.5; λ1 = 0.5; λ2 = 0.5; γ = 0.1;M = 2; fw = 0.5; Sc = 0.22

Ec f ′′(0) –θ ′(0) –φ′(0)
0 2.69467396 0.40027022 0.49088572
0.1 2.70208324 0.17491583 0.49115055
0.5 2.70956330 0.05303825 0.49173820

Figure 1 Graph of the SLLM solutions for the
horizontal velocity for different values ofM, with
λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; γ = 0.1; δ = 0.1; fw = 0.5; Sc = 0.22.

Table  displays the effect of temperature buoyancy parameter λ on the skin friction,
Nusselt number and Sherwood number. As expected, buoyancy has significant effect on
the flow properties. The skin friction increases as the values of the buoyancy parameters
are increased. Also the rate of mass transfer at the surface increases as the buoyancy pa-
rameters increase, however, the rate of heat transfer decreases with increasing values of
the buoyancy parameters.
In Table  we show the influence of the Eckert number on the skin friction, and the

rates of heat and mass transfer. Evidently, the rate of heat transfer is greatly reduced as
the values of the Eckert number increases. Figure  displays the effect of the magnetic
field strength on the velocity profiles. As expected, the velocity rapidly increases from
zero toward the free stream velocity value. We also observe that within the region η < ,
the velocity increases as the magnetic parameter values increase. However, for η > , the
velocity profiles are reducedwith increasing values of themagnetic parameter. Application
of a transverse magnetic field in the direction normal to the flow direction produces a

http://www.boundaryvalueproblems.com/content/2014/1/218
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Figure 2 Graph of the SLLM solutions for the
horizontal velocity for different values of δ, with
λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; γ = 0.1;M = 0.5; fw = 0.5; Sc = 0.22.

Figure 3 Graph of the SLLM solutions for the
horizontal velocity for different values of λ, with
fw = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; γ = 0.1;M = 0.5; fw = 0.5; Sc = 0.22.

Figure 4 The influence of the chemical reaction
parameter on the horizontal velocity for with
λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; δ = 0.1;M = 0.5; δ = 0.1; Sc = 0.22.

drag-like force called the Lorentz force. This force tends to cause deceleration in the fluid
motion and, therefore, the velocity profiles decreasewith increasing values of themagnetic
field strength field parameter.
In Figure  we display the influence of the heat generation parameter on the velocity

distribution. Heating the fluid lightens the fluid particles reducing the friction within the
particle interactions thereby increasing the flow velocity as can be clearly seen on Figure .
The effect of the unsteadiness parameter on the velocity profiles is displayed in Figure .

We observe that near thewall surface, the velocity rapidly increases toward the free stream
value. Stretching the sheet accelerates the flow velocity as can be observed in this figure.
In Figure , we display the influence of the chemical reaction on the velocity profiles.

Though the velocity rapidly increases from zero to the free stream value, we observe in this

http://www.boundaryvalueproblems.com/content/2014/1/218
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Figure 5 Graph of the SLLM solutions for the
horizontal velocity for different values of λ1,
with fw = 0.5; R = 1; Pr = 0.71; λ = 0.5; λ2 = 0.5;
Ec = 0.1; γ = 0.1;M = 0.5; fw = 0.5; Sc = 0.22.

Figure 6 The influence of the chemical reaction
parameter on the horizontal velocity for with
λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; δ = 0.1;M = 0.5; δ = 0.1; Sc = 0.22.

Figure 7 Graph of the SLLM solutions of the
temperature profiles for different values of δ,
with λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; γ = 0.1;M = 0.5; δ = 0.1; Sc = 0.22.

figure that in the current study, the chemical reaction parameter has very little influence
on the velocity profiles.
Figure  shows the effect of the temperature buoyancy parameter λ, on the velocity

profiles. Increasing the values of the buoyancy parameter leads to the increase of tem-
perature gradient. This in turn cause the increases in the values of the velocity profiles as
more forces are added with this increase in buoyancy parameters.
In Figure , we display the effect of the Schmidt number on the velocity profiles. Increas-

ing the values of the Schmidt numbers implies that themass concentration becomesmore
dense. With all other parameters kept constant, increasing the Schmidt number reduces
the flow velocity.
Figure  depicts the influence of the heat source/sink on the temperature profiles. The

presence of a heat sink leads to the reduction of the temperature distribution. However,

http://www.boundaryvalueproblems.com/content/2014/1/218
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Figure 8 The influence of the Eckert number on
the temperature distribution with λ = 0.5; R = 1;
Pr = 0.71; λ1 = 0.5; λ2 = 0.5; Ec = 0.1; δ = 0.1;
M = 0.5; δ = 0.1; Sc = 0.22.

Figure 9 The influence of the unsteadiness
number on the temperature distribution with
Ec = 0.1; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; δ = 0.1;M = 0.5; δ = 0.1; Sc = 0.22.

the presence of the heat source causes great enhancement of the temperature distribution.
Therefore heating the fluid flow enhances heat transfer within the fluid flow.
In Figure , we display the influence of the Eckert number on the temperature distri-

bution. Increasing the Eckert number allows energy to be stored in the fluid region as a
result of dissipation due to viscosity and elastic deformation thus generating heat due to
frictional heating. This then causes the temperature within the fluid flow to greatly in-
crease.
In Figure , we display the influence of the transpiration parameter on the temperature

distribution. As the flow is accelerated due to the increasing values of the transpiration
parameter, the temperature profiles are greatly increased.
Figure  displays the effects of the thermal buoyancy parameter on the temperature

profiles. It is observed that an increase in thermal and solutal Grashof number causes a
decrease in the thermal boundary layer thickness, and consequently the fluid tempera-
ture decreases due to buoyancy effect. Physically, when λ/λ (i.e., the buoyancy effect)
increases, the convection cooling effect increases and hence the fluid flow accelerates.
Therefore both the temperature and the concentration reduce.
Figure  illustrates the effect of increasing the Prandtl number on the temperature pro-

files. It can be clearly seen on this figure that increases in Pr bring about a significant de-
crease in the fluid temperature. This is expected because the thermal boundary becomes
thinner for larger values of the Prandtl number. Therefore, with an increase in the Prandtl
number, the rate of thermal diffusion drops.
The effects of thermal radiation on the temperature profiles in the boundary layer are

illustrated in Figure .We observe in this figure that increasing thermal radiation param-
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Figure 10 Graph of the SLLM solutions of the
temperature profiles for different values of λ1,
with λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; γ = 0.1;M = 0.5; δ = 0.1; Sc = 0.22.

Figure 11 Graph of the SLLM solutions of the
temperature profiles for different values of Pr,
with λ = 0.5; R = 1; λ1 = 0.5; λ2 = 0.5; Ec = 0.1;
γ = 0.1;M = 0.5; δ = 0.1; Sc = 0.22.

Figure 12 Graph of the SLLM solutions of the
temperature profiles for different values of R,
with λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; γ = 0.1;M = 0.5; δ = 0.1; Sc = 0.22.

eter produces a significant decrease in the thermal condition of the fluid flow. This can be
explained by the fact that a decrease in the values of Rmeans a decrease in the Rosseland
radiation absorptivity k. Thus the divergence of the radiative heat flux decreases as k
increases the rate of radiative heat transferred from the fluid and consequently the fluid
temperature decreases.
Figure  shows the effect of the chemical reaction parameter on the concentration;

physically, as the chemical reaction parameter increases, the concentration profiles de-
crease, as can be clearly observed on this figure.
In Figure , we display the influence of the unsteadiness parameter λ in the concentra-

tion profiles. Increasing the values of this parameter enhances the solutal boundary layer,
thereby increasing the concentration distribution within the fluid flow.

http://www.boundaryvalueproblems.com/content/2014/1/218
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Figure 13 Graph of the SLLM solutions of the
concentration profiles for different values of γ ,
with λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; R = 1;M = 0.5; δ = 0.1; Sc = 0.22.

Figure 14 The influence of the unsteadiness
number on the concentration distribution with
Ec = 0.1; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; δ = 0.1;M = 0.5; δ = 0.1; Sc = 0.22;
γ = 0.1.

Figure 15 The influence of the concentration
buoyancy number on the concentration
distribution with Ec = 0.1; R = 1; Pr = 0.71;
λ1 = 0.5; λ = 0.5; Ec = 0.1; δ = 0.1;M = 0.5; δ = 0.1;
Sc = 0.22.

Figure  depicts the influence of the solutal buoyancy on the concentration profiles.
The buoyancy effect slightly reduces the concentration profiles.
Lastly, Figure  displays the effect of the Schmidt number on the concentration pro-

files. We observe that an increase in the Schmidt number (Sc) decreases the concentra-
tion boundary layer thickness. The Schmidt number represents the relative ease of the
occurrence of the molecular momentum and the mass transfer and is very important in
calculations of the binary mass transfer in multiphase flows.

6 Conclusion
The problem of unsteady MHD flow was studied near a stagnation point of a two-
dimensional porous body with heat and mass transfer, thermal radiation, and chemical
reaction. The partial differential governing equations were developed and transformed
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Figure 16 Graph of the SLLM solutions of the
concentration profiles for different values of Sc,
with λ = 0.5; R = 1; Pr = 0.71; λ1 = 0.5; λ2 = 0.5;
Ec = 0.1; R = 1;M = 0.5; δ = 0.1; γ = 0.1.

into a similar form by applying suitable similarity transformations. The similarity equa-
tions were solved numerically using the spectral local linearization method together with
the successive relaxation method. From the numerical results, it is observed that:
. Increasing the values of the magnetic field parameter resulted in increases in the

skin-friction coefficients, whereas the Nusselt number and the Sherwood number
and the velocity profiles decrease with increasing values of the magnetic parameter.

. The skin-friction coefficient, the Nusselt number, and the Sherwood number
increase with fluid injection.

. The skin-friction coefficients also increase with increasing values of the heat source,
the unsteadiness parameter, and the buoyancy parameters as well as the Eckert
number.

. The presence of a heat source has significant effects on the Nusselt number as well
as on the temperature distribution in the fluid flow.

. The thermal and solutal boundary layer thicknesses increase with increasing values
of the unsteadiness parameter and Eckert number but decrease with increasing
values of the buoyancy parameters.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SS formulated, generated and discussed the results and GTM generated the code, discussed the results and proof read
the manuscript.

Greek letters
β thermal expansion coefficient
βc compositional expansion coefficient
η similarity variable
σ electrical conductivity
λ unsteadiness parameter
λ1, λ2 buoyancy parameters
μ coefficient of viscosity
ν kinematic viscosity
θ dimensionless temperature
φ dimensionless concentration
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Nomenclature
a, b velocity gradient parameters at the boundary layer edge in the x- and y-directions
BO magnetic induction
Cf skin-friction coefficient
cp heat capacity at constant pressure
Ec Eckert number
D mass diffusion
g gravitational acceleration
f dimensionless stream function
kc chemical reaction parameter
k thermal conductivity coefficient
M Hartmann number
Pr Prandtl number
R thermal radiation parameter
Q0 heat generation/absorption coefficient
Rel Reynolds number
Sc Schmidt number
T temperature
t dimensional time
ue dimensional free stream velocity component in x-direction
(u, v) velocity components
(x, y) transverse and normal directions
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