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Abstract
In this paper, we study the Cauchy problem of a two-component b-family system
which arises in shallow water theory. We first derive the precise blow-up scenario and
present a blow-up result. Then we investigate the infinite propagation speed in the
sense that the corresponding solution with compact supported initial datum does
not have compact spatial support any longer in its lifespan.
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1 Introduction
In this paper, we consider the following nonlinear system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut – utxx + (b + )uux – buxuxx – uuxxx + σρρx = , t > ,x ∈ R,
ρt + (uρ)x = , t > ,x ∈ R,
u(,x) = u(x), x ∈ R,
ρ(,x) = ρ(x), x ∈ R,

(.)

where b is an arbitrary real constant and σ = ±. The system (.) was recently derived in
the context of shallow water theory. u(t,x) represents the fluid velocity, the constant b is a
balance or bifurcation parameter for nonlinear solution behavior, while ρ has a connection
with the horizontal deviation of the surface from equilibrium, all measured in dimension-
less units, and σ is the downward constant acceleration of gravity in application to shallow
waves.
Using the notationm := u – uxx, we can rewrite the system (.) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mt + umx + buxm + σρρx = , t > ,x ∈ R,
ρt + (uρ)x = , t > ,x ∈ R,
m(,x) =m(x), x ∈ R,
ρ(,x) = ρ(x), x ∈ R.

(.)

Obviously, if ρ ≡ , the system (.) reduces to the following b-family equation, which
was extensively studied in [–]:

{
mt + umx + buxm = , t > ,x ∈ R,
u(,x) = u(x), x ∈ R.

(.)
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Equation (.) can be derived as the family of asymptotically equivalent shallow water
wave equations that emerge at quadratic order accuracy for any b �=  by an appropriate
Kodama transformation; for the case b = –, the corresponding Kodama transformation
is singular and the asymptotic ordering is violated; see [, ]. When b = , (.) becomes
the Camassa-Holm equation, modeling the unidirectional propagation of shallow water
waves over a flat bottom. Here u stands for the fluid velocity at time t in the spatial x di-
rection [–]. It has a bi-Hamiltonian structure and is completely integrable [, ]. Its
solitary waves are peaked, capturing a feature of the water waves of great height [–].
Moreover, the shape of some peakons is stable under small perturbations, making these
waves recognizable physically [, ]. The Cauchy problem of the Camassa-Holm equa-
tion has been the subject of a number of studies, for example [, ]. When b = , we find
the Degasperis-Procesi equation [] from (.), which is regarded as a model for nonlin-
ear shallow water dynamics. There are also many papers involving the Degasperis-Procesi
equation; see [, ]. Both theCamassa-Holm equation and theDegasperis-Procesi equa-
tion have peakon solitons andmodel wave breaking (by wave breaking we understand that
the wave remains bounded while its slop becomes unbounded in finite time []) [, ].
In [, ], the authors studied (.) on the line and on the circle, and established the lo-
cal well-posedness, described the precise blow-up scenario, proved that the equation has
strong solutions which exist globally in time and blow up in finite time.
For ρ �≡ , if b = , the system (.) becomes the two-component Camassa-Holm system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mt + umx + uxm + σρρx = , t > ,x ∈ R,
ρt + (uρ)x = , t > ,x ∈ R,
m(,x) =m(x), x ∈ R,
ρ(,x) = ρ(x), x ∈ R,

(.)

where m = u – uxx, σ = ± was derived by Constantin and Ivanov [] in the context of
shallow water theory. Here u(x, t) describes the horizontal velocity of the fluid and ρ(x, t)
describes the horizontal deviation of the surface from equilibrium, all measured in di-
mensionless units. This system (.) is the first negative flow of the AKNS hierarchy and
possesses the peakon and multi-kink solutions and possesses the bi-Hamiltonian struc-
ture [, ]. Moreover, this model is connected with the energy dependent Schrödinger
spectral problem []. Recently, the extendedN =  super-symmetric Camassa-Holm sys-
tem was presented recently by Popowicz in []. The mathematical properties of the two-
component Camassa-Holm system have been studied inmany works; see [–, –].
One has established the local well-posedness for the two types of -component Camassa-
Holm shallow water systems [, ], derived precise blow-up scenarios [], and proved
that the systems had strong solutions which blow up in finite time [, , ].
For ρ �≡ , if b = , the system (.) becomes the two-component Degasperis-Procesi

shallow water system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mt + umx + uxm + σρρx = , t > ,x ∈ R,
ρt + (uρ)x = , t > ,x ∈ R,
m(,x) =m(x), x ∈ R,
ρ(,x) = ρ(x), x ∈ R.

(.)
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This system first appeared in []. The author presented one Hamiltonian extension of
the Degasperis-Procesi equation to this system by the Hamiltonian operator which is a
Dirac reduced operator of the generalized but degenerated second Hamiltonian operator
of the Boussinesq equation. The interest in (.) and in (.) lies in that model equations
presenting breaking waves as well as peaked traveling waves are of great importance in
hydrodynamics [], and the traveling wave solutions of large amplitude to the governing
equations forwater waves are peakedwaves []. Recently, Jin andGuo [] considered the
system (.) and analyzed some aspects of blow-up mechanism, traveling waves solution
and the persistence properties.
For ρ �≡  and general b ∈ R, the Cauchy problem of the system (.) has been studied

in [], authors first established the local well-posedness for a two-component b-family
system by Kato’s semigroup theory, then derived the precise blow-up scenario for strong
solutions to the system and presented several blow-up results for strong solutions to the
system. The aim of this paper is to present a blow-up result of solutions to (.) with the
case of σ =  and to examine the propagation behavior of compactly supported solutions
to (.) with σ = , namely whether solutions which are initially compactly supported will
retain this property throughout their time of evolution.
The rest of this paper is organized as follows. In Section , we briefly give some needed

results including the local well-posedness of system (.). In Section , we derive the pre-
cise blow-up scenario and present a blow-up result. The propagation behavior will be
analyzed in Section .

2 Preliminaries
In this section, we recall some elementary results. For completeness, we list them and skip
their proof for conciseness.
For convenience to show our results, we rewrite system (.). Let G(x) := 

e
–|x|, x ∈ R.

Then ( – ∂
x )–f =G ∗ f for all f ∈ L and G ∗m = u. Here we denote by ∗ the convolution.

By a direct calculation, we can rewrite (.) with σ =  as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uux = –∂xG ∗ ( bu
 + –b

 ux +

ρ

), t > ,x ∈ R,
ρt + (uρ)x = , t > ,x ∈ R,
u(,x) = u(x), x ∈ R,
ρ(,x) = ρ(x), x ∈ R,

(.)

or the equivalent form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut + uux = –∂x( – ∂
x )–(

b
u

 + –b
 ux +


ρ

), t > ,x ∈ R,
ρt + (uρ)x = , t > ,x ∈ R,
u(,x) = u(x), x ∈ R,
ρ(,x) = ρ(x), x ∈ R.

(.)

Local well-posedness for system (.) can be obtained by Kato’s semigroup theory [].
In [], the authors gave a detailed description on well-posedness theorem.

Theorem . Given X = (u,ρ)T ∈ Hs × Hs–, s ≥ , there exists a maximal T =
T(‖X‖Hs×Hs– ) > , and a unique solution X = (u,ρ)T to system (.) such that

X = X(·,X) ∈ C
(
[,T);Hs ×Hs–) ∩C([,T);Hs– ×Hs–).

http://www.boundaryvalueproblems.com/content/2014/1/224
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Moreover, the solution depends continuously on the initial data, i.e. the mapping

X → X(·,X) :Hs ×Hs– → C
(
[,T);Hs ×Hs–) ∩C([,T);Hs– ×Hs–)

is continuous.

We also need to introduce the standard particle trajectory methods for later use. Con-
sider now the following initial value problem:

{
qt = u(t,q),  ≤ t < T ,
q(,x) = x, x ∈ R,

(.)

where u denotes the first component of the solution X to the system (.). Applying clas-
sical results in the theory of ordinary differential equations, we can obtain the following
two results on q.

Lemma . (See [, ]) Let u ∈ C([,T);Hs) ∩ C([,T);Hs–), s ≥ . Then (.) has a
unique solution q ∈ C([,T) × R;R). Moreover, we know the map q(t, ·) is an increasing
diffeomorphism of R with

qx(t,x) = exp

(∫ t


ux(s,q)ds

)

> , (t,x) ∈ [,T)× R. (.)

Lemma . Let X = (u,ρ)T ∈ Hs × Hs–, s ≥ , and T is assumed to be the maximal
existence time of the solution X = (u,ρ)T to system (.) corresponding to the initial data X.
Then for all (t,x) ∈ [,T)× R, we have

ρ
(
t,q(t,x)

)
qx(t,x) = ρ(x).

Remark . This lemma tell us that ρ always keeps sign with its initial value because of
the positivity of qx(t,x) in (.). Actually this invariance result is due to the geometric
underlying structure; see the discussion in [, ].

Proof Using (.) and the second equation in system (.), we obtain

d
dt

[
ρ(t,q)qx(t,x)

]
=

(
ρt(t,q) + ρx(t,q)qt(t,x)

)
qx(t,x) + ρ(t,q)qxt(t,x)

=
[
ρt(t,q) + ρx(t,q)u(t,q) + ρ(t,q)ux(t,q)

]
qx(t,x)

= .

This means that ρ(t,q)qx(t,x) is independent on time t. We may choose t = , due to (.)
we know qx(,x) = . Therefore the lemma is easily proved. �

3 Blow-up
In this section we are interesting in the formation of singularities for strong solutions to
system (.) and establish a sufficient condition on the initial data to guarantee blow-up.

http://www.boundaryvalueproblems.com/content/2014/1/224


Feng and Li Boundary Value Problems 2014, 2014:224 Page 5 of 10
http://www.boundaryvalueproblems.com/content/2014/1/224

Theorem . Let X = (u,ρ)T ∈ Hs × Hs–, s > 
 be given and assume that  < b ≤ ,

suppose X is odd and u′
() ≤ . Then the corresponding solution to system (.) with the

initial data X blows up in finite time. If u′
() < , then the lifespan T can be estimated by

– 
(b–)u′

()
. In addition, the following inequalities hold:

ρx(t, )≥ ρ ′
()e

–u′
()t for ρ ′

() ≥ ; ρx(t, )≤ ρ ′
()e

–u′
()t for ρ ′

() ≤ .

Proof Let X = (u,ρ)T be the corresponding solution to system (.) and T be the maximal
existence time of the solution u(t,x). Differentiating system (.) with respect to x, we
obtain

uxt = –
b – 


ux – uuxx +
b

u +

ρ


–G ∗

(
b

u +

 – b


ux +
ρ



)

(.)

and

ρxt = –ρxxu – ρxux – ρuxx. (.)

Note that the system (.) is invariant under the transformation (X,x) → (–X, –x). Thus
we deduce that if X(x) is odd, then X(t,x) is odd with respect to x for any t ∈ [,T).
Therefore

X(t, ) = Xxx(t, ) = , ∀t ∈ [,T).

Hence, in view of (.), we get

uxt(t, ) = –
b – 


ux(t, ) –G ∗
(
b

u +

 – b


ux +
ρ



)

(t, )≤ –
b – 


ux(t, ). (.)

If u′
() < , solving the above inequality directly yields

ux(t, )≤ u′
()

 + b–
 u′

()t
,

which tends to –∞ as t goes to – 
(b–)u′

()
.

If u′
() = , we have

uxt(t, )≤ –G ∗
(
b

u +

 – b


ux +
ρ



)

(t, ) < .

This means ux(t, ) is decreasing, and ux(t, ) <  for all t > . So by (.) we can choose a
proper time t >  such that

uxt(t, )≤ –
b – 


ux(t, )

for t > t, and ux(t, ) < . We will have the following inequality by integration from t
to t:


ux(t, )

+
b – 


(t – t) ≤ 
ux(t, )

< .

http://www.boundaryvalueproblems.com/content/2014/1/224
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Consequently, we obtain T < t – 
(b–)ux(t,)

. Similarly, for the equation in (.) we have

ρxt(t, ) = –ρx(t, )ux(t, ), t ∈ [,T). (.)

Equation (.) implies that ux(t, ) is decreasing with u′
()≤ , so we easily get –ux(t, ) ≥

–u′
() ≥ . This inequality in combination with (.) yields

ρx(t, )≥ ρ ′
()e

–u′
()t for ρ ′

() ≥ ; ρx(t, ) ≤ ρ ′
()e

–u′
()t for ρ ′

()≤ .

This completes the proof. �

4 Infinite propagation speed
In this section we examine whether classical solutions u, m, ρ of the two-component
b-family system (.) which are initially compactly supported will retain this property
throughout their evolution. Such compactly supported solutions represent localized per-
turbations or disturbances of the system. What we will see is that given ρ compactly
supported, then the unique solution ρ will remain compactly supported for all t ∈ [,T)
regardless of the form of the initial data u, m; whereas if m has compact support then
m remains compactly supported, for all t ∈ [,T), only if ρ is also initially compactly sup-
ported. The situation is completely different for our solution u, however, since, as we will
see, given u compactly supported, then the only possible way the ensuing solution u can
remain compactly supported for any further time is if u(t, ·)≡  for all t ∈ [,T).

Theorem. Let  ≤ b ≤ .Assume that the initial datum  �≡ X = (u,ρ)T ∈Hs ×Hs–

with s > 
 is compactly supported in [α,β] with u �≡ , then the corresponding solution

X = (u,ρ)T to the system (.) has the following property: for  < t < T , ρ(t,x), m(t,x) are
compactly supported in [q(t,α),q(t,β)] in its lifespan and

u(x, t) = E+e–x for x > q(t,β); u(x, t) = E–ex for x < q(t,α),

with E+(t) >  and E–(t) <  for t ∈ (,T), respectively, where q(t,x) is defined by (.) and
T is its lifespan. Furthermore, E+(t) and E–(t) denote continuous nonvanishing functions,
with E+(t) being a strictly increasing function, while E–(t) being strictly decreasing.

Proof First, sinceX has compact support, so do u,m, and ρ, we know fromLemma .
that ρ is compactly supported in [q(t,α),q(t,β)] in its lifespan, i.e. ρ(t,x) =  for x > q(t,β)
or x < q(t,α).
Applying particle trajectory method to the first equation in (.), we obtain

d
dt

(
m

(
t,q(t,x)

)
qbx(t,x)

)
= (mt + umx + buxm)

(
t,q(t,x)

)
qbx(t,x)

= –ρ
(
t,q(t,x)

)
ρx

(
t,q(t,x)

)
qbx(t,x).

Thus we know when x > β or x < α

d
dt

(
m

(
t,q(t,x)

)
qbx(t,x)

)
= .

http://www.boundaryvalueproblems.com/content/2014/1/224
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Thus m(t,q(t,x))qbx(t,x) is independent on time t over the interval (–∞,α) ∩ (β ,∞). We
will get by taking t =  without loss of generality,

m
(
t,q(t,x)

)
qbx(t,x) =m(x) =  for x ∈ (–∞,α)∩ (β ,∞).

This implies that m(t,q(t,x)) =  when x ∈ (–∞,α)∩ (β ,∞), i.e. m(t,x) is compactly sup-
ported in [q(t,α),q(t,β)] in its lifespan. Hence the following functions are well defined:

F(t) =
∫

R
exm(t,x)dx and f (t) =

∫

R
e–xm(t,x)dx. (.)

By integration by parts, we have

F() =
∫

R
exm(x)dx =

∫

R
exu(x)dx –

∫

R
exuxx(x)dx = ,

f () =
∫

R
e–xm(x)dx =

∫

R
e–xu(x)dx –

∫

R
e–xuxx(x)dx = .

Then for x > q(t,β), we get

u(t,x) =G ∗m(t,x) =


e–x

∫ q(t,β)

q(t,a)
eξm(t, ξ )dξ =



e–xF(t), (.)

where (.) is used.
Similarly, when x < q(t,α), we have

u(t,x) =G ∗m(t,x) =


ex

∫ q(t,β)

q(t,a)
e–ξm(t, ξ )dξ =



exf (t). (.)

Because m(t,x) has compact support in the interval [q(t,α),q(t,β)] for any t ∈ [,T), we
get m(t,x) = u(t,x) – uxx(t,x) =  for x > q(t,β) or x < q(t,α). Hence, as consequences of
(.) and (.), we obtain

u(t,x) = –ux(t,x) = uxx(t,x) =


e–xF(t) for x > q(t,β) (.)

and

u(t,x) = ux(t,x) = uxx(t,x) =


exf (t) for x < q(t,α). (.)

On the other hand,

dF(t)
dt

=
∫

R
exmt(t,x)dx.

Differentiating the first equation in (.) twice, we get

 = uxxt + (uux)xx + ∂x∂

xG ∗

(
b

u +

 – b


ux +


ρ

)

= uxxt + (uux)xx – ∂x
(
 – ∂

x
)
G ∗

(
b

u +

 – b


ux +


ρ

)

http://www.boundaryvalueproblems.com/content/2014/1/224
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+ ∂xG ∗
(
b

u +

 – b


ux +


ρ

)

= uxxt + (uux)xx – ∂x

(
b

u +

 – b


ux +


ρ

)

+ ∂xG ∗
(
b

u +

 – b


ux +


ρ

)

. (.)

Combining the first equation in (.) and (.), we obtain

mt =
(
 – ∂

x
)
ut = –uux + (uux)xx – ∂x

(
b

u +

 – b


ux +


ρ

)

. (.)

Substituting the identity (.) into dF(t)
dt and using (.) and (.), we have

dF(t)
dt

= –
∫

R
exuux(t,x)dx +

∫

R
ex(uux)xx(t,x)dx

–
∫

R
ex∂x

(
b

u +

 – b


ux +


ρ

)

(t,x)dx

= ex
(
(uux)x – uux

)∣
∣∞
–∞ – ex

(
b

u +

 – b


ux +


ρ

)∣
∣
∣
∣

∞

–∞

+
∫

R
ex

(
b

u +

 – b


ux +


ρ

)

(t,x)dx

=
∫

R
ex

(
b

u +

 – b


ux +


ρ

)

(t,x)dx.

Therefore, in the lifespan of the solution, we find that F(t) is an increasing function with
F() = , thus it follows that F(t) >  for t ∈ (,T], i.e.,

F(t) =
∫ t



∫

R
ex

(
b

u +

 – b


ux +


ρ

)

(τ ,x)dxdτ > .

By a similar argument, we can check that the following identity for f (t) is true:

f (t) = –
∫ t



∫

R
e–x

(
b

u +

 – b


ux +


ρ

)

(τ ,x)dxdτ < .

In order to finish the proof, it is sufficient to let E+(t) = 
F(t) and E–(t) = 

 f (t), respec-
tively. �

It is really a very nice property for the two-component b-family system (.). No mat-
ter what the profile of the compactly supported initial datum u(x) is (no matter whether
it is positive or negative), for any t >  in its lifespan, the solution u(x, t) is positive at
infinity and negative at negative infinity. Moreover, we have the following unique con-
tinuation properties for the strong solution. The proofs are quite similar to that for the
two-component Camassa-Holm system [], so they are omitted to make the paper con-
cise.

Theorem . Assume that for s > 
 , X(t,x) = (u(t,x),ρ(t,x))T ∈ C([,T];Hs(R)×Hs–(R))

is a strong solution of the initial value problem associated with system (.), and that

http://www.boundaryvalueproblems.com/content/2014/1/224
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X(x) = (u(x),ρ(x))T satisfies for some θ ∈ (, )

∣
∣X(x)

∣
∣,

∣
∣Xx(x)

∣
∣ ∼O

(
x–θ

)
as x→ ∞.

Then

∣
∣X(t,x)

∣
∣,

∣
∣Xx(t,x)

∣
∣ ∼O

(
x–θ

)
as x → ∞

uniformly in the time interval [,T].
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