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Abstract

We consider nonstationary 3-D flow of a compressible viscous heat-conducting
micropolar fluid in the domain that is the subset of R? bounded with two concentric
spheres that present the solid thermoinsulated walls. In the thermodynamical sense
the fluid is perfect and polytropic. If we assume that the initial density and
temperature are strictly positive and that the initial data are sufficiently smooth
spherically symmetric functions then our problem has a generalized solution for a
sufficiently small time interval. We study the problem in the Lagrangian description
and prove the uniqueness of its generalized solution.
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1 Introduction

The theory of micropolar fluids was introduced by Ahmed Cemal Eringen in 1960 [1].
Eringen suggested many possible applications of the micropolar fluid, but from the math-
ematical point of view the theory is still in an early stage of development. The results for
incompressible flow are very well systematized in the book of Lukaszewicz [2], but the
theory for compressible flows, especially for flows involving temperature, is still in its be-
ginnings.

In this paper we analyze compressible flow of isotropic, viscous, and heat-conducting
micropolar fluid which is in the thermodynamical sense perfect and polytropic. The model
for this type of flow was first considered by Mujakovi¢ in [3] where she developed the one-
dimensional model. In the same work, the local existence and uniqueness of a generalized
solution for homogeneous boundary conditions were proved. In the work [4] the existence
of a solution global in time for the described problem was proved. Mujakovi¢ also analyzed
the regularity and stabilization for the model, as well as the Cauchy problem [5]. In her
recent works, for example [6], the problem with non-homogeneous boundary condition
for density, microrotation, and heat flux was analyzed.

Other authors, for example Chen et al. in [7] and [8] or Easwaran and Majumdar in
[9], analyzed different kinds of problems concerning micropolar fluid, as well as in the
three-dimensional case, but without the temperature. Till now the described model of
compressible micropolar fluid (model with temperature) in the three-dimensional case
has been considered just in [10] by Drazi¢ and Mujakovi¢ in the spherically symmetric
case.
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Spherically symmetric flow for a classical fluid was considered for example in [11-13],
and [14]. Uniqueness of the solution for the problems with a classical fluid in the spher-
ically symmetric case was proved in [15]. For a micropolar fluid in the one-dimensional
case, the uniqueness results are given for example in [16] for the Cauchy problem. The
uniqueness problem for the micropolar fluid was also considered in [9] but for a fluid
which is not heat-conducting.

In this work we prove the uniqueness of the solution for the problem presented in [10]
where we proved the local existence of generalized spherically symmetric solution for the
flow of described fluid in the domain to be subset of R® bounded with two concentric
spheres that present solid thermoinsulated walls, assuming that the initial density and
temperature are strictly positive and that the initial data are smooth enough spherically

symmetric functions.

2 Statement of the problem and the main result

The motion of 3-D compressible viscous micropolar heat-conducting fluid which has the
property of spherical symmetry and which is in the thermodynamical sense perfect and
polytropic is described in Lagrangian coordinates by the following system of differential
equations [10]:

% = —%p2;—x(r2v), 1)
10 g o).
p%_c; ) _4;;,6(” coj;r;cazrzp;_x(p;_x(rzw))’ 3)
P% = Cv%p%(r‘*p%) - C]/%pzé;—x(rzv) + %[ﬂ%(lﬂzv)]z

_ i—ip%(rvz) Cocjf;d [P;—x(rzw)]z - ffZP;—x(rwz) + 4::'&. (4)

This system is considered on the set Q7, =]0,1[ x ]0, Ty [, where Qr, is the domain of our
generalized solution (see [10]). Here p, v, w, and 6 denote, respectively, the mass density,
velocity, microrotation velocity, and temperature of the fluid. R, L, c,, j; are positive con-
stants. From [10] (formulas (8) and (9)) it follows that the coefficients of viscosity X, ,
coefficients of microviscosity 1., ¢o, ¢4, and heat conduction coefficient k have the prop-
erties:

M,Mncd,kio, )\.‘FZ/.LZO, C0+2Cd20.

Equations (1)-(4) are, respectively, local forms of the conservations laws for the mass,
momentum, momentum moment, and energy.
We take the following non-homogeneous initial and boundary conditions:
/O(x, 0) = IOO(x)r (5)
v(x,0) = vo(x), (6)

w(*,0) = wo (%), 7)
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6(x,0) = 6y(x), (8)
10,t) =v(1,£) =0, %)
@(0,8) = w(1,£) =0, (10)
90 30

a(o,t) = 5(1’ £)=0 (11)

for x €]0,1[, £ €]0, Ty[. Here py, v, wg, and 6, are known real functions. We assume that
there exists a constant m € R* such that

0o(x) > m, Oo(x) >m forx €]0,1]. (12)

The function r is defined by

r(x, t) = ro(x) + /tv(x, 7)dt, (x,t)€]0,1[ x]0, To|, 13)
0
where
ro(x) = (613+3L/0JC ,001()/) dy)g, x€]0,1{ (14)

(a > 0 is radius of the smaller boundary sphere (see [10])).
In this paper we study the uniqueness of a generalized solution which is defined as fol-
lows.

Definition 2.1 A generalized solution of the problem (1)-(11) in the domain Qr =]0,1[ x
10, T'[ is a quadruple of functions

®x, )= (p,v,0,0)(x,8), (%) €Qr, (15)
where

p € L*(0,T;H'(10,1[)) N H'(Q7), iélep >0, (16)

v,0,0 € L®(0, T;H' (10,1[)) N H'(Qr) N L*(0, T; H*(10,1[)), 17)

that satisfy equations (1)-(4) a.e. in Q7 and conditions (5)-(11) in the sense of traces.

Remark 2.1 From the embedding and interpolation theorems (e.g. [17] and [18]) one can
conclude that from (16) and (17) follows:

p € L*(0,T;C([0,1])) N C([0, T1,L*(]0,1[)), (18)
v,0,0 € L*(0, T;C([0,1])) n C([0, T1,H'(10,1[)), (19)
v,0,0 € C(Qr). (20)

Let the initial data (5)-(8) have the following smoothness properties:

po.60 € H'(10,1),  vo,wo € Hy(10,1[). (21)
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Remark 2.2 Because of the embedding H"(]0,1[) < CX([0,1]), for m—k > % we conclude
that there exists M € R*, so that

’

Po (), [Vo(x)|, |wo(x)|,00(x) <M, x€]0,1]. (22)
Assuming condition (21) and inequalities (12) we proved in the previous paper [10] the

following local existence theorem.

Theorem 2.1 There exists small enough Ty € R* such that the problem (1)-(11) has a gen-
eralized solution (p,v,w,0) in Qr, =10,1[ % 10, Ty[, having the property

0>0 inQr,. (23)
For the function r, defined by (13) we get
re L™(0, To; H*(10,1[)) N H*(Qr,) N C(Qrp)s (24)
and we easily conclude to the following property:
re L%(0, To; C'([0,1])). (25)

Our proof of the uniqueness does not depend on the size of the time existence interval
[0, Ty]. Because of that, hereafter we will take Ty = T.
The aim of this paper is to prove the following result.

Theorem 2.2 Let the initial functions py, vy, wo, and 6y satisfy conditions (12) and (21).
Then the problem (1)-(11) has in the domain Qr at most one generalized solution (p,v, ®,0)
with the property (23).

As has already been mentioned, the analogous theorems for the one-dimensional case
have been proved in [3] and [16]. In [3] was considered the one-dimensional problem
with the same type of boundary and initial conditions as in this article. In [16] there is a
proof of the uniqueness theorem for the Cauchy problem of the described fluid in the one-
dimensional case. In the proof of Theorem 2.2 we use the method described in [19], where
it has been applied for the one-dimensional case of a classical fluid (problem without the

microrotation variable w) and also we use some ideas from [3] and [16].

3 The proof of Theorem 2.2

For the function r defined by (13)-(14) with the properties (24)-(25) the following estimate,
which we use in the proof of the theorem, holds true.

Lemma 3.1 The function r satisfies the estimate

r(x,t) >a (26)

(a > 0 is the radius of smaller boundary sphere; see [10]) for each (x,t) € Q7.
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Proof We have

0 (20r L ardr  , *r a1
= )=2r——+r—-L— = ). (27)
at ax P 3t dx dx 0t at\ p

Taking into account (1) and (13) it follows that

0 ar L d d d
Rl =2r—rv+r2—V—L—(r2v) =0. (28)
ot ax p

Integrating (28) over the interval ]0, £[ and using (14) we get

,0r L a L
P sople (29)
ox  p ox  po

With the help of (16), from (29) we conclude that

ar

—(x,£) >0
Bx(x ) >

for each (x, £) € Qr. Therefore the function r is increasing function in the variable x. Hence

r(x, t) > r(0,t) =a, (x,t) € Qr. (30)
O

Because of simplicity, hereafter we will consider the specific volume u = p~! instead of
density p.

We will assume now that (u;, v;, w;,6;), i = 1,2 are two distinct generalized solutions of the
problem (1)-(11) in the domain Q7 with the properties (12), (21), (23)-(24). Each solution
is associated with a function

ri(x, t) = ro(x) + / vilx,T)dTr, i=1,2. (31)
0

Now we define the functions u = u; —uy, V=V = Vo, w = w1 —wq, 0 =01 — 6, and r = r; — ry.
It is easy to see that the function r has the property

r(x,t) = /tv(x,r)dt.
0

After some calculations it can be shown that (u, v, w,0) satisfy the following system:

ou 19 ,,, 10

Fri Za(rl V) 19 ( (r + rz)vz) (32)
v a1 0 19 u 9 ,,
Frat 8x[ a1 ¥ u_1 gz e rave) = o5 Vz)]
[ [ o
+ar(r +71;) W rn— 9% —_

—/3f(h+7’2)—< ) (33)
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o L0108, ., . 19 w9
5 =7 g e ) g e e rlon) = )|
o1 0
+yr(r1+r2)a M—za(r%wz)]—éulw—(Swzu, (34)

5_ ax

+ l |:88—x(”121/1) + ;—x(rgvz)] . [;—x(r(n + rz)vl) + aa—x(rgv)]

Uy 8x Uy 0x  wmuy 0x

Cy — nv

0  ort % r(r+ )2 +73) 06, urt 96, u 8(2 )2
Uiy 0

U
B 0 60, 0 d
_u—la(rfvl)[e—u—zbt} —ﬁu—z[a(r(ﬁ‘”’z)"l)’fa(’g")]

3 u [9 2
_ da[rvf +ry(v1 + VZ)V] -y [—(rfa)l)i|

+ L[;—x(rlzm) + %(’”ng)] : |:aa—x(r(r1 + o) + %(r%w)}

U
h 0 2 2
~ho [rof + ra(w1 + wr)o] + 8] (01 + w2)wus + wiu], (35)
where o = Xﬁ”, =8 y= ”"*26” ,8 =4, V= Lkz, d= i’z‘, and /1 = 4cd

From conditions (5)-(11) for the solutions (u;, v;, ®;,6;), i = 1,2, we can easily get the fol-

lowing initial and boundary conditions for the functions u, v, w, and 6:

u(x,0) =0, v(x,0) =0, w(x,0) =0, 6(x,0) =0, (36)
v(0,8) =v(1,¢) = 0, w(0,t) = w(1,¢) = 0, (37)
20 a0

- (0.0=-(1,0)=0 (38)

forx €]0,1[, £ €]0, T[. We also have r(x,0) =0
Hereafter by C we denote a generic positive constant that can have different values at
different places. We also use the notation

|lf|| |lf||L2(]01

The proof of Theorem 2.2 is based on getting four inequalities which we use to control
the bounds of the values of the functions u, v, ®, and 6. These inequalities we prove in the
following four lemmas.

In the proofs of the lemmas we often use the following inequalities valid for the function

f vanishing at x = 0 and x = 1 or for the function with the first derivative vanishing at some
point x € [0,1]:

af
IfIl < ZH I H (39)
o [T, | <o o)
ax| — “|ox||0a2| x| ~ |l o2 |’

It is clear that the velocity and microrotation satisfy the inequalities (39)-(40), while the
temperature satisfies the inequalities (4.0) only.

Page 6 of 17
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Lemma 3.2 There exists a constant C > 0 such that

2
dr (41)

2 ¢ av
lu|* <C /0 Ha_x(”

foreachte]0,TI.

Proof With the help of (13) and the Hélder inequality we can easily get

t
2 2
o <c [ ol ar )
0
and
ar | Hov, |
<C — 43
’ o) =c [ 3o (43)
Multiplying (32) by u and integrating over ]0, 1[ we obtain the following equality:
Loan 1t ,ov
2dt” (t)|| ‘/.rlavudx+z/0 rla—udx
1o 19
+ Z/o a—;(rl + ) Voudx + Z/o ra(rl + ry)Voudx
1t 0
+ —/ r(r + rz)ﬁudx. (44)
L 0 ox

Taking into account (25), (20), (39), (40), (42), (43), and applying the Young inequality to
the integral on right-hand side in (44) we get the following estimates:

2 1 an
—/ rl—vudx
L 0 3x

x€[0,1]
2 2 v | 9
el + Juol) < (| 320+ Juo]?) s
1[0y v, |? 2
’Z/O rlaudx x€[0,1] dxfC(‘ 9 + ||bl(t)|| )’ (46)
1 ar
‘Z/O a1t TIvaudx <Cn}g§]!( dx
SC(‘ ;)r + Hu(t)”2>
¢ 2
=C(/ H?(r) dr + ||u(t)“2>, (47)
0 X
Lr i( Joudx| < C i( ) 1 d
L/o P Lt rvaar) = & a2+ 12)va / |rul dx

< cllrof + s ) = [ o ar + Juo))

<t3V
<C
0

2
dr + [u(®) ||2), (48)
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‘%/OIV(V1+V2)%M6M §Cx12[3§ |r1+r2|fl r%u da
= (;2[%’;] g !!2+Hr<t>uz)
- o max| 52 Jute*+ [[eorar)
<] 22 ol + [ |20 ar)
(H ?99:22 t %(r) 2dt). (49)
Inserting (45)-(49) into (44) and integrating over ]0, t[ we get
ol < [ (|52 | Yucol? + | 2eo] Jee 50)

Using (17) for the function v, and applying the Gronwall inequality, from (50) follows
(41). O

Lemma 3.3 We have

2 ¢ ov 2
b« [ 3260

foreachte]0,T].

dr < C/ot||9(r)||2dt (51)

Proof In the proof of this lemma we use the procedure similar to the proof of Lemma 3.2.

Multiplying (33) by v and integrating over ]0,1[ we get

r
t d
2dt ”V( I+ /0 (Bx) X
1.3 9 9 1 9
= —4dq r—ljv—v x—4ot/ on vzdx
0o U1 dx dx 0 3x

19 ad
_O[/ —8—;(71+7’2)V2£(712V)dx

9 d 119 9
+a/0 u —(rgvz)a(rfv)dx—a/(; u——(r%vz)a—;(r1+r2)vdx

119 0 119 ]
_a/O ——(r%vz)ra(r1+r2)vdx—(x‘/o u—la—x(rgvz)r(r1+r2)a—;dx

1 0 9 1
+,3/ ——(rlzv)dx—ﬁ/ dx /3 - — r1+r2 Wvdx
o U 0x 0 u1u2 Uy dx

Lg, 0 9
+,3/ —2r—(r1+r2)vdx+,3/ —2r(r1+r2)—vdx. (52)
0 Uy Ox 0 Uy ox


http://www.boundaryvalueproblems.com/content/2014/1/226

Mujakovi¢ and Drazi¢ Boundary Value Problems 2014, 2014:226 Page9of 17
http://www.boundaryvalueproblems.com/content/2014/1/226

Taking into account (18), (20), (25), (39), (40), (42), (43), the inequalities

0 0 92

‘a(r%vz) §C<1+ L;)SC(1+‘WV22 >, (53)
d v av

‘5(”12") §C(|V|+ p >, ||v||SCH£ , (54)

and applying Young’s inequality with a parameter ¢ > 0 on the right-hand side of (52) we
obtain the following inequalities:

L3 9r @ 9 2
sa [ LI g <l | <ef—| +ClvIP, (55)
0o U 0x O0x ox ox
1.2 P 2
4a/ r—1<i> Vx| < Clv|)?, (56)
o Ui\ ox

L1 ar 0
oz/(; u—la(r1+r2)v2£(r12v)dx

Ha Yarllo
SC/ —r|v|dx+/ ax —de
o | 0x o | 0x||dx
) 2 ) 2 ) 2 t 9 2
<c(|gr] +me)ve|so) =elonl v [ 5] @), 57)
ox ax ox o |l 0x
1 3
o \ u—lra(r1+rg)vz£(rlzv)dx
1 3
§C/ |r|(|v|+ —V‘)dx
0 ox
a 2 8 2 t 8 2
<C(Irl® + IvI?) + & 8—: —¢ a_: +C(/O a—; dr+||V||2), (58)
1 vy 0
oz/o u—lr(r1+r2)alxza(r12v)dx
32 1 3
<c| L2 /Irl W+ |21 dx
8x2 0 3x
82 2 82 2 9 2
<c(| S meE (1 | 2| )) el
x> x> ox
av|? 3%, || 3%y |2\ [ ov|?
<e¢ v +C e i+ {1+ el / g dr |, (59)
ox 0x? 0x? o || 0x
Yuo o9 ,, (0,
= () —(rv) d
o fo () () d
32 1 3
<Cl1l+ el /|u| lv| + kg dx
0x2 0 0x
2y, |2 av|?
<1 ‘—j >(||v||2+||u||2)+8 e E (60)

82vz

r
2 dx

|
ox

o[22
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: (HS— (5 e)
<C dr+(1 ’682— 2)|| ||2) (61)

S
S~

1193 B
u—a—(rgvz)ra—(rl +1r)vdx

)/ Irllvidx

=C
92 Hov|?
<c(1+]|22 ||v||2+/ N ar), (62)
3962 0 ox
119
’a[; u—la(gvz)r(m +r2)—dx
02 ! ad
<Cl1+ ov /Irl—vdx
0x2 0 0x
av|? vy |2\ [ ov]
<¢ M v+ |22 a4 dr, (63)
x 0x2 o |l 0%
ﬁ/ ’ a( v)d <C/1|9| v ax<c(or s )+ 21, 6o
x v+ |—| ) dx +vIIF) + ¢ ,
0 U10x ax
! ad
v)dx §C/ |u|(|v|+ ad )dx
Mluz 0 ox
2
Cllul® + IvI1%) + ¢ , (65)
0y Or E Hov|?
,Bf —2—(r1+r2)vdx <Cf ax vldx < C ||v||2+/ v dr ), (66)
0 Uz 0x o |0x o |l 9x
Yo, 8 ! “lav]?
—2r—(rl+r2)vdx <C/ |r||v|dx§C(||v||2+ g dr), (67)
U, ox o |l 0%
Lo1d av|? Hoov |2
,3/ —rr1+r2 dx §C/ |r|—de§8—V +C/ kg dt. (68)
0 ax ox o |l 0%
Inserting (55)-(68) into (52), using (16) and (26) and integrating over ]0, [ we get
vt
¢ 821/2 2
<C 1+|—
: /o[<+ e )
2 2 HEIPNE 2
(@) + v + / 9| ds) + o] | . (69)
0

Taking into account (41) and taking ¢ > 0 small enough, from (69) we immediately get

2 ¢ av 2
bl [ |3
<C/t|:<1+ &
o

ds) + ||e(r)||2} dr. (70)

2 T 2
) 2
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Applying Gronwall’s inequality and property (17) for the function v,, from (70) we get

2 fav > t 2
ol [ ”5(1) dr<c [ ol dr o)
0 0 D
Lemma 3.4 We have
tg 2 t
||a)(t)||2+f Ha—“’(f) drgC/ lo()| dx (72)
0 X 0

foreachte€]0,T].

Proof As the functions w1, w,, and w have the same properties and belong to the same
spaces as the functions vy, v, and v we use the same approach as in Lemma 3.3. Multiplying
(34) by w and integrating over ]0, 1[ we get

B fooff oy [ (22
Lo ey [ 2(52) as

1.3 P P 1.2 9 2
=4y r—llw—wdx—lly/ non ?dx
o U 0x Ox o U1\ ox

1194 ]
—y/ ——r(r1+rg)w2—(r12w) dx
0

u; 0x ox
11 5 9 11 dwy 0

-y | M—lra—x(r1+r2)a)2£(’”12w)dx—3//0 u—lr(r1+r2)aa(rfw)dx
1y 9 9 L1 9 or

+y i ma(r%wg)a(rlzw)dx—yfo u—za(?’ng)a(ﬁ+r2)wdx

11 9 9 119 dw
_y/O Za(r%wz)ra(rl+r2)wdx—yfo M—Za—x(rga)z)r(r1+r2)adx

1 1
) / wmwtdx -8 / WU dx. (73)
0 0

Now we use (18), (20), (25), (39), (40), (42), (43), (54), as well as the inequalities

0 0wy 826’)2
‘a(rgwg) < C(1+ W ) < C(l + ‘ W )y (74)
] ow

We again apply Young’s inequality with a parameter ¢ > O to the right-hand side of (73)
and obtain the following estimates:

Ly2 (on 2 ) )
4y/ —(—) W dx| < Cloll?, (76)
0o U 0x
1.3 2
ar 9
BNl <e|Z2] 4 clol?, (77)
o U 0x Ox

L1 ar 9 4
—— — d
y/o ” 8x(r1+r2)a)2 ax(rlw) x
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1 a 1
§C</ —r‘|w|dx+f
o |0x 0

ar
ox

ow
ox

)

2

ar ||? 3
<c(|=] +loi)+e|—
ox ox
2 t 2
9
<e|2 +c(/ kg dr+||a)||2>, (78)
x o |l 9x

1
)
—r—(n+ — dx
‘y \ ulrax(rl rz)a)zax(rla))

1
§C/ Irl<|w|+
0
2 t
@ +C<j Q
o || ox

x
1 dwy D
’y/ —r(r1+r2)2 (rlzw)dx
0

w 2

0
— )dx <C(lIF? + oll?) +&| =

2
<é&

dr + ||a)||2>, (79)

u 0x a

02 ! 0
<cf I /|r| o] + | 22| ) dx
0x2 0 d
2 2 2 t 2
d d
<egl|—| +C(|1+ @2 / &v dr + |w|? ), (80)
x 0x2 o | 0x
T 9 0,5
—_— — d
Iy 0 Uil 8x(r2w2)3x(rlw) *
92 1 0
<cf1+] 222 /Iul o] +| 2| ) dx
axz 0 aIx

3%w, 2 9 9 do ||
<C{|1+ 3 lull” + lloll™ ) +e| —|| > (81)
ax ox
119 ar
’y/ u—a(rng)a(r1+r2)wdx
0 U2
2 1
<C|1l+ 0" /‘|a)|gdx
- 0x2 0 x
3oy |7\ [ ov]?
() ]
x o || 0%
119 )
‘y/ M—la(rng)ra(r1+r2)wdx
0
32 1
5C<1+‘ - )/ IFl|e| dax
ox 0
3oy |7\ [ ov]?
<c|(1+|%2 / N dr o+ ol? |, (83)
ax 0 ax
119 dw
’y/o u—za(rgwg)r(r1+r2)a— dx
2 1
<Cl|1l+ 0w, |r|a—wdx
< a2
X 0 X
a 2 32 2 t 8 2
<e 0 scf1+ | 222 / v dr, (84)
x 0x2 o |l 0%
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1
‘Sf ww? dx
0

1
’8/ wrw dx
0

Using the estimates (41) for the function u, the estimate (26) for the function r; and the

<Cllwl? (85)

< C(llul® + llwl?). (86)

property (16) for the function u;', after inserting (76)-(86) into (73) and integrating over

10, ¢[ we get
2 twl?
|| +(1—6s>/0 Ha dr
<C/£[||w(f)||2+/t 9 ) 2als+<1+ @(r) 2) / e st]df (87)
~Jo o Il 9% dx? o |l 9x ’

We take ¢ small enough. Applying Gronwall’s inequality to (87) we get

s [ ow]|? t 2wy |I*\ [lov, |2
||a)(t)|| +A O dr SC./() (1+ ’ W(T) >/0 a(s) dsdt
t g 2 t 92 2
§C/ 8—;(5) ds/ (1+ 8;"’(z) )d‘r. 88)
0 0

Now, using the inclusion (17) for the function w,, from (88) we conclude that

M ECPN Hov |*
||a)(t)|| + —(7)|| dt <C —(7)| drt (89)
0 ax 0 ax
for each £ €]0, T[. Applying the inequality (51) to (89) we immediately get (72). O
Lemma 3.5 We have
2 ‘a6 2 ¢ 2
”Q(t) ” + —(1)|| dt<C HG(I)” dt (90)
o |l 0 0

foreachte]0,T].

Proof Multiplying (35) by 6, using (38) and (11), after integrating by parts over ]0,1[ we

, d 12 796\*
C——||9(t)||2+v/ (00N gy
2 dt 0o Ul ox
:_v/1r(r1+r2)(r12+r§)@%dx+v/‘l u , 00,06
0 0

vy ————dx
7 0x 0x U1y ° 0x 0x

get
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0,
rlvl 92dx+,3/ ’"1 1) ub dx
Uy

1336

[
/ —za— r(r1+r2)v1 0dx— ,3/ 28x V)de
afl

20 ! d ’
e+ (v +vz)v)a—dx—)// - [5(’%‘01)} 0dx
0

Z5020)

3 d 9
7 ) e e [ e oo as
1 1 9 ) a 5 1 239
7)) et o [gtiaboas e [t

1 960 1 1
+ h/ raw(w; + w2)8_ dx+8 | (w1 +w)mwddx+8 / w3uf dx. (91)
0 X 0 0

To get the estimates of the integrals on the right-hand side in (91) we use again the prop-
erties (18), (20), (25), (39), (40), (42), (43), (53) for the functions rivy, ravy, riw;, and riwy,
as well as the property (54) for the functions v and w. We also use the inequality

026,

902 _ | 220
ox?

-
0x

and the result of Lemma 3.2. As we use the same procedure as in previous proofs, we omit

(92)

the details and write the final form of the estimates only. We get the following inequalities:

2 2 2
/‘ r(r1+r2 r1+r2) 36, 36 0 1l < a0 076, av | d, (93)
Ox dx ox ox? ax
960, 90 30 || 826
) M_Z_d_ +C 2||||
0 Wly ~ 0x Ox ax
36 ||? 326, |* [t av|?
<el|l—| +c|=—2 ad P (94)
ox ox? ox
L'y Ta 2 9%y
. 0dx|<C|1 0
‘a./o MIMZ[ax(rIVI)] = ( o2 )(”u” #1015
82 2 t P 2
<cf1+|2mn / M gz + 01?), (95)
3962 0 3x
1178 3 9
o [ |t e g 0) | e rom)o s
82 2 82 2 t 9 2
sc(ue| 52| 152 ) ([ 15] o) (96)
dx? ox? o || 9x
179 9 3
o [ et )| oas
v |2 | 82w, |2 2
<cfr+ | 220 1220 Yoz« v+ | 2
dx? dx? ox
321/1 2 anz 2
<cf1+ 12 2, 97
_<+‘ax2 ’axz )nn ’ ©7)
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1 1 9 2
ﬂ/ s )07 d <C<1+ 2 )||9||2 (98)
0
19 6, v\, [Hav]?
ﬁ/o u—la(rlvl)u—zuédx <C[( ’W 1] +/0 o dr |, (99)
6, 9 3% |2 Hlav |
ﬁ/o o (e ram)od <c[( =l ||e||2+f =l oo
92 0 2 2 2
£l o — ()0 dx| < C( 101 + IvI* + cllen®+ (101)
0
! 90 00
d/ (rvf+r2(v1+vz)v)adx <e P <||v||2 dr)
0
90 3
<e ( Y dr), (102)
ax

Loy 0
|y‘/0 uluz[ax(rlwl ] 0dx

<C< > lull® + 101%)
1
|V/0 ul [88 ( r2w2 ];—x r(r1+r2)w1) 0 dx

(\82“” \ IeA=

[ (rzw»]a(rzw)edx

dr + 161l >, (103)

ax2 dr + ||9||2>, (104)

92w, 2 92w, 2 9 do ||* 3
< < ‘ Py ‘ 2 )IIGII +C<H— +||w||>
82w1 92w, dw ||*
, 105
=c(1+) 5 \ o )u ec| 2 (105)
L ,00 6 ||* l dv
h 2 d c — d , 106
fo P e P P (106)
! 90 a6 30
h/ rw(w + wy)—dx| <e¢ +C||a)||2 <e +C (107)
0 ax 8
1 o |?
8/ (w1 + w2)mwb dx SC(IIw||2+||9||2)SC< ™ +||e||2), (108)
0 X
1 t av 2
3/ wiuf dx| < C(llul + 101%) 5c</ | 4+ ||9||2). (109)
0 0 X

Now we will again apply (26) as well as (16). By inserting (93)-(109) into (91) and inte-
grating over ]0, [ we get

‘a0

Bx
—(s)

c[aol [ |2
+ C</0

2
dr
2
+ 06 ”2) d
—(7)

Hov, |
dr +/ d‘[), (110)
0 ax

1011 + (1 - 5¢) i ()

w

—(
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where
320, |* 8%, > | 8*wva, |
A(T):1+ W(T) +‘W(T) +‘W(T)
82a)1 2 820)2 2
+ ‘ ﬁ(f) ‘ W(T) (111)
If we choose ¢ small enough, using the properties (72), (51), and (17) we get
U EIN
o+ [ |5 ar
0 0x
t 9 T 89 2 t 9
§Cf A(r)(”@(r)” +f —(s) )dr+Cf ||9(‘L’)H drt. (112)
0 o Il 9% 0
Applying Gronwall’s inequality to (112) we finally get
2 £ a6 > t 2
10| + / W) ar<c / 16| d. (113)
o Il 9% 0 0

Now we can easily conclude that Theorem 2.2 is valid. If we apply Gronwall’s inequality

again to (113) we immediately get

0=0. (114)

Inserting (114) into (51), and (72) we can conclude that

y=0, w=0. (115)

Finally, from (41) we get

u=0 (116)

and Theorem 2.2 is proved.
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