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Abstract
This paper is concerned with the study of damped wave equation of Kirchhoff type
utt –M(‖∇u(t)‖22)�u + ut = g(u) in � × (0,∞), with initial and Dirichlet boundary
condition, where � is a bounded domain of R2 having a smooth boundary ∂�.
Under the assumption that g is a function with exponential growth at infinity, we
prove global existence and the decay property as well as blow-up of solutions in finite
time under suitable conditions.
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1 Introduction
Let� be a bounded domain with smooth boundary ∂�, we are concerned with the initial-
boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

utt –M(‖∇u(t)‖)�u + ut = g(u) in � × (,∞),

u(,x) = u(x), ut(,x) = u(x), x ∈ �,

u(t,x) =  on ∂� × (,∞),

(.)

where g is a source term with exponential growth at the infinity to be specified later,M(s)
is a positive C class function in s ≥ . It is said that (.) is non-degenerate if there exists
a constantm >  such thatM(s) ≥ m for all s≥ . If there exists a point s ≥  such that
M(s) = , then it is said that (.) is degenerate. In the caseM(s) ≡m > , (.) is usually
a semilinear wave equation. In this paper, we only consider non-degenerate case.
It is known that Kirchhoff [] first investigated the following nonlinear vibration of an

elastic string for δ = f = :

ρh
∂u
∂t

+ δ
∂u
∂t

=
{

p +
Eh
L

∫ L



(
∂u
∂x

)

dx
}

∂u
∂x

+ f ;  ≤ x ≤ L, t ≥ ,

where u = u(x, t) is the lateral displacement at the space coordinate x and the time t, ρ the
mass density, h the cross-section area, L the length, E the Young modulus, p the initial
axial tension, δ the resistance modulus, and f the external force.
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Recently, Alves and Cavalcanti [] studied the following problem with nonlinear damp-
ing term:

⎧
⎪⎪⎨

⎪⎪⎩

utt –�u + h(ut) = g(u) in � × (,∞),

u(,x) = u(x), ut(,x) = u(x), x ∈ �,

u(t,x) =  on ∂� × (,∞),

(.)

where g is a source term with exponential growth at infinity to be specified later, h(·) is a
monotone continuous function with polynomial growth at infinity and with no restriction
on the growth rate near the origin. There are few works in the literature dealing with the
exponential source even for wave equation, the work [] is a recent one in this direction. In
[] Ma and Soriano studied an evolution equation with exponential term of the following
form:

utt – div
(|∇u|n–∇u

)
–�ut + g(u) = f (t,x) in � × (,∞),

with initial and Dirichlet boundary condition, where � ⊂ R
n is a bounded domain with

smooth boundary ∂�, n ≥ , g(u) grows like e|u| n
n– and satisfies the sign condition

g(u)u≥ . More recently, Han and Wang [] studied the following problem:

utt –�u –ω�ut +μut = g(u) in � × (,∞), (.)

with initial and Dirichlet boundary condition, where � ⊂ R
 is a bounded domain with

smooth boundary ∂�, g(u) is just the term considered in []. In fact, when g(u) = |u|p–u,
the problem (.) was studied by Gazzola and Squassina in [].
To the author’s knowledge, there are few works in the literature dealing with the expo-

nential source for Kirchhoff equations. When the source term g(u) is a nonlinear function
like ±|u|αu for α ≥ , the problem (.) has been discussed by many authors; see [–]
and the references cited therein.
Motivated by there papers, in this study, we concentrate on studying the problem (.)

withM(s) ≥ m >  for constantm. Inwhat follows, wewould like to introduce somewell-
known theory of elliptic problems. More precisely, defining the functional J̃(·) :H

(�) →
R by

J̃(u) =
m



∫

�

|∇u| dx –
∫

�

G(u)dx, (.)

where G(u) =
∫ u
 g(s)ds. The critical points of the functional J̃ are the weak solutions of

the elliptic problem

⎧
⎨

⎩

–m�u = g(u) in �,

u(x) =  on ∂�.

Defining the functional Ĩ(·) :H
(�) →R by

Ĩ(u) =m‖∇u‖ –
∫

�

g(u)udx. (.)
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Related to the functional J̃ , we have the well-known Nehari manifold:

N =
{
u|u ∈H

(�)\{} : Ĩ(u) = 
}
.

If g satisfies some suitable properties, it is possible to prove the functional J̃ satisfies the
hypotheses of the mountain pass theorem due to Ambrosetti and Rabinowitz [], and the
level

d = inf
u∈H

(�)\{}
max
λ≥

J̃(λu) > 

called mountain pass level is a critical level for J̃ . By Theorem . in [], the mountain
pass level d can be characterized as

d = inf
u∈N

J̃(u). (.)

In order to study the problem (.), we define some additional functionals. Define

J(u) =


M

(‖∇u‖
)
–

∫

�

G(u)dx, (.)

I(u) =M
(‖∇u‖

)‖∇u‖ –
∫

�

g(u)udx, (.)

whereM(r) =
∫ r
 M(s)ds. Then we can define

W =
{
u|u ∈H

(�) : Ĩ(u) > 
} ∪ {}.

Now, as usual setting

E(t) =


∥
∥ut(t)

∥
∥
 + J

(
u(t)

)
. (.)

The remainder of this paper is organized as follows. Section  is concerned with some
notation, statement of assumptions and the main results. Sections  and  are devoted to
the proofs of the main results.

2 Assumptions andmain results
To state our results, we need the following assumptions.
(A) Assume that g :R →R is a C function satisfying:

• For each β > , there exists a positive constant Cβ such that

∣
∣g ′(ζ )

∣
∣,

∣
∣g(ζ )

∣
∣ ≤ Cβeβζ , for all ζ ∈R. (.)

• Near the origin we have

lim
ζ→

g(ζ )
ζ

= . (.)

• The function g(ζ )/ζ is increasing in (,∞).

http://www.boundaryvalueproblems.com/content/2014/1/230
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(A) There exists a positive constant θ >  such that

 < θG(ζ ) < g(ζ )ζ , for all ζ ∈ R\{}. (.)

A typical example of functions satisfying (A) is

g(ζ ) = |ζ |p–ζ eC|ζ |α , for all ζ ∈R,

where p > ,C > , α ∈ (, ) arbitrarily chosen. From (.), for each ε >  fixed, there exists
δ >  such that

∣
∣g(ζ )

∣
∣ ≤ ε|ζ |, for all ζ ∈ [–δ, δ].

Moreover, from (.), for each β >  and p ≥  fixed, there exists Cβ >  such that

∣
∣g(ζ )

∣
∣ ≤ δ–p+Cβ |ζ |p–eβζ , for all ζ ∈ (–∞, –δ]∪ [δ, +∞).

Hence, for each β , ε >  and p≥  fixed, there exists δ and Cβ ,ε,p >  satisfying

∣
∣g(ζ )

∣
∣ ≤ ε|ζ | +Cβ ,ε,p|ζ |p–eβζ , for all ζ ∈R, (.)

∣
∣G(ζ )

∣
∣ ≤ ε


|ζ | +Cβ ,ε,p|ζ |peβζ , for all ζ ∈R, (.)

where G(ζ ) =
∫ ζ

 g(s)ds.

Remark . The assumptions (A) and (A) have been used in []. The condition (.) is
the well-known Ambrosetti-Rabinowitz condition, widely used in elliptic problem. Also
as remarked in [, ], the mountain pass level d can be characterized by (.) provided
(.), (.), and (.) hold.

Throughout this paper we will make use of the Moser-Trudinger inequality found in
[, ].

Lemma . Let � be a bounded domain in R
n, n≥ . For all u ∈W ,n

 (�),

eα|u| n
n– ∈ L(�), for all α > ,

and there exist positive constants Cn and αn such that

sup
‖u‖

W,n
 (�)

≤

∫

�

eα|u| n
n– dx ≤ Cn, for all α ≤ αn,

where αn = nω
/(n–)
n– and ωn– is the (n – )-dimensional surface of unit sphere, specially,

α = π .

Now, we state our main results. First, we consider the problem (.) withM(s) =  + sγ /

for γ > . We have the following global existence and decay result.

http://www.boundaryvalueproblems.com/content/2014/1/230
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Theorem . Assume that (A) and (A) hold, M(s) =  + sγ / for γ > . Then there exists
an open set S in (W ∩H(�))×H

(�), which contains (, ), if (u,u) ∈ S and the initial
energy E() < d, then u(t) ∈W on [,∞). Furthermore, suppose that there exists a constant
η ∈ (, ) such that

Ĩ
(
u(t)

) ≥ η
∥
∥∇u(t)

∥
∥
, for t ≥ ,

then the problem (.) has a unique solution u = u(t) satisfying

u ∈ L∞(
R

+;H
(�)∩H(�)

) ∩W ,∞(
R

+;H
(�)

) ∩W ,∞(
R

+;L(�)
)
.

Furthermore, we have the following energy decay estimate:

E(t)≤ E()e–κ[t–]+ on [,∞),

where κ is a positive constant.

Secondly, we consider the initial-boundary value problem (.) under the following gen-
eral assumption.
(A) Assume that the sign condition g(s)s≤  holds for all s ∈ R.M(s) is a positive C

function on [,∞), and

M(s) ≥ ,
∣
∣M′(s)

∣
∣ ≤ sα , for α ≥ .

Then we can state the global existence and energy decay to the related problem (.).

Theorem . Let (A) and (A) hold, then there exists an open set S in (H
(�)∩H(�))×

H
(�), which contains (, ) such that if (u,u) ∈ S, then the conclusions of Theorem .

hold.

Our final result is concerned with the blow-up phenomenon. First of all we give the
following assumption.
(A) There exists a positive constant δ such that

sg(s)≥ ( + δ)G(s), for all s ∈ R

and

(δ + )M(s) –M(s)s ≥ , for all s≥ .

Theorem . Under the assumptions (A) and (A), and that either one of the following
conditions is satisfied:

(i) E() < ,
(ii) E() =  and

∫

�
uu dx > ,

(iii)  < E() < (
∫

� uu dx)

(T+)‖u‖
and (.) holds, where T to be chosen later.

Then the solution u blows up at finite T∗.And T∗ can be estimated by (.)-(.), respec-
tively, according to the sign of E().
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3 Global existence and energy decay
In this section, we will give the solvability in the class of H(�) ∩ H

(�) and the energy
decay of the problem (.). From now on we denote c or ci various positive constants.

3.1 Proof of Theorem 2.1
In this section we take M(s) =  + s

γ
 for γ > , and u ∈ W ∩ H(�) and u ∈ H

(�). We
employ the Galerkin method to construct a global solution. Let {λi}∞i= be a sequence of
eigenvalues for –�w = λw in � and w =  on ∂�. Let wi ∈ H

(�) ∩ H(�) be the cor-
responding eigenfunction to λi and take {wi}∞i= as a completely orthonormal system in
L(�). We construct approximate solutions um in the form um(t) =

∑m
i gim(t)wi, where

gim are determined by the following ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u′′
m(t),wi) +M(‖∇um(t)‖)(∇u(t),∇wi) + (u′

m(t),wi)

= (g(um(t)),wi), i = , . . . ,m,

um() = um =
∑m

i=(u,wi)wi → u asm → ∞ in H
(�)∩H(�),

u′
m() = um =

∑m
i=(u,wi)wi → u asm → ∞ in H

(�).

(.)

System (.) can easily be solved by Picard’s iteration method, hence it admits a local
solution on some interval [,Tm) with  < Tm ≤ ∞. Note that um(t) is of C class.We shall
see that um(t) can be extended to [,∞), which needs some prior estimates for um(t). But
this procedure allows us to employ the energy method for an assumed smooth solution
u(t) to the problem (.) (the results should be in fact applied to approximated solutions).
Now, it is easy to see the following energy identity:

E(t) +
∫ t



∥
∥ut(s)

∥
∥
 ds = E(), (.)

as long as the approximated solutions exist. First we discuss the H a priori estimate.

Lemma . (H a priori bounds) Let u(t) be a solution with the initial data u ∈
W ∩ H(�), u ∈ H

(�), and the initial energy E() < d. And the assumptions (A) and
(A) hold. Then u(t) ∈ W on [,∞). Furthermore, there exists a constant C = C(‖u‖,
‖∇u‖) >  such that

∥
∥ut(t)

∥
∥
 +

∥
∥∇u(t)

∥
∥
 ≤ C,

∫ t



∥
∥ut(s)

∥
∥
 ds≤ C,

for all t ≥ .

Proof Since J̃(u(t))≤ J(u(t)), it follows from the energy identity (.) and the initial energy
E() < d that



‖ut‖ + J̃

(
u(t)

)
+

∫ t



∥
∥ut(s)

∥
∥
 ds≤ E() < d, for all t ∈ [,Tm), (.)

which implies J̃(u(t)) < d for all t ∈ [,Tm). As in [] arguing by contradiction, we can
obtain u(t) ∈W on [,Tm). From this fact and (.), we can conclude that

∫

�

(


g(u)u –G(u)

)

dx < d,

http://www.boundaryvalueproblems.com/content/2014/1/230
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which together with the Ambrosetti-Rabinowitz condition (.) implies

∫

�

G
(
u(t)

)
dx <

d
θ – 

. (.)

Combining (.) and (.) we obtain

∥
∥ut(t)

∥
∥
 +

∥
∥∇u(t)

∥
∥
 + 

∫ t



∥
∥ut(s)

∥
∥
 ds≤ E() +

∫

�

G
(
u(t)

) ≤ θd
θ – 

,

for all t ∈ [,Tm). At the same time, these estimates imply that the (approximated) solu-
tion u(t) can be extended to the whole interval [,∞). This concludes the proof of Lem-
ma .. �

Moreover, since u ∈ W , we have u(t) ∈ W for all t ≥  from Lemma .. If Ĩ(u) > ,
using (.), we have

E(t)≥ 

‖ut‖ + J̃(u) =



‖ut‖ +



‖∇u‖ –

∫

�

G(u)dx

≥ 

‖ut‖ +



‖∇u‖ –


θ

∫

�

g(u)udx

≥ 

‖ut‖ +

(


–

θ

)

‖∇u‖, (.)

for all t ≥ . If u = , (.) is obvious.

Lemma . (Energy decay) Under the assumptions imposed on Lemma ., and suppose
that there exists a constant η ∈ (, ) such that

Ĩ
(
u(t)

) ≥ η
∥
∥∇u(t)

∥
∥
, for t ≥ . (.)

Then we have the energy E(t) satisfies the decay estimates

E(t)≤ Ie–κ[t–]+ (.)

on [,∞), where I = E(), and κ is a positive constant.

Proof It follows from (.) and (.) that

I
(
u(t)

)
= Ĩ

(
u(t)

)
+

∥
∥∇u(t)

∥
∥γ+
 .

Hence, from Lemma . and (.), we deduce that

I
(
u(t)

) ≥ η
∥
∥∇u(t)

∥
∥
, I

(
u(t)

) ≥ ∥
∥∇u(t)

∥
∥γ+
 on [,∞). (.)

Multiplying (.) by ut and integrating over [t, t + ]× �, we obtain

∫ t+

t

∥
∥ut(s)

∥
∥
 ds = E(t) – E(t + ) ≡D(t). (.)

http://www.boundaryvalueproblems.com/content/2014/1/230
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Thus, there exist two numbers t ∈ [t, t + 
 ] and t ∈ [t + 

 , t + ] such that

∥
∥ut(ti)

∥
∥
 ≤ D(t) (i = , ). (.)

Multiplying (.) by u and integrating over [t, t]× �, we obtain

∫ t

t
I
(
u(s)

)
ds =

∫ t

t
‖ut‖ ds +

(
u(t),ut(t)

)
–

(
u(t),ut(t)

)
+

∫ t

t

(
ut(s),u(s)

)
ds.

Combining (.), (.), (.), and E(t) being nonincreasing, we deduce

∫ t

t
I
(
u(s)

)
ds≤ D(t) + cD(t)E(t)


 , (.)

where c = 
√

θ
(θ–)λ

. On the other hand, from (.) and (.) we obtain

J
(
u(t)

)
=


‖∇u‖ +


γ + 

‖∇u‖γ+
 –

∫

�

G(u)dx ≤
(


η

+


γ + 

)

I(u). (.)

Hence, combining (.) and (.), we get

∫ t

t
E(s)ds =




∫ t

t

∥
∥ut(s)

∥
∥
 ds +

∫ t

t
J
(
u(s)

)
ds≤ c

(
D(t) +D(t)E(t)



)
, (.)

where c = c(η,γ , c). Since t – t ≥ 
 , we get

∫ t

t
E(s)ds≥

∫ t

t
E(t)ds≥ 


E(t).

Thus, from energy identity (.) and (.), we obtain

E(t) = E(t) +
∫ t

t

∥
∥ut(s)

∥
∥
 ds≤ 

∫ t

t
E(s)ds +

∫ t+

t

∥
∥ut(s)

∥
∥
 ds

≤ c
(
D(t) +D(t)E(t)



)

on [,∞),

for some constant c > . Hence, there exists a constant c >  such that

E(t)≤ cD(t) = c
(
E(t) – E(t + )

)
on [,∞). (.)

The application of Nakao’s inequality [] to (.) yields (.) with κ = log(c/(c – )).
�

We are now in a position to obtain H a priori bounds. Set

E∗(t) =
∥
∥∇ut(t)

∥
∥
 +M

(∥
∥∇u(t)

∥
∥


)∥
∥�u(t)

∥
∥
,

I = E(), I = ‖∇u‖ + ‖�u‖.

http://www.boundaryvalueproblems.com/content/2014/1/230
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Lemma . (H a priori estimate) Under the assumptions imposed on Lemma .. Sup-
pose u(t) is a local solution on [,T) such that sup{‖∇ut(t)‖,‖�u(t)‖} < K on [,T) for
some K and T > . Then we have the following estimate:

E∗(t) ≤ I +C(I)K

 +C(I)K +C(I)K ≡G(I, I,K) on [,T),

where Ci(I) is a constant depending increasing on I and limI→G(I, I,K) = I (i = , , ).

Proof Multiplying (.) by –�ut(t) and integrating over �, we obtain



d
dt

[∥
∥∇ut(t)

∥
∥
 +M

(∥
∥∇u(t)

∥
∥


)∥
∥�u(t)

∥
∥


]
+

∥
∥∇ut(t)

∥
∥


=M′(∥∥∇u(t)
∥
∥


)(∇ut(t),∇u(t)
)∥
∥�u(t)

∥
∥
 +

(∇g
(
u(t),∇ut(t)

))
. (.)

It follows fromHölder’s inequality and assumption (.) that the second term in the right-
hand side of (.) can be estimated as

∣
∣
(∇g

(
u(t),∇ut(t)

))∣
∣ ≤

∫

�

∣
∣g ′(u(t)

)∇u(t) · ∇ut(t)
∣
∣dx

≤ Cβ

(∫

�

eβu dx
) 

 ∥
∥∇u(t)

∥
∥


∥
∥∇ut(t)

∥
∥
.

On the other hand from ‖∇u(t)‖ ≤ θd
θ–

.= R, we deduce from the Moser-Trudinger in-
equality that

sup
‖∇u‖≤R

∫

�

eβu dx = sup
‖∇u‖≤R

∫

�

eβ‖∇u‖( u
‖∇u‖ )


dx

≤ sup
‖∇u‖≤R

∫

�

eβR( u
‖∇u‖ )


dx ≤ c,

where c is a positive constant, as long as we choose β < π
R .

Hence, Sobolev’s inequality and the interpolation inequality imply

∣
∣
(∇g

(
u(t),∇ut(t)

))∣
∣ ≤ Cβc




∥
∥∇u(t)

∥
∥


∥
∥∇ut(t)

∥
∥


≤ Cβc


 ‖∇u‖ 


 ‖∇u‖ 



∥
∥∇ut(t)

∥
∥


≤ cK

 E(t)


 , (.)

for some positive constant c, where we have also used (.). The first term on the right-
hand side of (.) is estimated as

γ


∥
∥∇u(t)

∥
∥γ–


∥
∥∇ut(t)

∥
∥


∥
∥�u(t)

∥
∥
 ≤ cKE(t)

γ–
 , (.)

for some constant c > . Thus, from (.), (.), and (.), we obtain



d
dt

[∥
∥∇ut(t)

∥
∥
 +M

(∥
∥∇u(t)

∥
∥


)∥
∥�u(t)

∥
∥


]
+

∥
∥∇ut(t)

∥
∥


≤ cK

 E(t)


 + cKE(t)

γ–
 . (.)

http://www.boundaryvalueproblems.com/content/2014/1/230
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Integrating (.) over [, t], noticing E∗() ≤ I + cI
γ

 K for some c > , we obtain

E∗(t) ≤ I + cKI
γ

 + cK




∫ t


E(s)


 ds + cK

∫ t


E(s)

γ–
 ds

≤ I + cKI
γ

 + cK


 I



 + cKI

γ–




+ cK

 I





∫ ∞


exp

(

–
κ


s
)

ds + cKI
γ–




∫ ∞


exp

(

–
κ(γ – )


s
)

ds

≤ I + cKI
γ

 + cK


 I



 +

cK

 I





κ
+
cKI

γ–



κ(γ – )

≡ G(I, I,K). (.)

Thus, we complete the proof of Lemma .. �

Let K >  and put

H(I, I,K) =G(I, I,K)

 ,

SK =
{
(u,u) ∈W ∩H(�)×H

(�)|H(I, I,K) < K
}

and

S =
⋃

K>

SK .

By the same method as considered in [], we can deduce that S is an open unbounded set,
and if (u,u) ∈ S, the solution u(t) can be continued globally on [,∞) and (u(t),ut(t)) ∈ S
for all t ≥ .
Uniqueness: Let u(t) and v(t) be two solutions; w(t) = u(t) – v(t) satisfies

wtt –M
(∥
∥∇u(t)

∥
∥


)�w +wt(t)

=
(
M

(∥
∥∇u(t)

∥
∥


)
–M

(∥
∥∇v(t)

∥
∥


))�v +
(
g(u) – g(v)

)
, (.)

with w =  on [,∞)× ∂� and w() = wt() =  in �. Taking the L(�) inner product on
both sides of (.) with wt , we can easily find that



d
dt

{‖wt‖ +M
(∥
∥∇u(t)

∥
∥


)∥
∥∇w(t)

∥
∥


}
+ ‖wt‖

=M′(∥∥∇u(t)
∥
∥


)
(∇u,∇ut)‖∇w‖ +

[
M

(∥
∥∇u(t)

∥
∥


)
–M

(∥
∥∇v(t)

∥
∥


)]
(�v,wt)

+
(
g(u) – g(v),wt

)
. (.)

Using assumption (A), or more precisely (.), we estimate the last term as

∫

�

(
g(u) – g(v)

)
wt dx≤ C

∫

�

(
eβ|u|+ + eβ|v|)∣∣w(t)wt(t)

∣
∣dx.

Since u(t), v(t) are two solutions, from (.), we obtain ‖∇u(t)‖ ≤ θ
θ–d, ‖∇v(t)‖ ≤ θ

θ–d.
Repeating a similar procedure as estimating the term (∇g(u),∇ut), after employing the
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Hölder and the Moser-Trudinger inequality, yields

∫

�

(
g(u) – g(v)

)
wt dx≤ c‖∇w‖‖wt‖.

On the hand the first and the second term on the right-hand side of (.) are bounded by

c
∥
∥∇w(t)

∥
∥
, c

∥
∥∇w(t)

∥
∥


∥
∥wt(t)

∥
∥
,

respectively. Thus, integrating (.) over (, t), we obtain

∥
∥wt(t)

∥
∥
 +

∥
∥∇wt(t)

∥
∥
 ≤ c

∫ t



{∥
∥wt(s)

∥
∥
 +

∥
∥∇wt(s)

∥
∥


}
ds,

which impliesw =  byGronwall’s inequality. Thus, we complete the proof of Theorem ..

Remark . As is well known, the difficult for Kirchhoff equations is proving the approxi-
mate solutions converge to the desired solution. Indeed, we prove the local existence solu-
tion for the problem (.) by Picard’s iterationmethod. To utilize the standard compactness
argument for the limiting procedure, it suffices to derive some a priori estimates for um(t)
(see Lemma . and Lemma .). In this direction, we also mention [] and [].

3.2 Proof of Theorem 2.2
In this section, we will give the proof of Theorem ., which is similar to the proof Theo-
rem .. We sketch it as follows.

Proof of Theorem . For brevity, we take the same notations E(t), E∗(t), I(t), and D(t) as
in the proof of Theorem ., but since g(s)s≤  for all t ∈ R, we can deduce

∥
∥ut(t)

∥
∥
 +

∥
∥∇u(t)

∥
∥
 + 

∫ t



∥
∥ut(s)

∥
∥
 ds≤ E(t)≤ E() on [,∞) (.)

and

∥
∥∇u(t)

∥
∥
 ≤ I(t), for all t ≥ . (.)

Similar to the proof of Lemma ., we have

∫ t

t
E(s)ds

=



∫ t

t

∥
∥ut(s)

∥
∥
 ds +




∫ t

t
M

(∥
∥∇u(s)

∥
∥


)
ds –

∫ t

t

∫

�

G
(
u(s)

)
dxds

≤ 


∫ t

t

∥
∥ut(s)

∥
∥
 ds +

M



∫ t

t

∥
∥∇u(s)

∥
∥
 ds –

∫ t

t

∫

�

G
(
u(s)

)
dxds, (.)

where M = max{M(s) : s ∈ [, E()]}, which is possible since M(s) is continuous and
(.). Now, we only need to estimate the term –

∫ t
t

∫

�
G(u(s))dxds. Indeed, from (A),

http://www.boundaryvalueproblems.com/content/2014/1/230
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or more precisely (.), we have

–
∫ t

t

∫

�

G
(
u(s)

)
dxds

≤ ε



∫ t

t

∫

�

∣
∣u(s)

∣
∣ dxds +Cβ ,ε

∫ t

t

∫

�

∣
∣u(s)

∣
∣eβu dxds

≤ ε

λ

∫ t

t

∥
∥∇u(s)

∥
∥
 ds +Cβ ,ε

∫ t

t

∥
∥u(s)

∥
∥


∥
∥u(s)

∥
∥


(∫

�

eβu(s) dx
)/

ds.

From (.) and the Moser-Trudinger inequality, we have

sup
‖∇u‖≤E()

∫

�

eβu dx

= sup
‖∇u‖≤E()

∫

�

eβ‖∇u‖( u
‖∇u‖ )


dx

≤ sup
‖∇u‖≤E()

∫

�

eβE()(
u

‖∇u‖ )

dx ≤ c,

where c is a positive constant, as long as we choose β < π
E() . Hence, by the Sobolev in-

equality, there exists a constant c such that

–
∫ t

t

∫

�

G
(
u(s)

)
dxds ≤ c

∫ t

t

∥
∥∇u(s)

∥
∥
 ds.

Combining (.)-(.) and (.), we have

∫ t

t
E(s)ds≤ c

(
D(t) +D(t)E(t)



)
.

Then, by the same argument of Lemma . we can obtain the decay estimate

E(t)≤ E()e–κ[t–]+ on [,∞),

where κ is a positive constant. Hence, it suffices to show H(�) a priori bounds under the
assumption ‖∇u(t)‖ ≤ K , and ‖�u(t)‖ ≤ K on [,T) for some K >  and T > . Set

I = ‖∇u‖ +M
(‖∇u‖

)‖�u‖.

By the same derivation as Lemma ., using (A), we deduce

E∗(t) ≤ I + 
∫ t


M′(∥∥∇u(s)

∥
∥


)(∇ut(s),∇u(s)
)∥
∥�u(s)

∥
∥
 ds

+ 
∫ t



∣
∣
(∇g

(
u(s)

)
,∇ut(s)

)∣
∣ds

≤ I + K
∫ t


E(s)

α+
 ds + cK




∫ t


E(s)


 ds

http://www.boundaryvalueproblems.com/content/2014/1/230
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≤ I + cK

 I



 +

cK

 I





κ
+
KI

α+



κ(α + )

≡ G(I, I,K). (.)

Thus, we can prove Theorem . in the same way as Theorem .. �

Remark . WhenM(s) = , (.) is a wave equation, Alves and Cavalcanti [] obtain the
general energy decay result. Indeed, Lemma . (to be precise: (.)) in [] plays an im-
portant role in the proof of energy decay, where the authors used the unique continuation
property of wave equations; see [] for details and [, , ] for an application. But in
our case, sinceM(‖∇ ·‖)�· is nonlinear, we cannot use the unique continuation property
directly.

4 The blow-up in finite time
In this section, we shall discuss the blow-up properties for the problem (.). For this pur-
pose, we use the following lemmas.

Lemma . ([]) Let δ >  and B(t) ∈ C(,∞) be a nonnegative function satisfying

B′′(t) – (δ + )B′(t) + (δ + )B(t)≥ . (.)

If

B′(t) > rB() +K, (.)

then B′(t) > K for t > ,where K is a constant, r = (δ +)–
√
(δ + )δ is the smaller root

of the equation

r – (δ + )r + (δ + ) = .

Lemma . ([]) If J(t) is a nonincreasing function on [t,∞), t ≥ , and satisfies the
differential inequality

J ′(t) ≥ a + bJ(t)+

δ , for t ≥ , (.)

where a > , b ∈R, then there exists a finite time T∗ such that

lim
t→T∗– J(t) = 

and the upper bound of T∗ is estimated, respectively, by the following cases:

(i) If b <  and J(t) < min{,
√

a
–b }, then T∗ ≤ t + √

–b
ln

√ a
–b√ a

–b–J(t)
.

(ii) If b = , then T∗ ≤ t + J(t)√
a .

(iii) If b > , then T∗ ≤ J(t)√
a or T∗ ≤ t + 

δ+
δ δc√

a { – [ + cJ(t)]
–
δ }, where c = ( ba )

δ
+δ .

We also denote I(u) and E(t) by (.) and (.), respectively. Also E′(t) = –‖ut(t)‖.

http://www.boundaryvalueproblems.com/content/2014/1/230
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Definition . A solution u(t) of (.) is called a blow-up solution if there exists a finite
time T∗ such that

lim
t→T∗–

∫

�

|u| dx = +∞.

For the next lemma, we define

K(t) := K
(
u(t)

)
=

∥
∥u(t)

∥
∥
 +

∫ t



∥
∥u(s)

∥
∥
 ds, t ≥ . (.)

Lemma . Assume that (A) and (A) hold, then we have

K ′′(t) – (δ + )‖ut‖ ≥ (– – δ)E() + ( + δ)
∫ t



∥
∥ut(s)

∥
∥
 ds. (.)

Proof From (.), we obtain

K ′(t) = 
∫

�

uut dx +
∥
∥u(t)

∥
∥


and

K ′′(t) = ‖ut‖ – M
(‖∇u‖

)‖∇u‖ + 
∫

�

g(u)udx.

From the above equation and the energy identity, we obtain

K ′′ – (δ + )‖ut‖ = (– – δ)E() + ( + δ)
∫ t



∥
∥ut(s)

∥
∥
 ds

+
∫

�


[
f (u)u – ( + δ)F(u)

]
dx

+
{
( + δ)M

(∥
∥∇u(t)

∥
∥


)
– M

(∥
∥∇u(t)

∥
∥


)∥
∥∇u(t)

∥
∥


}
. (.)

Therefore from the assumption (A), we obtain (.). �

Now, we consider three different cases on the sign of initial energy E().
() If E() < , then from (.), we have

K ′(t) ≥ K ′() – ( + δ)E()t, t ≥ .

Thus, we get K ′(t) > ‖u‖ for t > t∗, where

t∗ = max

{
K ′() – ‖u‖
( + δ)E()

, 
}

. (.)

() If E() = , then K ′′(t)≥  for t ≥ . Furthermore, if K ′() > ‖u‖, i.e.∫

�
uu dx > . Then we get K ′(t) > ‖u‖ for t ≥ .

() For the case that E() > , we first note that


∫ t



∫

�

uut dxdt =
∥
∥u(t)

∥
∥
 – ‖u‖. (.)
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By the Hölder inequality and the Young inequality, we have from (.)

∥
∥u(t)

∥
∥
 ≤ ‖u‖ +

∫ t



∥
∥u(s)

∥
∥
 ds +

∫ t



∥
∥ut(s)

∥
∥
 ds. (.)

Hence, from (.) and (.), we obtain

K ′(t) ≤ K(t) + ‖ut‖ +
∫ t



∥
∥ut(s)

∥
∥
 ds + ‖u‖.

Then, from the above inequality and (.), we obtain

K ′′(t) – ( + δ)K ′(t) + ( + δ)K(t) +K ≥ ,

where

K = ( + δ)E() + ( + δ)‖u‖.

Set

B(t) = K(t) +
K

( + δ)
, t > .

Then B(t) satisfies (.). From Lemma ., we see that if

K ′() > r
[

K() +
K

( + δ)

]

+ ‖u‖, (.)

then K ′(t) > ‖u‖ for all t > .
Consequently, we obtain the following lemma.

Lemma. Assume that (A) and (A) hold and that either one of the following conditions
is satisfied:

(i) E() < ,
(ii) E() =  and

∫

�
uu dx > ,

(iii) E() >  and (.) holds, then K ′(t) > ‖u‖ for t > t, where t = t∗ is given by (.)
in case (i) and t =  in cases (ii) and (iii).

Next, we will estimate the lifespan of K(t) and prove Theorem ..
Let

J(t) =
(
K(t) + (T – t)‖u‖

)–δ , for t ∈ [,T], (.)

where T is some certain constant which will be chosen later. Then we get

J ′(t) = –δJ(t)+

δ
(
K ′(t) – ‖u‖

)

and

J ′′(t) = –δJ(t)+

δ V (t), (.)

http://www.boundaryvalueproblems.com/content/2014/1/230
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where

V (t) = K ′′(t)
[
K(t) + (T – t)‖u‖

]
– ( + δ)

(
K ′(t) – ‖u‖

)
. (.)

For simplicity, we denote

P =
∥
∥u(t)

∥
∥
, Q =

∫ t



∥
∥u(s)

∥
∥
 ds, R =

∥
∥ut(t)

∥
∥
, S =

∫ t



∥
∥ut(s)

∥
∥
 ds.

By (.) and the Hölder inequality, we obtain

K ′(t) = 
∫

�

u(t)ut(t)dx + ‖u‖ + 
∫ t



∫

�

u(s)ut(s)dxds

≤ ‖u‖ + (
√
PR +

√
QS). (.)

From (.), we have

K ′′(t)≥ (– – δ)E() + ( + δ)(R + S). (.)

Therefore, from (.)-(.), and then (.), we have

V (t) ≥ [
(– – δ)E() + ( + δ)(R + S)

](
K(t) + (T – t)‖u‖

)

– ( + δ)(
√
PR +

√
QS)

= (– – δ)E()J(t)–

δ + ( + δ)(R + S)(T – t)‖u‖

+ ( + δ)
[
(R + S)(P +Q) – (

√
PR +

√
QS)

]

≥ (– – δ)E()J(t)–

δ , t ≥ t,

where we have used Schwarz inequality in the last but one term. Therefore from (.),
we have

J ′′(t)≤ δ( + δ)E()J(t)+

δ , t ≥ t. (.)

Note that by Lemma ., J ′(t) <  for t > t. Multiplying (.) by J ′(t) and integrating it
from t to t, we have

J ′(t) ≥ α + βJ(t)+

δ , for t ≥ t,

where

α = δJ(t)+

δ
[(
K ′(t) – ‖u‖

) – E()J(t)–

δ
]

(.)

and

β = δE(). (.)
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We observe that

α >  if and only if E() <
(K ′(t) – ‖u‖)

[K(t) + (T – t)‖u‖]
.

Then by Lemma ., there exists a finite time T∗ such that limt→T∗– J(t) =  and the upper
bounds of T∗ are estimated, respectively, according to the sign of E(). This yields

lim
t→T∗–

(
∥
∥u(t)

∥
∥
 +

∫ t



∫

�

u(s) dxds
)

= ∞.

The upper bounds of T∗ are estimated as follows by Lemma ..
In case (i),

T∗ ≤ t –
J(t)
J ′(t)

. (.)

Furthermore, if J(t) < min{,
√

α
–β

}, then we have

T∗ ≤ t +
√
–β

ln

√
α
–β

√
α
–β

– J(t)
. (.)

In case (ii),

T∗ ≤ t –
J(t)
J ′(t)

or T∗ ≤ t –
J(t)√

α
. (.)

In case (iii),

T∗ ≤ J(t)√
a

(.)

or

T∗ ≤ t + 
δ+
δ

δc√
α

{
 –

[
 + cJ(t)

] –
δ

}
, (.)

where c = ( β

α
)

δ
+δ , here α and β are defined in (.) and (.), respectively. Note that in

case (i), t = t∗ is given in (.), and in case (ii) and case (iii) t = .

Remark . We observe that the choice of T in (.) is feasible under the same condi-
tions as in [].
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