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Abstract
In this paper, we study the existence of periodic solutions of second order impulsive
differential equations at resonance with impulsive effects. We prove the existence of
periodic solutions under a generalized Lazer-Leach type condition by using
variational method. The impulses can generate a periodic solution.

Keywords: impulsive differential equations; Lazer-Leach type condition; variational
method

1 Introduction
We are concerned with the periodic boundary value problem of second order impulsive
differential equations at resonance

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′′(t) +mx(t) + g(x(t)) = e(t), a.e. t ∈ [, π ],
x() – x(π ) = x′() – x′(π ) = ,
x(t+j ) = x(t–j ),
�x′(tj) := x′(t+j ) – x′(t–j ) = Ij(tj,x(tj)), j = , , . . . ,p,

(.)

where m ∈ N, g : R → R is a continuous function, e ∈ L(, π ),  < t < t < · · · < tp < π ,
and Ij : [, π ]×R →R is continuous for every j.
When �x′(tj) ≡ , problem (.) becomes the well-known periodic boundary value

problem at resonance
{
x′′(t) +mx(t) + g(x(t)) = e(t), a.e. t ∈ [, π ],
x() – x(π ) = x′() – x′(π ) = .

(.)

Assume that

lim
x→±∞ g(x) = g(±∞) (g)

exist and are finite. Lazer and Leach [] proved that (.) has at least one π-periodic
solution provided that the following condition holds:


[
g(+∞) – g(–∞)

] �=
∫ π


e(t) sin(mt + θ )dt, ∀θ ∈R. (.)
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From then on, a series of relevant resonant problems were studied (see [–] and the
references cited therein) by some classical tools such as topological degree method, varia-
tionalmethod, etc.Recently, the periodic problemof the secondorder differential equation
with impulses has been widely studied because of its background in applied sciences (see
[–] and the references cited therein). In this paper, we investigate problem (.) under
a more general Lazer-Leach type condition. Define

G(x) =
∫ x


g(s)ds

and for j = , , . . . ,p,

Jj(t,x) =
∫ x


Ij(t, s)ds.

Throughout this paper, we give the following fundamental assumptions.

(H) The limits

lim
x→±∞

G(x)
x

=G(±∞)

exist and are finite.
(H) There exist continuous, π -periodic functions K(t),K(t), . . . ,Kp(t) such that for j =

, , . . . ,p,

lim|x|→∞
Ij(t,x)
x

= Kj(t) uniformly for t ∈ R.

(H) For all θ ∈R,


[
G(+∞) –G(–∞)

] �=
∫ π


e(t) sin(mt + θ )dt +

p∑

j=

Kj(tj) sin(mtj + θ ).

For the sake of convenience, we decompose (H) into the following two conditions.

(H+
 ) For all θ ∈R,


[
G(+∞) –G(–∞)

]
>

∫ π


e(t) sin(mt + θ )dt +

p∑

j=

Kj(tj) sin(mtj + θ ).

(H–
 ) For all θ ∈ R,


[
G(+∞) –G(–∞)

]
<

∫ π


e(t) sin(mt + θ )dt +

p∑

j=

Kj(tj) sin(mtj + θ ).

We now can state the main theorems of this paper.

Theorem . Assume that conditions (H), (H) and (H+
 ) hold. Then problem (.) has at

least one π -periodic solution.
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Theorem . Assume that conditions (H), (H) and (H–
 ) hold. Then problem (.) has at

least one π -periodic solution.

From Theorem . and Theorem ., we obtain the following theorem.

Theorem . Assume that conditions (H), (H) and (H) hold. Then problem (.) has at
least one π -periodic solution.

Moreover, we have the following corollary.

Corollary . Assume that conditions (H) and

(H′
) for all θ ∈R,


[
G(+∞) –G(–∞)

] �=
∫ π


e(t) sin(mt + θ )dt (.)

hold. Then problem (.) has at least one π -periodic solution.

Remark . It is easy to find a function g(x) such that (g) is not satisfied and (H) holds.
For example, we can take g(x) = cosx. Hence, Corollary . improves the related results in
the literature mentioned above. Moreover, since we consider the problem with impulses,
Theorem . is also a complement of the pioneering works.

Remark . When condition (H′
) is not satisfied, i.e., there exists θ ∈R such that


[
G(+∞) –G(–∞)

]
=

∫ π


e(t) sin(mt + θ)dt,

problem (.) may have no solution. For example, we consider the resonant differential
equation

x′′ +mx + arctanx =  cosmt. (.)

Obviously, g(x) = arctanx, e(t) =  cosmt and G(+∞) = π
 , G(–∞) = –π

 . We have


[
G(+∞) –G(–∞)

]
–

∫ π


e(t) sin(mt + θ )dt

= π – 
∫ π


cosmt sin(mt + θ )dt

= π – π sin θ .

We take θ ∈ R such that sin θ = 
 . Then (H′

) is not satisfied. From now on, we prove
that (.) has no π-periodic solution by contradiction. Assume that (.) has π-periodic
solution. Multiplying both sides of (.) by cosmt and integrating over [, π ], we get

π =
∫ π


arctanx cosmt dt ≤

∫ π


| arctanx cosmt|dt ≤ π



∫ π


dt = π,
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which is impossible. Hence, problem (.) may have no solution if condition (H′
) is not

satisfied. Now, we give the following boundary value condition:

x() – x(π ) = x′() – x′(π ) =  (.)

and the impulsive condition

�x′
(

π

m

)

= π . (.)

Clearly, p =  and K( π
m ) = π . Then


[
G(+∞) –G(–∞)

]
–

∫ π


e(t) sin(mt + θ )dt –K

(
π

m

)

sin

(

m · π

m
+ θ

)

= π – π sin θ + π sin θ

= π – π sin θ �=  for ∀θ ∈ R.

Hence, (H), (H) and (H) hold. Equivalently, Eq. (.) with conditions (.) and (.) has
at least one π-periodic solution. Therefore, the impulses in problem (.) can generate a
periodic solution.

The rest of the paper is organized as follows. In Section , we shall state some notations,
some necessary definitions and a saddle theorem due to Rabinowitz. In Section , we shall
prove Theorem . and Theorem ..

2 Preliminaries
In the following, we introduce some notations and some necessary definitions.
Define

H =
{
x ∈H(, π ) : x() = x(π )

}
,

with the norm

‖x‖ =
(∫ π



(
x′(t) + x(t)

)
dt

) 

.

Consider the functional ϕ(x) defined on H by

ϕ(x) =



∫ π


x′(t)dt –

m



∫ π


x(t)dt –

∫ π


G

(
x(t)

)
dt

+
∫ π


e(t)x(t)dt +

p∑

j=

Jj
(
tj,x(tj)

)
. (.)

Similarly as in [], ϕ(x) is continuously differentiable on H , and

ϕ′(x)v(t) =
∫ π


x′(t)v′(t)dt –m

∫ π


x(t)v(t)dt –

∫ π


g
(
x(t)

)
v(t)dt

+
∫ π


e(t)v(t)dt +

p∑

j=

Ij
(
tj,x(tj)

)
v(tj) for ∀v(t) ∈H . (.)
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Now, we have the following lemma.

Lemma . If x ∈H is a critical point of ϕ, then x is a π -periodic solution of Eq. (.).

The proof of Lemma . is similar to Lemma . in [], so we omit it.
We say that ϕ satisfies (PS) if every sequence (xn) for which ϕ(xn) is bounded in R and

ϕ′(xn)→  (as n→ ∞) possesses a convergent subsequence.
To prove the main result, we will use the following saddle point theorem due to Rabi-

nowitz [] (or see []).

Theorem . Let ϕ ∈ C(H ,R) and H = H– ⊕ H+, dim(H–) < ∞, dim(H+) = ∞. We sup-
pose that:
(a) there exist a bounded neighborhood D of  in H– and a constant α such that

ϕ|∂D ≤ α;
(b) there exists a constant β > α such that ϕ|H+ ≥ β ;
(c) ϕ satisfies (PS).

Then the functional ϕ has a critical point in H .

3 The proof of themain results
In this section, we first show that the functional ϕ satisfies the Palais-Smale condition.

Lemma . Assume that conditions (H), (H) and (H) hold. Then ϕ defined by (.) sat-
isfies (PS).

Proof LetM >  be a constant and {xn} ⊂H be a sequence satisfying

∣
∣ϕ(xn)

∣
∣ =

∣
∣
∣
∣
∣




∫ π


x′
n dt –

m



∫ π


xn dt –

∫ π


G(xn)dt

+
∫ π


e(t)xn(t)dt +

p∑

j=

Jj
(
tj,xn(tj)

)
∣
∣
∣
∣
∣

≤ M (.)

and

lim
n→∞

∥
∥ϕ′(xn)

∥
∥ = . (.)

We first prove that {xn} is bounded in H by contradiction. Assume that {xn} is un-
bounded. Let {zk} be an arbitrary sequence bounded in H . It follows from (.) that, for
any k ∈N,

lim
n→∞

∣
∣ϕ′(xn)zk

∣
∣ ≤ lim

n→∞
∥
∥ϕ′(xn)

∥
∥‖zk‖ = .

Thus

lim
n→∞ϕ′(xn)zk =  uniformly for k ∈N.
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Hence

lim
n→∞

(∫ π



(
x′
nz

′
k –mxnzk

)
dt –

∫ π



(
g(xn)zk – e(t)zk

)
dt

+
p∑

j=

Ij
(
tj,xn(tj)

)
zk(tj)

)

= . (.)

By (H) and (H), we have

lim
n→∞

(∫ π



g(xn)zk – e(t)zk
‖xn‖ dt –

∑p
j= Ij(tj,xn(tj))zk(tj)

‖xn‖
)

= . (.)

From (.) and (.), we obtain

lim
n→∞

∫ π



(
x′
n

‖xn‖z
′
k –m xn

‖xn‖zk
)

dt = . (.)

Set

yn =
xn

‖xn‖ .

Then we have

lim
n→∞

∫ π



(
y′
nz

′
k –mynzk

)
dt = ,

and furthermore,

lim
n→∞
i→∞

∫ π



[
(yn – yi)′z′

k –m(yn – yi)zk
]
dt = . (.)

Replacing zk in (.) by (yn – yi), we get

lim
n→∞
i→∞

(‖yn – yi‖ –
(
m + 

)‖yn – yi‖
)
= .

Due to the compact imbedding H ↪→ L(, π ), going to a subsequence,

yn ⇀ y weakly in H , yn → y in L(, π ).

Therefore,

lim
n→∞
i→∞

‖yn – yi‖ = .

Furthermore, we have

lim
n→∞
i→∞

‖yn – yi‖ = ,

http://www.boundaryvalueproblems.com/content/2014/1/233
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which implies that {yn} is a Cauchy sequence in H . Thus, yn → y in H . It follows from
(.) and the usual regularity argument for ordinary differential equations (see []) that

y = k sinmt + k cosmt, (.)

where k + k =


(m+)π (‖y‖ = ). (Different subsequences of {yn} correspond to different
k and k.)
Write (.) as

y =


√
(m + )π

sin(mt + θ ),

where θ satisfies sin θ = k√
k +k



and cos θ = k√

k +k


.

Taking zk = √
(m+)π

sin(mt + θ ), we get, for any n ∈N,

∫ π



(
x′
nz

′
k –mxnzk

)
dt = . (.)

Thus, it follows from (.) and (.) that

lim
n→∞

[∫ π



(
g(xn) – e(t)

) 
√
(m + )π

sin(mt + θ )dt

–
p∑

j=

Ij
(
tj,xn(tj)

) 
√
(m + )π

sin(mtj + θ )

]

= . (.)

By (H) and (H), we obtain

lim
n→∞

[∫ π



(
g(xn) – e(t)

)
(


√
(m + )π

sin(mt + θ ) – yn
)

dt

–
p∑

j=

Ij
(
tj,xn(tj)

)
(


√
(m + )π

sin(mtj + θ ) – yn(tj)
)]

= . (.)

It follows from (.) and (.) that

lim
n→∞

[∫ π



(
g(xn) – e(t)

)
yn dt –

p∑

j=

Ij
(
tj,xn(tj)

)
yn(tj)

]

= .

Hence, replacing zk in (.) by yn, we have

lim
n→∞

∫ π



(

x′
n

x′
n

‖xn‖ –mxn
xn

‖xn‖
)

dt = . (.)

Now, dividing (.) by ‖xn‖, we get
∣
∣
∣
∣



∫ π



(
x′
n

‖xn‖ –
mxn
‖xn‖

)

dt –
∫ π



G(xn) – e(t)xn
‖xn‖ dt +

∑p
j= Jj(tj,xn(tj))

‖xn‖
∣
∣
∣
∣ ≤ M

‖xn‖ .
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Passing to the limits, we have

 = lim
n→∞

∫ π
 (G(xn) – e(t)xn)dt

‖xn‖ – lim
n→∞

∑p
j= Jj(tj,xn(tj))

‖xn‖

= lim
n→∞

∫ π



G(xn)
xn

· xn
‖xn‖ dt – lim

n→∞

∫ π


e(t) · xn

‖xn‖ dt

– lim
n→∞

p∑

j=

Jj(tj,xn(tj))
xn(tj)

· xn(tj)‖xn‖ .

Noting that xn
‖xn‖ → √

(m+)π
sin(mt + θ ) in H as n→ ∞ and

lim
n→∞xn(t) =

{
+∞, ∀t ∈ I+,
–∞, ∀t ∈ I–,

where I+ := {t ∈ [, π ] | sin(mt + θ ) > }, I– := {t ∈ [, π ] | sin(mt + θ ) < }, we get from
the Lebesgue domain convergence theorem that

 =
∫

I+
G(+∞)


√
(m + )π

sin+(mt + θ )dt –
∫

I+
G(–∞)


√
(m + )π

sin–(mt + θ )dt

–
∫ π


e(t)


√
(m + )π

sin(mt + θ )dt –
p∑

j=

Kj(tj)


√
(m + )π

sin(mtj + θ ),

i.e.,

 = 
[
G(+∞) –G(–∞)

]
–

∫ π


e(t) sin(mt + θ )dt –

p∑

j=

Kj(tj) sin(mtj + θ ),

which contradicts (H). This implies that the sequence {xn} is bounded. Thus, there exists
x ∈ H such that xn ⇀ x weakly inH . Due to the compact imbeddingH ↪→ L(, π ) and
H ↪→ C(, π ), going to a subsequence,

xn → x in L(, π ), xn → x in C(, π ).

From (.), we obtain

lim
n→∞
i→∞

(∫ π



((
x′
n – x′

i
)
z′
k –m(xn – xi)zk

)
dt –

∫ π



(
g(xn) – g(xi)

)
zk dt

+
p∑

j=

(
Ij
(
tj,xn(tj)

)
– Ij

(
tj,xi(tj)

))
zk(tj)

)

= .

Replacing zk by xn – xi in the above equality, we get

lim
n→∞
i→∞

(∫ π



((
x′
n – x′

i
) –m(xn – xi)

)
dt –

∫ π



(
g(xn) – g(xi)

)
(xn – xi)dt

+
p∑

j=

(
Ij
(
tj,xn(tj)

)
– Ij

(
tj,xi(tj)

))(
xn(tj) – xi(tj)

)
)

= . (.)
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By (H) and (H), we have

lim
n→∞
i→∞

∫ π



(
g(xn) – g(xi)

)
(xn – xi)dt =  (.)

and

lim
n→∞
i→∞

p∑

j=

(
Ij
(
tj,xn(tj)

)
– Ij

(
tj,xi(tj)

))(
xn(tj) – xi(tj)

)
= . (.)

Thus, it follows from (.), (.) and (.) that

lim
n→∞
i→∞

∫ π



[(
x′
n – x′

i
) –m(xn – xi)

]
dt = .

Therefore,

lim
n→∞
i→∞

‖xn – xi‖ = ,

which implies xn → x in H . It shows that ϕ satisfies (PS). �

Remark . If conditions (H), (H) and (H+
 ) (or (H–

 )), ϕ defined by (.) still satisfies
(PS).

Now, we can give the proof of Theorem ..

Proof of Theorem . Denote

H– =R⊕ span{sin t, cos t, sint, cost, . . . , sinmt, cosmt}

and

H+ = span
{
sin(m + )t, cos(m + )t, . . .

}
.

We first prove that

lim inf‖x‖→∞ ϕ(x) = –∞ for x ∈ H– (.)

by contradiction. Assume that there exists a sequence (xn) ⊂ H– such that ‖xn‖ → ∞ (as
n→ ∞) and there exists a constant c– satisfying

lim inf
n→∞ ϕ(xn) ≥ c–. (.)

By (H), we have

lim
n→∞

∫ π



G(xn) – e(t)xn
‖xn‖ dt = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/233
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By (H), we get

lim
n→∞

p∑

j=

Jj(tj,xn(tj))
‖xn‖ = . (.)

From (.) and the definition of ϕ, we obtain

lim inf
n→∞

[



∫ π



x′
n –mxn
‖xn‖ dt –

∫ π



G(xn) – e(t)xn
‖xn‖ dt +

p∑

j=

Jj(tj,xn(tj))
‖xn‖

]

≥ . (.)

For x ∈H–, we get that there exist constants a,a, . . . ,am, b,b, . . . ,bm such that

x(t) =
m∑

j=

aj cos jt +
m∑

j=

bj sin jt.

Since
∫ π
 sin jt dt =

∫ π
 cos jt dt for j = , , . . . , we have, for x ∈H–,

∫ π


x′ dt =

∫ π



m∑

j=

jaj sin jt dt +
∫ π



m∑

j=

jbj cos jt dt

≤ m

[∫ π



m∑

j=

aj sin jt dt +
∫ π



m∑

j=

bj cos jt dt

]

=m

[∫ π



m∑

j=

aj cos jt dt +
∫ π



m∑

j=

bj sin jt dt

]

≤ m
∫ π


x dt.

Hence, for x ∈H–,

∫ π



(
x′ –mx

)
dt ≤ . (.)

The equality in (.) holds only for

x =


√
(m + )π

sin(mt + θ ), θ ∈R.

Set yn = xn
‖xn‖ . Since dimH– < ∞, going to a subsequence, there exists y ∈ H– such that

yn → y in H and yn → y in L(, π ). Then (.), (.), (.) and (.) imply that

y =


√
(m + )π

sin(mt + θ ), θ ∈R.

By (.), we have, for n large enough,




∫ π



x′
n –mxn

‖xn‖ dt –
∫ π



G(xn) – e(t)xn
‖xn‖ dt +

p∑

j=

Jj(tj,xn(tj))
‖xn‖ ≥ c–

‖xn‖ . (.)
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It follows from xn ∈H– that

∫ π



x′
n –mxn

‖xn‖ ≤ . (.)

From (.) and (.), we get, for n large enough,

c–
‖xn‖ ≤ –

∫ π



G(xn) – e(t)xn
‖xn‖ dt +

p∑

j=

Jj(tj,xn(tj))
‖xn‖ .

Passing to the limits and using an argument similarly as in the proof of Lemma ., we get


[
G(+∞) –G(–∞)

] ≤
∫ π


e(t) sin(mt + θ )dt +

p∑

j=

Kj(tj) sin(mtj + θ ),

which is a contradiction to (H+
 ).

Then (.) holds.
Next, we prove that

lim‖x‖→∞ϕ(x) = ∞ for all x ∈H+,

and ϕ is bounded on bounded sets.
Because of the compact imbedding of H ↪→ C(, π ) and H ↪→ L(, π ), there exist

constantsm,m such that

‖x‖∞ ≤ m‖x‖, ‖x‖ ≤ m‖x‖.

Then by (H) and (H), one has that there exist positive constants cg , c, c, . . . , cp such that

∣
∣ϕ(x)

∣
∣ =

∣
∣
∣
∣
∣




∫ π


x′ dt –

m



∫ π


x dt –

∫ π



[
G(x) – e(t)x

]
dt

+
p∑

j=

Jj
(
tj,x(tj)

)
∣
∣
∣
∣
∣

≤ 

‖x‖ + m


m

‖x‖ +
∫ π



(
cg |x| +

∣
∣e(t)

∣
∣|x|)dt

+
p∑

j=

cj
∣
∣x(tj)

∣
∣

≤  +mm



‖x‖ +m

(
cg + ‖e‖

)‖x‖ +
p∑

j=

cjm‖x‖. (.)

Hence, ϕ is bounded on the bounded sets of H .
For x ∈ H+, using an argument similar to the case x ∈H–, we have

‖x‖ ≥ (
(m + ) + 

)‖x‖. (.)
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Thus, from (.) and (.), we obtain

ϕ(x) =



∫ π


x′ dt –

m



∫ π


x dt –

∫ π



[
G(x) – e(t)x

]
dt +

p∑

j=

Jj
(
tj,x(tj)

)

≥ m + 
((m + ) + )

‖x‖ –m

(

cg + ‖e‖ +
p∑

j=

cj

)

‖x‖,

which implies

lim‖x‖→∞ϕ(x) = ∞ for all x ∈H+.

Up to now, the conditions (a) and (b) of Theorem . are satisfied. According to Re-
mark ., (c) is also satisfied. Hence, by Theorem ., problem (.) has at least one solu-
tion. This completes the proof. �

Next, we prove Theorem . slightly differently from Theorem ..

Proof of Theorem . Denote

H– =R⊕ span
{
sin t, cos t, sint, cost, . . . , sin(m – )t, cos(m – )t

}

and

H+ = span{sinmt, cosmt, . . .}.

We first prove that

lim inf‖x‖→∞ ϕ(x) = –∞ for x ∈ H–. (.)

For x ∈H–, we get that there exist constants a,a, . . . ,am–, b,b, . . . ,bm– such that

x(t) =
m–∑

j=

aj cos jt +
m–∑

j=

bj sin jt.

Since
∫ π
 sin jt dt =

∫ π
 cos jt dt for j = , , . . . , we have, for x ∈H–,

∫ π


x′ dt =

∫ π



m–∑

j=

jaj sin jt dt +
∫ π



m–∑

j=

jbj cos jt dt

≤ (m – )
[∫ π



m–∑

j=

aj sin jt dt +
∫ π



m–∑

j=

bj cos jt dt

]

= (m – )
[∫ π



m–∑

j=

aj cos jt dt +
∫ π



m–∑

j=

bj sin jt dt

]

≤ (m – )
∫ π


x dt.
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Hence, for x ∈H–,

‖x‖ =
∫ π



(
x′ + x

)
dt ≤ [

(m – ) + 
]
∫ π


x dt =

[
(m – ) + 

]‖x‖.

The equality holds only for

x =


√
((m – ) + )π

sin
(
(m – )t + θ

)
, θ ∈R.

If x ∈H– and ‖x‖ → ∞, then

‖x‖ → ∞.

For x ∈H–, we have

∫ π



(
x′ –mx

)
dt ≤ (m – )

∫ π


x dt –m

∫ π


x dt = –(m – )‖x‖.

By (H) and (H), we get that there exists a constant c >  such that

∣
∣
∣
∣–

∫ π



[
G(x) – e(t)x

]
dt +

p∑

j=

Jj
(
tj,x(tj)

)
∣
∣
∣
∣ ≤ c‖x‖.

Hence, for x ∈H–, we obtain

ϕ(x) =



∫ π



(
x′ –mx

)
dt –

∫ π



[
G(x) – e(t)x

]
dt +

p∑

j=

Jj
(
tj,x(tj)

)

≤ –


(m – )‖x‖ + c‖x‖ → –∞ as ‖x‖ → ∞.

Therefore, (.) holds.
Next, we prove that

lim‖x‖→∞ϕ(x) = ∞ for all x ∈H+,

and ϕ is bounded on bounded sets.
Because of the compact imbedding of H ↪→ C(, π ) and H ↪→ L(, π ), there exist

constantsm,m such that

‖x‖∞ ≤ m‖x‖, ‖x‖ ≤ m‖x‖.

Then, by (H) and (H), one has that there exist positive constants cg , c, c, . . . , cp such that

∣
∣ϕ(x)

∣
∣ =

∣
∣
∣
∣
∣




∫ π


x′ dt –

m



∫ π


x dt –

∫ π



[
G(x) – e(t)x

]
dt

+
p∑

j=

Jj
(
tj,x(tj)

)
∣
∣
∣
∣
∣
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≤ 

‖x‖ + m


m

‖x‖ +
∫ π



(
cg |x| +

∣
∣e(t)

∣
∣|x|)dt

+
p∑

j=

cj
∣
∣x(tj)

∣
∣

≤  +mm



‖x‖ +m

(
cg + ‖e‖

)‖x‖ +
p∑

j=

cjm‖x‖.

Hence, ϕ is bounded on the bounded sets of H .
In what follows, we prove that

lim‖x‖→∞ϕ(x) = +∞ for x ∈H+

by contradiction. Assume that there exists a sequence (xn) ⊂ H– such that ‖xn‖ → ∞ (as
n→ ∞), and there exists a constant c+ satisfying

lim sup
n→∞

ϕ(xn) ≤ c+. (.)

By (H), we have

lim
n→∞

∫ π



G(xn) – e(t)xn
‖xn‖ dt = . (.)

By (H), we get

lim
n→∞

p∑

j=

Jj(tj,xn(tj))
‖xn‖ = . (.)

From (.) and the definition of ϕ, we obtain

lim sup
n→∞

[



∫ π



x′
n –mxn
‖xn‖ dt –

∫ π



G(xn) – e(t)xn
‖xn‖ dt +

p∑

j=

Jj(tj,xn(tj))
‖xn‖

]

≤ . (.)

For x ∈H+, we get

∫ π


x′ dt ≥ m

∫ π


x dt.

Hence, for x ∈H+, we have

∫ π



(
x′ –mx

)
dt ≥ . (.)

The equality in (.) holds only for

x =


√
(m + )π

sin(mt + θ ), θ ∈R.
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Set yn = xn
‖xn‖ . There exists y ∈ H+ such that yn ⇀ y weakly in H . Due to the compact

imbedding H ↪→ L(, π ), going to a subsequence, yn → y in L(, π ). Then (.),
(.), (.) and (.) imply that

y =


√
(m + )π

sin(mt + θ ), θ ∈R.

By (.), we have, for n large enough,




∫ π



x′
n –mxn

‖xn‖ dt –
∫ π



G(xn) – e(t)xn
‖xn‖ dt +

p∑

j=

Jj(tj,xn(tj))
‖xn‖ ≤ c+

‖xn‖ . (.)

It follows from xn ∈H+ that

∫ π



x′
n –mxn

‖xn‖ dt ≥ . (.)

From (.) and (.), we get, for n large enough,

c+
‖xn‖ ≥ –

∫ π



G(xn) – e(t)xn
‖xn‖ dt +

p∑

j=

Jj(tj,xn(tj))
‖xn‖ .

Passing to the limits and using an argument similarly as in the proof of Lemma ., we get


[
G(+∞) –G(–∞)

] ≥
∫ π


e(t) sin(mt + θ )dt +

p∑

j=

Kj(tj) sin(mtj + θ ),

which is a contradiction to (H–
 ). This completes the proof. �
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