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Abstract

In this paper, we investigate the solvability of nth-order Lipschitz equations

VO =£x,y,y,....y"" ), x; < x < x3, with nonlinear three-point boundary conditions
of the form k(y(x2),y'(2), .., Y7~ (x2); (1), Y (x), ..,y (x1)) = 0,

i),y 00), ..y ) = 0,i=0,1,...,n =3, h(y(x),y (x2), ...y x);
Y0a), Y (x3), ...,y D(x3)) = 0, where n > 3, x; < x, < x3. By using the matching
technique together with set-valued function theory, the existence and uniqueness of
solutions for the problems are obtained. Meanwhile, as an application of our results,
an example is given.

MSC: 34B10; 34B15
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1 Introduction
As is well known, the differential equations with right hand sides satisfying the Lipschitz
conditions (Lipschitz equations for short) are important, and thus their solvability has at-
tracted much attention from many researchers. Among a substantial number of works
dealing with higher order Lipschitz equations with three-point boundary conditions, we
mention [1-14] and references therein. Most of these results are obtained via applying
control theory methods (Pontryagin maximum principle), matching methods, and topo-
logical degree methods ezc. To the best of our knowledge, most of the three-point bound-
ary conditions in the above mentioned references are limited to simple boundary condi-
tions.

In 1973, Barr and Sherman [2] showed by the matching technique that the third-order

three-point boundary value problem

Y =fxyy,y"), % <x=<uxs )
YO ) =y, y&) =y ¥ P(x3) =73
with a = B = 0 has a unique solution, under the following four conditions:
(A) f(x,9,,") is continuous on [x1, %3] x R3;
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(B) f(x,9,5,7") satisfies the monotonicity conditions, i.e., 1 > y,, z1 < 2o implies
S&ynz,w) <f(x,y2,20,w)  on (x1,%2],
and y; < ¥y, 71 < z implies
S@yuz,w) <f(x,92,20,w)  on [x2,x3);
(C) for any (x, 31,21, w1), (%, y2, 22, W) € [x1,%3] x R?,

f (6,31, 20, w1) = f (%, 72, 22, W2)| < Loly1 = y2| + Lilz1 = zo| + La|wy — wal,

where Lo, L1, and L, are nonnegative constants;
(D,) foreach i=1,2,

3 1
£Loh? + —Llhiz + Lzhi < 1,
27 3
where h; = x;,1 —x;,i=1,2.

In 1978, Moorti and Garner [12] by using the matching technique showed that BVP (x)
with &, 8 € {0,1} and @ + 8 # 0 has a unique solution, under the conditions (A), (B), (C),
and

(D,) for each i =1,2,
1 1
gLoh? + ELlhlZ + Lzhl‘ <1

Since then, many authors improved the condition (D;), i = 1,2. For example, in [4], Das
and Lalli proved that BVP (x) with & = 8 = 0 has a unique solution, under the conditions
of (A), (B), (C), and

(D3) for each i =1,2,

—LM@+EAM+EQM<L
60 6 3
In [1], Agarwal showed that BVP (x) with @ = 8 = 0 has a unique solution, under the
conditions of (A), (B), (C), and
(D4) foreachi=1,2,
iim@+§ih@+§bm<L
160 320 8
In [14], Piao and Shi generalized the above results. They not only generalized the simple
three boundary conditions to the nonlinear boundary conditions, but also they weakened
the monotonicity condition (B) and removed the restriction (D;) on the length of the in-
terval.
Recently, Pei and Chang [13] generalized the results of Piao and Shi [14].
The purpose of this paper is to study the solvability of nth-order Lipschitz equations
with more general nonlinear three-point boundary conditions of the form (n > 3)

W =f ey, "), x <x<as, (1.1)
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k(y(x2), 5/ (x2), ..,y D (2); y(1), ¥ (1), ..,y V(1)) =
G0 (x2), 5"V (x2),..., )" D (x2)) =0, i=0,1,...,n-3, (1.2)
h(y(x2), 5 (%2), .., D (2); 9(x3), ¥/ (x3), - . ., " D (x3)) = 0,

where —00 < ¥ <%y < a3 < +00.

The paper is organized as follows. In Section 2, as a preliminary, we state some use-
ful results as regards the solvability for the nth-order Lipschitz equation with the non-
linear two-point boundary conditions and a lemma of the differential inequality for nth-
order differential equations. In Section 3, by using the matching technique together with
set-valued function theory and nested interval theorem, we establish the existence and
uniqueness theorems of solutions for BVP (1.1), (1.2). Our results improve and generalize
widely the results of [1, 2, 4, 12-14].

We remark that the matching technique used in this paper is different from the classi-
cal one. In fact, by using the classical matching technique to obtain a matching solution
of a three-point boundary value problem, it needs usually four two-point boundary value
problems and among them two two-point boundary value problems need to have unique
solutions, the other two two-point boundary value problems need to have at most one so-
lution. However, our matching technique needs only two two-point boundary value prob-
lems and each of them needs to have at least one solution. For more about the three-point
boundary value problems, we refer the readers to the references [15-19], with matching
techniques, and to [20-35], with other techniques.

Throughout this paper, we make the following assumptions:

(I:h)f(x,yo,yl, ..+»Yn-1) is continuous on [x;,x3] x R”;

(Hy) If x € [x9,x3] and y; < ¥;, i = 0,1,...,n — 2, then

f(x»y()ryl, o ;yn—2ryn—1) Sf(x;jlo»}_’b oo ,}_’W—Z;yn—l)~

Also if x € [x1,%] and (-1)"*y; < (=1)"*%,,i=0,1,...,n -2, then
f(x,yo,yh o :yn—2ryn—1) Sf(x;le;}_’I; oo y}_’n—Z’yn—l)§
(HB) For any (x1y07ylx “ee ;yn—l)’ (x7_)_/015}1; e ryn—l) € [xl! xB] X Rn;
lf(xryoyyly o :yn—l) _f(xry():_j_/ly e 15/n—1)’ E ZLLD/L _yi|;

where L;, i =0,1,...,n — 1, are nonnegative Lipschitz constants;
(Hy) g Yis1)--»¥n-1), i =0,1,...,n — 3, are continuously differentiable on R, 38 >

" By 2
§>0, 3_5: <0,i=0,1,....,n=3,j=i+1Li+2,...,n -1, on R"% and for anyboundedyset
D; c R*1 i=0,1,...,n -3, the functlons - j =i+1,i+2,. — 1, are bounded on
R x D;;
(Hs) The functions (Yo, Y1s- .., Yn-1520sZ1 - +Zn-1)s K(Y0sVis--+»Vno1320sZ1r-+-+Zn-1) are
continuously differentiable on R?", and for each i = 0,1,...,n — 1, g_yh, >0, g—Z >0,

( 1)n+z r))//( >0, ( 1)n+t Bk >001’1R2n
(He) Y 175 42 > 550, "2k > 550 on R

(FL) Y0t 28 > 550, Y0 2(- wak >8>0 on R
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B oh n=-1 9h oh n=2 9h ok n-1 i Ok
(H7) 3ynil+zl':()3_ziz 3 72"’2' 5o >8>0, -5 +Zi:0(_1)n+l3_; >3§>00n

i=0 d9z; — 0yn-1
RZM;
(H/ +Z;q01§f— ’dyz Z 1)n+zak>5>0_i+z (1)n+18kZ
8§>0o0n Rz”.

In the above conditions, § denotes a constant.

2 Preliminary results
In this section, we introduce some lemmas which will be useful in the proof of our main
results.

Consider the following nonlinear two-point boundary value problems for the nth-order

differential equation (n > 3):
w7 =f(yy,..0" ), a<x<b, 21

with nonlinear two-point boundary conditions

: g(02@),y#V(@), ...,y V(@) =0, i=0,1,...,n-2, 02

h(y(a),y (@), ...,y D(a); y(b),y (b),...,y" V(b)) =0

where —co <a < b < +00.

Let us list the following conditions for convenience.

(H1) f(®,%0,¥1,--.,¥n-1) is continuous on [a, b] x R”;

(Hy) for any (x,%0, .-, ¥n-2,Yn-1), % Y0, - - -»¥u-2,Vn-1) € [a,b] x R", if y; <¥;,i=0,1,...,
n—2, then

S Y05 s V-2 Yn-1) <f X Y05+ o> Vu-2sYn-1);

(H3) fOI' any (x,)’od’l, v »yn—l)’ (xryod_/]» e 15/}1—1) € [ﬂ, b] X Rn,

lf(xtyOryer»;yn—l) _f(xryO’ylr--n)_’n—l” =< Zle/l _J_/L'|)

where L;, i =0,1,...,n -1, are nonnegative constants;

(H/g) for any (x’yOy oo yyn—Z’yn—l)) (x;)/o, oo ,J/n—Z;_)_/n—l) € [ﬂ, h] X Rn;
lf(x,yo, “ee :yn—Z;yn—l) —f(x,yo, o ,yn—Z:j’n—lﬂ S Ln—l |yn—l _)_/n—l |;

where L,_; is a nonnegative constant;

(Ha) & Wi ¥is1y+-»Yn1)s i = 0,1,...,1 — 2, are continuously differentiable on R"~* and
h(Yo, Y15 - - +»Yu-1; 20,21, - - - »Zy—1) is continuously differentiable on R,

(Hs) 3 >8>0,i=0,1,...,n-2 on R", j—i <0,i=0,1,...,n=2,j=i+1,i+2,...,n—1
on R"7;

(Hy) % >8>0,i=0,1,...,n =3 on R", &2 > 0 on R?, g—i <0,i=0,1,...,n-3,
]=l+1,l+2,...,n—10an_i, g‘iﬁ < -8 on R

(He) §£=0,i=0,1,...,n—1on R¥;
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(Hy) 2£>0,i=0,1,...,n -1, /5 # > 6 >0 on R
(H/ dh>0l—01 ,}’l—l Zﬂ26é>8>00nR271

i=0 9z
(H) >0, "h>01—01 H— l’ay 1+Z?01§’h>8>OonIR2”
(H/)ay_O 8h>01-01 o= 1,3y2+2f02§f>8>00n]1{2”

In the above Condltlons, 8 denotes a constant.
Now we recall the results [36] of the existence and uniqueness of solutions for BVP (2.1),
(2.2) and a lemma for a differential inequality for differential equation (2.1) of the nth order.

Lemma 2.1 (See [36, Theorem 3.1]) Assume that (H;), (H), (H3), (H4), (Hs), and (Hg)
hold. Then BVP (2.1), (2.2) has at least one solution.

Lemma 2.2 (See [36, Theorem 3.2]) Assume that (H:), (H2), (Hs), (Ha), (H;), and (Hg)
hold. Then BVP (2.1), (2.2) has at least one solution.

Lemma 2.3 (See [36, Theorem 3.3]) Assume that (H;), (H,), (H3), (Hy), (Hs), (Hg), and
(Hy) hold. Then BVP (2.1), (2.2) has exactly one solution.

Lemma 2.4 (See [36, Theorem 3.4]) Assume that (H;), (Hz), (Hs), (Ha), (Hs), (Hs), and
(H) hold. Then BVP (2.1), (2.2) has exactly one solution.

Lemma 2.5 (See [36, Lemma 2.4]) Assume that (H,), (Hy), and (H}) hold. Let ¢, (x), ¢ (x)
be solutions of the differential equation (2.1) on some interval [ay, b1) C [a, b] satisfying

(@) < (@), i=0,1,...,n-1,
and
@) + o) < 0y (@) + 657 (@),
Then ¢\ (x) < ¢ (%) for x € a1, by).

3 Main results

In order to obtain the existence and uniqueness of solutions for BVP (1.1), (1.2) by using the
matching technique, we need first to discuss the existence and uniqueness of solutions for
the nth-order Lipschitz equation (1.1) with one of the following sets of two-point boundary
conditions:

2O (x2), ¥V (2), ..., 9" V() =0, i=0,1,...,n—3,
¥ (x) = i, 3.1)
h(y(x2), ¥ (%2), ...,y D (2); 9(x3), ¥/ (x3), - . ., " D (x3)) = 0,

k(y(x2), ¥ (%2), ..., y"~D) (xz);y(xl),y’(xl),...,y‘”‘”(xl)) =

&(? (x), yY xz) " D(x) =0, i=0,1,...,n-3, (3.2)
n -2) (xz) =W,

gz()’i (x2), 5"V (x5), ..., 9" V(x2)) =0, i=0,1,...,n-3,

YD (x) = (3.3)

h(y(x2), 5 (%2), .., D (2); 9(x3), ¥/ (x3), - . ., " D (x3)) = 0,

where u € R = (-00, +00).
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Let x = —¢t and y(x) = (—1)"z(¢). Then BVP (1.1), (3.2) becomes an equivalent boundary

value problem:

72" = F(t, z2,7,... ,z(”_”), (1.1)

Gi(z(i)(_xZ)r Z(Hl)(_xZ)» “on 1Z(n_l)(_x2)) =0, i= 0,1,...,n-3,
22 (=x5) = (3.2)
H(Z(_x2)’ (X ,Z(n_l)(_xZ); Z(_xl)) v ’Z(n_l)(_xl)) = 01

where

F(txyOIyl’ e »J’n—l) :f(_t; (_l)nyOr (_1)n+1yl’ e (_l)zn_l_yn—l);
GiirYists- > ¥n-1) = &1y, (1" yins o, (1) ),
H()’o,yh ceesYn-1,20,215 - - ,Zn—l)

= k((=1)"y0, (=1)""y1, ..., (1> g1 (-1)"z0, (1) 21, .., (1) 201).

This shows that BVP (1.1), (3.2) on the interval [x;,x,] can be transformed to the same
type as BVP (1.1), (3.1) on the interval [—xy, —x1].

Lemma 3.1 Suppose that (H,), (Hy), (Hs), (Ha), (Hs), and (H;) hold. Then each of BVP
(1.1), (3.1), BVP (1.1), (3.2), and BVP (1.1), (3.3) has at least one solution.

Proof It is easy to check that conditions (H;), (Hy), (Hs), (Hs), (Hs), and (H;) imply con-
ditions (H;), (H,), (H3), (Hs), (Hs), and (Hg) for BVP (1.1), (3.1) as well as conditions (H;),
(Hz), (Hs), (Ha), (H), and (Hg) for BVP (1.1), (3.3), respectively. Hence by Lemma 2.1
and 2.2, each of BVP (1.1), (3.1) and BVP (1.1), (3.3) has at least one solution.

Similarly, by Lemma 2.1 BVP (1.1'), (3.2') has at least one solution. Hence BVP (1.1), (3.2)

has at least one solution. O

Lemma 3.2 Suppose that (H;), (Hy), (H3), (Hs), (Hs), and (Hg) hold. Then each of BVP
(1.1), (3.1), BVP (1.1), (3.2), and BVP (1.1), (3.3) has exactly one solution.

Proof Similarly to the proof of Lemma 3.1 by Lemma 2.3 and 2.4, the lemma follows. [
In order to prove our main results, we introduce some concepts as follows.

Definition 3.1 A set-valued function T : R — 2F is said to be upper semi-continuous at
1o € R if for any open set U with T(uo) C U, there exists a neighborhood V of 1 such

that UueV T(w) C U.

Definition 3.2 Let [; and I; be subsets of R.
(1) Ifforany t; € I; and ¢, € I, t; < t; holds, then we denote I; < I, and say that [; is not
greater than I,.
(2) Ifforany ; € [; and £, € I, t; < £, holds, then we denote [; < I, and say that [ is less
than I,.
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Definition 3.3
(1) Define a set-valued function T} : R — 2% by

Ti(n) =S, foranypeR,

where S, = {y"D(x9, 1) : y(x, 11) are solutions of BVP (1.1), (3.1)};
(2) Define a set-valued function T, : R — 2% by

Tr(n)=J, foranyueR,
where J, = (9" D(x9, 11) : y(x, ) are solutions of BVP (1.1), (3.2)}.

Lemma 3.3
(1) Suppose that (H,), (Ha), (Hs), (Ha), (Hs) and (Hy) hold. If i, < po, then

Ti(1) = Ti(pa), Ty (1) < To(ua).
(2) Suppose that (H,), (Hy), (H3), (Ha), (Hs) and (He) hold. If i1 < 12, then
Ti(m1) > Ti(pa)-

Proof (1) Let us show first the inequality with respect to T;. To do this, we take any
W9, 1) € Spiys Y5 (%2, 1) € Sy Suppose that 3V (xy, 1) > 35 (2, ) is false,
ie., y%"il)(xz, 1) < y(znfl) (%2, 2). Then, for each i = 0,1,...,n — 3, from (3.1) we have by the
mean value theorem

0 = g(9 @, 112)s -5 (2 12)) = @ (0 @0 111), 09V (2 111))

n-1

dgi i i 0, )
= % ! (y(Z)(xZ) MZ) _yﬁ)(xb /’Ll)) + Z a_g (y2 (xg,/,l,z) —yil)(xz,ul)),
! j=i+l 7
and yﬁn_Z)(erVvl) =M1 < Mg = J’(zn_Z)(xz:ltz)‘ By (H,) we can inductively show that, for

each i=n-3,...,1,0, yY)(xg,Ml) < y(zi)(xz,pq). Consequently by Lemma 2.5 we have
y§ - (2, 1) < y(znfl)(x, W2) for x, < x < x3. Furthermore one can inductively get for each
i=n-2,...,1,0 the result y?(x,m) < y(zl)(x, o) for x; < x < x3. Now by (Hs) and (H;) we
get

h(yz(xz, H2)s... :y(gn_l)(xZ: Mz);yz(x& Ha)s... ,y(zn_l)(xsy Mz))

- h(yl(xz, H1)s... ,yinfl)(xm Ml);yl(x3> H1)s... ,yﬁ"’l)(xs, Ml))

n-1 ok n-1 ok

=> e (9 (2, 112) = 9 (62, 1)) + > 7 (0 w3, 1) = 9 (3, 111))
i=0 ! i=0 t

> 0.

This is a contradiction to (3.1). Thus we conclude that

-1 -1
W g, 111) = Y97 (3, 102),

i.e., T1(11) = T1(u2) for wuy < pa.
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By similar arguments, we can show the inequality for 7.

(2) Since (Hs) and (Hg) imply (Hy), for any yY'_D (%2, 1) € Sy, and y(zn_l)(xz, W2) € Sy, wWe
have by (1), 31" (x2, 1) = 95" (x2, ). Suppose 5" (3, 111) = ¥3"™ (%2, s2). Then both
y1(%, ;1) and y5 (x, wo) are solutions of BVP (1.1), (3.3) with . = yﬁ"“l)(xg, ) = y(z"_l)(xz, ).
By Lemma 3.2 of the uniqueness, we conclude y;(x, (1) = y2(x, t2) for x, < x < x3, which
implies

1= 97 (g, ) = )’(2”_2)(962, H2) = ta.
This is a contradiction. Thus y§”*”(x2,m) > y(;’*l) (%2, o), i.e., T1(u1) > T1(o) for py <
Ha. O

Lemma 3.4 Suppose that (H,), (Hy), (H3), (Hy), (Hs) and (H;) (or (Hg)) hold. Then, for
any w € R, both S, and ], are compact and connected subsets of R.

Proof 1f (H;), i =1,2,3,4,5,6 hold, then by Lemma 3.2, each of BVP (1.1), (3.1) and BVP
(1.1), (3.2) has exactly one solution. Consequently both S,, and J,, are single-point sets.
Hence the theorem holds.
Now let (I:Ii), i=1,2,3,4,57 hold. First, we prove that S, is an interval. To do this,
1)
(

let us take any yi"_l) (202, 1), y(Q"_l) (x2, 1) € S, with yi"_l)(xz, W) < y(zn_ %2, 14). We need to

show that if 3"V (xy, 1) < 30U < Y9V (xy, 1), then ¥ € S,,. By (Hy), it is easy to

-1
n)e

see inductively that yﬁi)(xg,u) < _)/(Zi)(QCz,M), i=n-3,..10, and for any fixed yg)

OV (e, 10,55 (2, 1)) there exist unique 5 € [y (x2, 10),55 (2, w)], i = 1 = 3,...,1,0,
such that

) i+ -3 -1 .
gi()’g)»}’8+),...,yf)" Ry )):0, i=0,1,...,n-3.

Now let yo(x) be the unique solution of (1.1) which satisfies the initial conditions yg ) (x0) =

yg), i=0,1,...,n—1, where yg"_z) = . Then by Lemma 2.5, yﬁ"_l)(x,p,) < yg'_l)(x) for xy <

x < x3. Furthermore we have yY) (x, ) < yg) () for xy <x <x3,i=0,1,...,n— 2. Similarly
we can show that yg)(x) < y(zl)(x, w) for xy <x <x3,i=0,1,...,n — 1. Hence by (Hs), we
have
h( ’ (n-1) . / (n-1)
yo(xz),yo(xz),-..,yo (xz),yo(xs),yo(xs),...,yo (xs))
> h(y1 (%2 10), 5, (R, 10), -, 9, 10390 (63, 10,9, (3, 1), 00 (3, 10))
=0

and

h(yo (xz),yé)(xz), e ,yf)n_l)(xz);yo (xs),% (%3),... ,yé”‘”(xs))
< h(y2 (2, 10,7002, 1), 95 (s s 92 (3, 10), 9 (63, 1), 95 P (3, 1)
=0.

Thus

R (50(2), ¥y @2), -, 35 (@) y0 (x3), ¥y (x3), -, 75 (x3)) = 0.
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Hence y,(x) satisfies the boundary condition (3.1), which implies that y,(x) is the solu-
tion of BVP (1.1), (3.1), and then yon D —yon D(x,) € Sy

Next, we show that S, is closed. To do thls, for any sequence {y(" D Yooq in S, with

ym RN y” Y as m — oo, we need to show J’o Ve S,.- By the definition of S, corre-
(n-1)y 00
sponding to {y;, }

such that yy, ) - yﬁZ Y (g, ). By (Hy), it is easy to see that, for each ym ), there exist ym,

i=0,1,...,n -3, such that

", there exists a sequence {y,,(x, 1)} e, of solutlons of BVP (1.1), (3. 1)

g Dy ) =0, =013,
Furthermore we have, by (Hy),
T =V G2 p), i=0,1.,n=3,m=12,....

Now let us show that the sequences {ym }oo 1,i=0,1,...,n—3, are convergent. In fact, when

i = n -3, for any positive integers m,p € N we have

(n-1)

0= &n- 3( ’/’L ym ) —8n- 3(ym+p » M ym+p)
_ agn—3 ~(y(”_3 (n— 3)) agn 3

_ am-1)
ayn73 m ym+p ayn (ym ym+p )'
Consequently by (H,), we get
’ (1-3) 3>‘ <5t agn—3 } (n-1) . (n-1)
T =y s Iim " = Vmsp |-

Since {ym )} " isa Cauchy sequence, so is the sequence {ym }Zle. Hence {y%ig) o, con-

verges to a number J/o Slmllarly we can show mductwely that, foreachi=n-4,...,1,0,
the sequence {ym Joo, converges to a number y0

We note that y(" 2= y" 2 =, m=1,2,.... Then by Kamke’s standard convergence
theorem [37], there exists a solution y = y(x) of (1.1) defined on [x,,x3] satisfying initial
conditions 5@ (x,) = yg) i=0,1,...,n -1, and there exists a subsequence {m; (x, ,u)};’fl of
{ym(x, 1)}or; such that, for each i = 0,1,. — 1, the sequence {yg,)j(x, M)}fjl uniformly
converges to 7 (x) on [xy,%3]. It is easy to see that y = (x) is the solution of BVP (1.1),
(3.1). Hence y(" V= 50D(x,) € S,

Finally, we show that S,, is bounded. To do this, we take u1, 1o € R with w1 < 0 < po.
Then from Lemma 3.3, we have

S S =Sy

This implies the boundedness of S,,.
By a similar argument for BVP (1.1'), (3.2"), we can show that J, is also a compact and
connected subset of R. O

Lemma 3.5 Suppose that (H,), (Hy), (1:13) (Hy), (Hs), and (Hy) hold. Then there exist
sequences (Y (X, i)Yoy AN (Y%, Vi) }onq of solutions of BVP (1.1), (3.1) with 1 =
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and of BVP (1.1), (3.1) with u = v,,, respectively, for which

hm y(n Y (2, ) = 00, lim y(" D(xg, V) = —00.

D oo withlim,, yEZ_l) = 00. Then, by Lemma 3.1, BVP
(1.1), (3.3) with u = yiz_l) has a solution, denoted by y,,(x). It is easy to see that y,,(x) is the
solution of BVP (1.1), (3.1) with 1t = Yo~ (x). Let i = ¥~ (x2) and let ¥, (%, fim) = ym ().
Theny "D (s, Um) €Sy, and

Proof Letus take asequence {ySZ

lim y(" (g, tm) = r’}meyEZ_l) =00.

Similarly one can show that there exists yﬁf,’_l)(xz, Vm) € Sy,,, for which
hm y(” D(xy, V) = —00. O

Lemma 3.6 Suppose that (H;), (H,), (Hs), (Hy), (Hs) and (H;) hold. Then
(1) forany po € R and ¢ > 0, there exists p > 0 such that if | — ol < p, then, for any
YD (xa, ) € S, there exists YD (xa, o) € S, satisfying
YD (e, ) — ¥ (X, 110)| < &5
(2) forany po € Rand e > 0, there exists p > 0 such that if | — pol < p, then, for any
2z (xz, W) e]M, there exists 2"V (xy, 110) € J,1, satisfying
D, 1) — 27V (a, o) < .

Proof Let us prove only (1), since (2) can be shown similarly.

Suppose the conclusion (1) is false. Then there exist o € R and gy > 0 such that, for
each p = %, m=1,2,..., there exist u,, € (1o — %,,uo + #) and YD (xy, 11,,) € Sy, such
that, for any Y~V (x, 1t0) € Sy,

(n

|9 (2, ) = 9" (%2, 10) | = 0.

Since o — i < M < Mo + %,m:1,2,...,wehavebyLemma3.3

1 1
Ti(po +1) < T1<Mo + Z) <" P2 wm)} < Ty <M0 - Z) < Ti(po —1).

Thus {yn-D (xz,um)} _, is bounded. Without loss of generality, we may assume that
(n-1)

“V(xy, ) — 99 as m — oo. For any positive integers m,p € N, we have, for each
L—O,l,...,n—B,
0 = gi(»? w2 )y - oy (2, )
_gl( (xZ: Mm+p) J/("_l)(xz, Mm+p))
0gi i i
= 0w p) 2 )
Vi
n-1 g
+ a_ (0 @2, ) = ¥ (%25 o))

j=i+l

Page 10 of 16
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Hence, for eachi=0,1,...,n -3, by (H4) we have

gi

n-1
’y(l)(xb Mm) _y(l)(xZ» /’Lm+p)| < 8_1 Z @ |y(])(x2’ /’Lm) _y(l)(x2’ /'Lm+p)|'
]

j=i+l

Since (5" (ez, em)}ey and (D (o, )i = {im)ie, are convergent, {y"9(xy,

%)
m=1

Wm)loe is a Cauchy sequence, and thus ("3 (o, i) is convergent. Similarly one
can show inductively that, for each i = n — 4,...,1,0, {y? (%, ,,)}°, is also convergent.
Set 1im,,,_ 00 ¥ (%, fyn) = yg), i=0,1,...,n— 1, where yf)”_z) = o. Then by Kamke’s con-
vergence theorem, there exists a solution y = y(x) of (1.1) defined on [x,, x3] satisfying the
initial conditions % (x,) = yg), i=0,1,...,n—1and there exists a subsequence {y(x, /Lmj)}ffl
of {y(x, )} such that, for each i =0,1,...,n—1, the sequence {9 (x, Mm}.)}jofl uniformly
converges to 7 (x) on [x,,%3]. It is easy to see that y(x) is the solution of BVP (1.1), (3.1)

with u = o. Consequently Yo' = 5"D(x,) € S,,,, and hence

(n-1

(nil)(xbﬂm) —Yo )’ = &9,

ly
which is a contradiction to lim,,_, o y" (%, it,,) = ng). Thus (1) holds. O

Lemma 3.7 Suppose that (H,), (Hy), (Hs), (Hs), (Hs), and (H;) hold. Then both Ty and T,

are upper semi-continuous on R.

Proof For any 1o € R, let us show T3 is upper semi-continuous at u = to.
From Lemma 3.4, T1(wo) is a compact and connected subset of R. Hence without loss

of generality, we may assume that

Ti(po) = [y(ln_l)(er 110), 75 (%, 1o)]-

Take any open set U with T7(uo) C U. Then there exists ¢ > 0 such that

0V @, 10) — £,95 7 (%2, 100) + €) C UL

Thus from Lemma 3.6, there exists p > 0 such that if | — ol < p, then, for any
YV (xy, ) € S, there exists YV (xy, o) € Sy, = Ti(ito) for which

"D (s ) = 9D (2, 10)| < &,

and so S, C U. Hence T is upper semi-continuous at u = (.
The upper semi-continuity of 75 on R can be shown similarly. O

Theorem 3.1 Suppose that (H;), (Hy), (Hs), (Ha), (Hs), and (Hy) hold. Then BVP (1.1),
(1.2) has at least one solution.

Proof We consider two cases as follows.
Case 1. Suppose there exists (o € R such that S,,; N J,, #9. Then BVP (1.1), (3.1) with
= o and BVP (1.1), (3.2) with u = uo have solutions y(x, 1o) and z(x, (o), respectively,
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such that y"(x, o) = 2 (x, o). Since =2 (x2, o) = po = 2"~ (x2, o), by (Ha) it is
easy to see that y?(xy, 1to) = 27 (%, o), i = 0,1,...,n — 3. Hence, if we let

y(xy ,u'O)r RS [xZ:xS]»
Z(x’ ,lL()), X € [xth];

=

then u(x) is a solution of BVP (1.1), (1.2).
Case 2. Suppose for any u € R, S, NJ,, =@. Then by Lemma 3.3 and 3.5, there exist
and py with g < pa, such that

S[,Ll >]M1y S/Lz <]M2’ Sul >SI/L2’

In fact, let us take any 19 € R and 2"~V (xy, 1) € Jiuo- Thenby Lemma 3.5, there exists some

W (x5, 11) € Sy, such that W (9, v1) > 27D (g, o). Take pq with 1y < min{vy, 1o}

Then by Lemma 3.3, we have
Sy = PV )} > {2V 100) ) = -
Also by Lemma 3.5, there exists some y(znfl)(xg, 1y) € §,, such that
2570 s, v2) < min{ 2Dz, 1), " 2 1) -
Again take py > max{{t1,v2}. Then by Lemma 3.3, we have
Sy, < {)’(zn_l)(xzy Vz)} < {Z(’H)(xz,m)} <Ju
and
Sy = {leil)(xz,Vl)} > {)’(znfl)(xz, Vz)} > S,

Now we apply a bisection argument as follows. Set ag = i1, by = 2. Then we have two

cases, i.e.,
Sao +bg > ]a0+b0 or Sa0+b0 < ]“0 +bg -
2 2 2 2

If Sa0+b0 >]a0+ho ,setay = “0”’0 and by = bg. If Sagrny < Jagehy» S€tay = ap and by = “°;b° .In
2

summary, there exist ay, b, € [ag, by] such that

1
a1 < by, bi—a = 5(]90 - dp), Say > Jays Sty <Jp-

By continuing this bisection process, we can get sequences {a,,}5,; and {b,,};,; with
Ay, by € A1, bm-1] C lag, bol, m=1,2,..., such that

1
aAm < bmr bm —Qm = z_m(bO - (l()), Sam >]am; Sbm <]hm-

Hence by the nested interval theorem, there uniquely exists § € R such that & €
Mowei [@m> bi], actually a,y,, by, squeeze to the common limit &.
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Suppose S¢ > J:. Then since both S; and J; are compact and connected subsets of R
and S¢ N J; = ¢, there exist two open interval Us and U such that Us D S¢, Uy D J; and
Us N Uy = @. Consequently Us > Uj. Since both T; and T5 are upper semi-continuous on
R by Lemma 3.7, there exists p > 0 such that if |u — &| < p then T1(u) =S, C Us and
Ty(n) = J,, C Uy, and thus S, > J,. On the other hand since b,, — & as m — oo, there
exists mg € N such that |b,,, — &| < p, consequently Sbimg > Jomy» which is a contradiction.

If S¢ < J¢, then we can similarly obtain a contradiction. Hence the case 2 cannot occur.

This completes the proof of the theorem. d

Theorem 3.2 Suppose that (H,), (Hy), (Hs), (Hs), (Hs), and (He) hold. Then BVP (1.1),

(1.2) has exactly one solution.

Proof Since (Hs) and (Hg) imply (H;), by Theorem 3.1, BVP (1.1), (1.2) has at least one
solution.
Now we need to show the uniqueness. By Theorem 3.1, BVP (1.1), (1.2) has a solution

u(x), for which we denote

y(xy MO): RS [xZ)xS]»
u(x) ==
Z(x: ,lL()), RS [xl’xZ]'

Let v(x) be any solution of BVP (1.1), (1.2), and let z; (x) = v(x) for x; <x < x5, y1(x) = v(x)
for xy < x < x3 and v (x,) = u*. Then y,(x) and z; (x) are the solutions of BVP (1.1), (3.1)
with ¢ = u* and BVP (1.1), (3.2) with p = u*, respectively.

If * > po, then by Lemma 3.3 we have

_ -1 —1 _
YV, 10) > 9V (w2) = 27V () = 207D (s, 1),

which is a contradiction.

If u* < po, then by Lemma 3.3 we have

_ —1 -1 _
27V (9, 110) = 277V (x2) = 3"V (w2) > 9 (w2, 120),

which is also a contradiction. Hence u* = j19. Consequently by Lemma 3.2, we get z;(x) =
z(x, o) for 21 <x < x5 and y1(x) = y(x, o) for x, < x < x3. Thus u(x) = v(x) on [x1,x3].

This completes the proof of the theorem. O
Remark 3.1 Theorem 3.2 includes the results of [1, 2, 4, 12—14] as particular cases.

It is easy to see that the linear boundary conditions in the next corollary satisfy (Hy),
(I:[g), and (]:I6)

Corollary 3.1 Suppose that (H,), (Hy), and (Hs) hold. Suppose further that a;a;,, < 0,
i= 0,1,...,”—2, Z:l:_()l |6ll'| > O;bl'l'bij < O,i: 0,1,...,”—3,j= i+1,i+2,...,l’l—1, |b[i| > O,i:

0,1,...,n-3;¢i¢;,1>0,i=0,1,...,n-2, Z:’;OZ lci| > 0. Then, foranyr; € R,i=0,1,...,n-1,
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the three-point boundary value problem of (1.1) with linear boundary conditions

Z?:_ol aiy(x1) = Ao,
Z;:»l bijy(’)(xz) =Xy, (=0,1,...,m-3,
S ey (x3) = Ana

has exactly one solution.

By using the transformations x = —¢ and y(x) = (-1)"z(¢), from Theorem 3.1 we can easily

obtain the following.

Theorem 3.3 Suppose that (H;), (Hy), (Hs), (Hs), (Hs), and (1:1/7) hold. Then BVP (1.1),
(1.2) has at least one solution.

Similarly to the proof of Theorem 3.2, from Theorem 3.3 we can get the following.

Theorem 3.4 Suppose that (H;), (Hy), (H3), (Hy), (Hs), and (I:Ig) hold. Then BVP (1.1),
(1.2) has exactly one solution.

It is easy to see that the linear boundary conditions in the next corollary satisfy (Hy),
(Hs), and (Hj).

Corollary 3.2 Suppose that (H;), (Hy), and (Hs) hold. Suppose further that a;a;,, <0,
i=0,1,..,n=2,Y "2 a4l >0;biby <0,i=0,1,...,n=3,j=i+1,i+2,...,n—-1,|by| > 0,i=
0,1,...,n-3;¢¢;,1>0,i=0,1,...,n-2, Z?:_ol lci| > 0. Then, forany ; e R,i=0,1,...,n-1,
the three-point boundary value problems of (1.1) with linear boundary conditions

S ayP(x) = ko,
Z;’:_[l bl]y(])(xZ) :)‘-le i= O, 1)-”,”_31
S ey (x3) = A

has exactly one solution.
Finally, as an application, we give an example to demonstrate our results.

Example 3.1 Consider a third-order three-point boundary value problem

y3

1+y2

y" = (sinx) + (cosx)arctany’ + |y'| + 1, —% <x< %, (3.4)
aoy(=5) + ary' (=3) + a2y"(=7) = Lo,
boy(0) + b1y (0) + b2y (0) = A1, (3.5)

coy(5) +ay (5) +cy'(5) = Ao,

where a;, b;,¢;, A; € R, i = 0,1,2, are constants.
Let

y3

1+y?

T
fx,y,z,w) = (sinx) + (cosx)arctanz + [w| +1 on [—5, E} x R3.

Page 14 of 16
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Then it is easy to check that the assumptions (H;), (H,), and (Hs) are satisfied. Hence from
either Corollary 3.1 or Corollary 3.2, BVP (3.4), (3.5) has exactly one solution under either

of the following conditions:

() aoa1 <0,may <0, |ag| + |a1] + |ai| > 0;
(ll) bob1 <0, boby, <0, by #0;

(i) coer >0, c1e3 >0, [co| + 1] >0,
or the following conditions:

(i) aom <0, amay <0, |ag| + |ai] > 0;
(ii") boby <0, boby <0, by Z0;
(iii') coc1 =0, cica =0, [col + |e1] + |ea] > 0.

We note that the results of [1, 2, 4, 12—14] cannot guarantee that the above third-order
three-point boundary value problem has a unique solution, unless b; = 0.
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