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Abstract
In this paper, we introduce a numerical study of the hydrocarbon system used for
petroleum reservoir simulations. This system is a simplified model which describes a
two-phase flow (oil and gas) with mass transfer in a porous medium, which leads to
fluid compressibility. This kind of flow is modeled by a system of parabolic
degenerated non-linear convection-diffusion equations. Under certain hypotheses,
such as the validity of Darcy?s law, incompressibility of the porous medium,
compressibility of the fluids, mass transfer between the oil and the gas, and negligible
gravity, the global pressure formulation of Chavent (Mathematical Models and Finite
Elements for Reservoir Simulation: Single Phase, Multiphase and Multicomponent
Flows Through Porous Media, 1986) is formulated. This formulation allows the
establishment of theoretical results on the existence and uniqueness of the solution
(Gasmi and Nouri in Appl. Math. Sci. 7(42):2055-2064, 2013). Furthermore, different
numerical schemes have been considered by many authors, among others we can
refer the reader to (Chen in Finite element methods for the black oil model in
petroleum reservoirs, 1994; Chen in Reservoir Simulation: Mathematical Techniques in
Oil Recovery, 2007) and (Gagneux et al. in Rev. Mat. Univ. Complut. Madr. 2(1):119-148,
1989). Here we make use of a scheme based on the finite volume method and
present numerical results for this simplified system.

Keywords: compressible fluids; porous medium; multiphasic flow; finite volume
method

1 Introduction
The fluids flow within porous media has an important role in various domains, such as
geothermal studies, geotechnics (the mechanics of soils), chemical engineering, ground
water storage, hydrocarbon exploitation (see references [] and []), etc. In some cases,
there are two or more fluids with different characteristics. We are concerned with the
simulation of the displacement of a fluid by another one, within a porous medium, while
the displacing fluid is immiscible with the fluid being displaced. Different numerical tech-
niques, mainly based on finite elements, have been used by many authors to solve such
problems, for example see [] and [].

In this paper we introduce a finite volume method for solving the hydrocarbon system
model often used for petroleum reservoir simulations. To prevent consistency defects in
the scheme, we propose to modify the mesh where the discontinuity occurs, because of
the porous media. We propose to design our new scheme, called the ?diamond meshes
scheme? (DMS), whose convergence is proved, and which can be used to solve the nonlin-
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ear discrete equations. Finally, numerical simulations confirm that the DMS is significantly
useful for such difficult problems taking into account their physical properties.

In this case, there are only two chemical species, or components, gas and oil, where this
last component may exist in both phases (gas and oil), that is to say, the heavy residual
component in the oil phase and the light volatile component in the gas phase. In order to
reduce confusion, we need to distinguish carefully between the ?oil component? and the
?oil phase?. This model, called a hydrocarbon system, is a simplified compositional model
describing two-phase flow in a porous medium with mass interchange between them.
Therefore it can predict compressibility and mass transfer effects, in the sense that it is
assumed that there is mass transfer between the oil and the gas phase. In this model the
?oil component? (also called stock-tank oil) is the residual liquid at atmospheric pressure
left after a differential vaporization, while the ?gas component? is the remaining fluid.

2 Mathematical model
One of the fluids wets the porous medium more than the other; we refer to this as the
wetting phase fluid and we refer to the other as the non-wetting phase fluid. In an oil-
gas system, oil is the wetting phase. Let us consider a bounded connex open � of Rd (d =
 or ), describing the porous medium (the reservoir), with a Lipchitz boundary �, and let
t be the time variable t in [, T[, T < ∞. Let CGg be the mass fraction of the gas component
in the gas phase, COg the mass fraction of the oil component (the light component) in
the gas phase, and COo the mass fraction of the oil component (the heavy component) in
the oil phase which is equal to . While this distribution of the hydrocarbon components
between the oil and gas phases plays an important role in a steam drive process, we cannot
say that the mass of each phase is conserved because of the possibility of transfer of the
oil component between the two phases. Instead, we observe that the total mass of each
component must be conserved.

Then the mass flux of the oil and the gas components are

COgρgUg + ρoUo,

CGgρgUg .

The oil and gas mass components are

φ(COgρgSg + ρoSo),

φCGgρgSg .

Then, for each fluid, we can write the conservation equations as

∂

∂t
[
φ(COgρgSg + ρoSo)

]
+ ∇ · (COgρgUg + ρoUo) = ,

∂

∂t
[
φ(CGgρgSg)

]
+ ∇ · (CGgρgUg) = ,

()

where (i = o, g) Si, Ui, ρi represent the saturation, the velocity, and the density of the phase i,
respectively. The parameter φ is the porosity of the medium. We have

COg + CGg = ,
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ρg = f(Pg , CGg),

ρo = f(Po),

where Po and Pg are the oil and gaz pressure respectively.
We consider compressible fluids, with constant dynamic viscosities and where the grav-

ity effect is neglected. Under these hypotheses, Darcy?s law combined with the mass con-
servation equations for each one of the component leads to the following system of partial
differential equations of parabolic convection-diffusion type:

φ(x)
∂

∂t
(
ρgSg + ρoω

l
oSo

)
+ ∇ · (ρgUg + ρoω

l
oUo

)
= , ()

φ(x)
∂

∂t
(
ρoω

h
o So

)
+ ∇ · (ρoω

h
o Uo

)
= , ()

Uo = –K(x)
kro

μo
∇Po, ()

Ug = –K(x)
krg

μg
∇Pg , ()

where (i = o, g) Pi, μi, kri represent the pressure, the viscosity, and the relative permeability
of the phase i, respectively. The parameter K is the absolute permeability of the medium
and ωc

o, c = h, l is the mass fraction of the component c, denoted by h for the heavy com-
ponent and by l for the light component in the oil phase. We have

μg = f(Pg , CGg),

μo = f(Po),

krg = f(Sg , So),

kro = f(Sg , So).

Furthermore, we shall use the subscript S to indicate standard conditions, i.e. appropriate
conditions for the temperature and the pressure of medium.

Let ρOS , ρGS be the density (measured at standard conditions) of the oil and the gas com-
ponents, respectively. The gas formation volume factor, denoted by BG, is the ratio of the
volume of free gas (all of which is gas component), measured at the reservoir conditions,
to the volume of the same gas measured at standard conditions. Thus

BG(P, T) =
VG(P, T)

VGS
.

Let WG be the weight of free gas, since VG = WG
ρg

and VGS = WG
ρgS

, then

BG =
ρgS

ρg
,

so that the volatility of the oil in the gas is expressed by the ratio

RV =
VOS

VGS
.
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The mass fractions of the two components in the gas phase are

COg =
RV ρoS

BGρg
,

CGg =
ρgS

BGρg
.

By adding the last two equations and noting that CGg + COg = , we obtain

ρg =
(ρGS + RV ρOS)

BG
.

The substitution of these mass fractions and densities into () gives, for the gas and the oil
components,

∂

∂t

[
φ

(
RV

BG
ρoSSg + ρoSo

)]
+ ∇ ·

(
RV

BG
ρoSUg + ρoUo

)
= ,

∂

∂t

[
φ

(
ρgSSg

BG

)]
+ ∇ ·

(
ρgSUg

BG

)
= .

()

We suppose that it is a saturated regime and is expressed by

So + Sg = . ()

The capillary pressure is given by

Pg – Po = Pc(So) = pc(So)pcM, ()

where

pcM = sup
∣
∣Pc(So)

∣
∣ and  ≤ pc(So) ≤ . ()

We define the mobility of each phase by the formula

λi =
kri

μi
, i = o, g, ()

and the total mobility λ by

λ = λo + λg . ()

To simplify, we set

ρh
o = ρoω

h
o , ()

ρ = ρg + ρo, ()

b = ρgλg + ρoλo, ()

d = ρg – ρo. ()
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Let us now introduce the new unknowns, namely the reduced saturation and the global
pressure in the following way: if we denote by Si,m and Si,M , the residual and the maximum
saturations of the fluid i = o, g , respectively; the reduced saturation is given by

S =
So – So,m

 – Sg,m – So,m
, ()

 ≤ S ≤ . ()

The ?global pressure? was first introduced by Chavent and Jaffre [] in the following form:

P =



(Pg + Po) + γ (S), ()

with

γ (S) =



∫ S

So,m

λg – λo

λ
p′

c(ξ )pcM dξ . ()

Hence

γ (S) =



∫ S


α(ξ ) dξ , ()

where

α(S) =
λg(S) – λo(S)

λ(S)
p′

c(S)PcM ()

is the capillary diffusion. Therefore, our model is given by the following simplified system:

�(x)
∂

∂t
(
ρh

o S
)

+ φ(x)So,m
∂

∂t
(
ρh

o
)

– ∇ · (K(x)ρh
o λo(S)∇P

)
+ ∇ · (K(x)ρh

o α(S)∇(S)
)

= , ()

�(x)
∂

∂t
(ρS) + φ(x)

∂

∂t
(ρSo,m + ρg)

– ∇ · (K(x)b(S, P)∇P
)

+ ∇ · (K(x)d(P)α(S)∇S
)

= , ()

λ(S)∇P · η = , α(S)∇S = , on � × (, T), ()

S(x, ) = S(x), P(x, ) = P(x), in �, ()

where φ(x) = ϕ(x)( – So,m – So,g).

3 Weak formulations
First we introduce the following spaces:

H(div,�) =
{

v ∈ (
L(�, (, T)

))d, div(v) ∈ L(�, (, T)
)
, d = , 

}
, ()

V (�) =
{

v ∈ H(div,�), v · η =  on �
}

,

W (�) =
{

v ∈ V (�), v(x, T) =  in �
}

.
()
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The weak formulation of problem ()-() is written as

(
�(x)ρh

o S,
∂v
∂t

)

�

–
(
K(x)ρh

o λo(S)∇P,∇v
)
�

+
(
K(x)ρh

o α(S)∇S,∇v
)
�

= (f, v), ()

(
�(x)ρS,

∂v
∂t

)

�

–
(
K(x)b(S, P)∇P,∇v

)
�

+
(
K(x)d(P)α(S)∇S,∇v

)
�

= (f, v), ()

where (·, ·)� is the inner product defined on W (�). A theoretical study of the existence
and uniqueness of the weak solution was done and the details of the results can be found
in [].

4 Finite volume approximation
In this section we study the approximation of solutions to our model in the discrete finite
volume framework. This family of schemes allows very general meshes and deals with the
main properties of the physical features of the treated problems. The time interval [, T[ is
divided into finite sub-intervals [tn, tn+[ of length �tn, n = , . . . , M with t =  and tM = T .
The space domain (the reservoir �) is discretized by a non-structured stitching Th.

4.1 Notations
We introduce the following notation:

- Let |K | denote the cell K surface, N(K) the set of triangles having a common side with
the cell K .

- Let eK ,L be the common side of the triangles K and L and –→η K ,L be the normal oriented
from K towards L.

- –→η ei is the external normal corresponding to the part of ei at the boundary �.
- Let Sh be the set of sides of the stitching Th and S∗

h be the set of the interior sides.
- For a given side e, let us denote by S and N the extremities e, by W and E the two

triangles where e = W̄ ∩ Ē; by χe the diamond cell associated with e given by
connecting the centers of gravities of the cells W and E with the extremities N and S
of e.

- ((εi )i=,) are the four segments forming the border of χe.
- –→η ε = 

|εi | (μxi ,μyi ) is the normal on εi outgoing of χe.
- For a given node, V (N) is the set of triangles with this node in common.
For the numerical resolution of problem ()-(), the first two equations will be dis-

cretized separately. For more details on finite volume methods, see for example [] and [].

4.2 Discretization of the first equation
Let C be a cell of the stitching Th, at time tn; we integrate () on C to get


�t

∫

C

[
�(x)ρh,n

o
(
Sn+ – Sn)]dx

+


�t

∫

C

[
�(x)

(
ρh,n

o
)′ Sn (

Pn+ – Pn)]dx

+


�t

∫

C

[
φ(x)So,m

(
ρh,n

o
)′(Pn+ – Pn)]dx

–
∑

D∈N(C)

∫

eCD

[
K(x)ρh,n

o λn
o (S)∇Pnηe

]
dx



Gasmi and Nouri Boundary Value Problems  (2015) 2015:7 Page 7 of 10

+
∑

D∈N(C)

∫

eCD

[
K(x)ρh,n

o αn(S)∇(
Sn)ηe

]
dx

= . ()

Therefore we obtain

|C|
�t

�Cρ
h,n
o,C

(
Sn+

C – Sn
C
)

+
|C|
�t

�C
(
ρ

h,n
o,C

)′Sn
C
(
Pn+

C – Pn
C
)

+
|C|
�t

φCSo,m
(
ρ

h,n
o,C

)′(Pn+
C – Pn

C
)

–
∑

D∈N(C)

∫

eCD

[
Kρh,n

o λn
o(S)∇Pnηe

]
dx

+
∑

D∈N(C)

∫

eCD

[
Kρh,n

o αn(S)∇(
Sn)ηe

]
dx

= . ()

This implies that

|C|
�t

�Cρ
h,n
o,CSn+

C +
|C|
�t

(
ρ

h,n
o,C

)′(
�CSn

C + φC So,m
)
Pn+

C

= –
|C|
�t

�Cρ
h,n
o,CSn

C –
|C|
�t

(
ρ

h,n
o,C

)′(
�CSn

C – φCSo,m
)
Pn

C

+
∑

D∈N(C)

Fn
C,e –

∑

D∈N(C)

Fn
D,e, ()

where (ρh,n
o,C)′ is the space derivative of (ρh,n

o,C), and Fn
C,e and Fn

D,e are the numerical flows of
convection and diffusion, which are approximated by

Fn
C,e = Keρ

h,n
o,e λn

o,e∇ePn|e|, ()

Fn
D,e = Keρ

h,n
o,e αn

e ∇eSn|e|, ()

where e is a side of the stitching, –→η e is the normal of e outgoing from C; Ke, ρh,n
o,e , and λn

o,e
denote the interpolations on e of the functions K , ρh

o , and λo, respectively, while ∇ePn is
the approximation of the gradient of the pressure on the side e. The construction of the
approached gradient on e is done by the so-called Green-Gauss method. It consists of ap-
proaching the gradient by its means on a co-volume in the form of a diamond constructed
around the side e. We write

ρh,n
o,e λn

o,e = ρh
o
(
Pn

e
)
λo

(
Sn

e
)
, ()

ρh,n
o,e αn

e = ρh
o
(
Pn

e
)
α
(
Sn

e
)
, ()

and

∇eP =


|χe|
∑

ε∈∂χe




(PN(ε) + PN(ε))|ε|–→η e, ()
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where χe is the diamond cell associated with e, and N(ε) and N(ε) are the extremities
of ε, one of the four segments forming ∂χe (the boundary of χe) and –→η e is the unit normal
vector. The values of P at the centers W and E are PW and PE , while the values at nodes N
and S are interpolated on the boundary and denoted by PN and PS . For convenience, we
omit the indication η. Hence at each node N we have

PN =
∑

K∈V (N)

yK (N)PK , ()

where V (N) is the set of triangles sharing the node N , PK is the value of P at the center of
the cell K and yK (N) are the interpolation weights. The gradient of the saturation is given
by

∇eS =


|χe|
∑

ε∈∂χe




(SN(ε) + SN(ε))|ε|–→η e, ()

with

SN =
∑

K∈V (N)

yK (N)SK . ()

4.3 Discretization of the second equation
In the same way, integration of () implies

|C|
�t

�Cρn
CSn+

C +
|C|
�t

(
�C

(
ρ

h,n
C

)′Sn
C + φC

(
ρ

h,n
C

)′So,m + φC
(
ρ

h,n
C

)′)Pn+
C

= –
|C|
�t

�Cρn
C Sn

C –
|C|
�t

(
�C(ρh,n

o,C)′Sn
C – φC(ρh,n

o,C)′So,m + φC(ρh,n
o,C)′

)
Pn

C

+
∑

D∈N(C)

Gn
C,e –

∑

D∈N(C)

Gn
D,e, ()

where Gn
C,e and Gn

D,e are the numerical flows of the convection and diffusion approximated
by

Gn
C,e = Kebn

e ∇ePn|e|, ()

Gn
D,e = Kedn

e α
n
e ∇eSn, ()

with

bn
e = bn

e
(
Sn

e , Pn
e
)
, ()

dn
e α

n
e = dn

e
(
Pn

e
)
α
(
Sn

e
)
, ()

where e is a side of the stitching that limits the cell C, ∇ePn is given by () and (), and
∇eSn is given by () and ().
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5 Numerical experiments
The problem given in ()-() was said not to be typical of a hydrocarbon system simu-
lation, but it can be designed to test the resolution capabilities of the numerical method
for problems involving sharp fronts.

The numerical tests are done on a homogeneous isotropic reservoir. The physical set-
ting in -D was as follows. A horizontal rectangular reservoir � = ], [× ], [, dis-
cretized with a structured mesh made up of , cells, with an intrinsic permeability
of . was initially filled with a mixture of gas and oil, their residual saturations are
. and ., respectively. The initial fluid (oil) distribution was taken to be uniform on
the whole reservoir surface, and it had an associated initial pressure P = , bar. The
porosity is � = .. The mobilities and the capillary pressure are given by Pc = (s – )/,
λo = ., λg = ., and μw = , and μo = , the time step is �t =  s. These tests were
carried out using the free and open-source simulator for flow and transport processes in
porous media, based on the Distributed and Unified Numerics Environment DUNE (see
www.dumux.org).

5.1 Results and discussion
The numerical results shown in Figures - give the pressure for the wetting and non-
wetting fluid, and the saturation for the non-wetting one. Because of the complexity of the
problem, we have introduced new unknowns, namely the global pressure and the reduced
saturation, in order to reduce the number of unknowns from six to two (for more details

Figure 1 Non-wetting pressure at t = 0, 50, 100, and 175.

Figure 2 Wetting pressure at t = 0, 50, 100, and 175.

http://www.dumux.org
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Figure 3 Non-wetting pressure at t = 0, 50, 100, and 175.

see []). An explicit non-structured finite volume scheme has been used to solve this sim-
plified problem with the new unknowns, and because of the non-structured meshes, we
proposed a method based on ?diamond cells? to approximate the gradient. These results
show that the scheme is very stable.

6 Conclusion
In this paper we proposed a new scheme based on the finite volume method for solving
the displacement of a fluid by another one, within a porous medium, while the displac-
ing fluid is immiscible with the fluid being displaced. This gives the hydrocarbon system
model often used for petroleum reservoir simulations. To prevent consistency defects in
the scheme, we suggested to modify the mesh where the discontinuity occurs, because of
the porous media. This convergent scheme, called the ?diamond meshes scheme? (DMS)
was designed, to solve the associated nonlinear discrete equations. Finally, the numerical
results, which are linked to our theoretical ones in [], confirm that the DMS is signifi-
cantly useful for such difficult problems (see Figures -).
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