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Abstract
We analyze the eigenstructure of the integral operatorKl,α,k which arise naturally
from the beam deflection equation on linear elastic foundation with finite beam. We
show thatKl,α,k has countably infinite number of positive eigenvalues approaching 0
as the limit, and give explicit upper and lower bounds on each of them.
Consequently, we obtain explicit upper and lower bounds on the L2-norm of the
operatorKl,α,k . We also present precise approximations of the eigenvalues as they
approach the limit 0, which describes the almost regular structure of the spectrum of
Kl,α,k . Additionally, we analyze the dependence of the eigenvalues, including the
L2-norm ofKl,α,k , on the intrinsic length L = 2lα of the beam, and show that each
eigenvalue is continuous and strictly increasing with respect to L. In particular, we
show that the respective limits of each eigenvalue as L goes to 0 and infinity are 0 and
1/k, where k is the linear spring constant of the given elastic foundation. Using
Newton?s method, we also compute explicitly numerical values of the eigenvalues,
including the L2-norm ofKl,α,k , corresponding to various values of L.
MSC: 34L15; 47G10; 74K10

Keywords: beam; deflection; elastic foundation; integral operator; eigenvalue;
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1 Introduction
We consider the linear integral operator Kl,α,k , defined by

Kl,α,k[u](x) :=
∫ l

–l
K

(|x – ξ |)u(ξ ) dξ

for complex functions u on the real interval [–l, l], l > . Here, the function K(·) is

K(y) :=
α

k
exp

(
–

α√


y
)

sin

(
α√


y +

π



)

for a constant k >  and α := √k/(EI). The function K arises naturally as the Green?s func-
tion of the following linear ordinary differential equation:

EI
du(x)

dx + k · u(x) = w(x) ()
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with the boundary condition limx→±∞ u(x) = limx→±∞ u′(x) = , whose closed form solu-
tion [] is

u(x) =
∫ ∞

–∞
K

(|x – ξ |)w(ξ ) dξ = lim
l→∞

Kl,α,k[u].

According to the classical Euler beam theory, () is the governing equation for the verti-
cal deflection u(x) of a linear-shaped beam resting horizontally on an elastic foundation,
where the beam is subject to the downward load distribution w(x) applied vertically on
the beam. k >  is the linear spring constant of the elastic foundation, so that k · u(x) is the
spring force distribution by the elastic foundation. The constants E and I are the Young?s
modulus and the mass moment of inertia, respectively, so that EI is the flexural rigidity of
the beam. Historically, the beam deflection problem has been one of the cornerstones of
mechanical engineering [–].

Recently, Choi and Jang [] obtained existence and uniqueness result for the solution
of the following nonlinear and nonuniform equation which generalizes ():

EI
du(x)

dx + f
(
u(x), x

)
= w(x).

It turned out to be crucial in their work to analyze the integral operator defined by

K[u](x) :=
∫ ∞

–∞
K

(|x – ξ |)u(ξ ) dξ . ()

However, () is for infinitely long beams, while beams with finite lengths are important in
practice. To deal with finite beams, we need to analyze the integral operator Kl,α,k , instead
of K. With this motivation, Choi [, ] performed an analysis of the eigenstructure of
Kl,α,k as a linear operator on the Hilbert space L[–l, l] of the square-integrable complex
functions on [–l, l]. It was shown that all the eigenvalues of Kl,α,k are contained in the real
interval (, /k), and hence Kl,α,k is positive and contractive in dimension-free sense.

In this paper, we analyze concretely the structure of the eigenvalues of Kl,α,k inside the
interval (, /k). Note that Kl,α,k is in the important class of compact, self-adjoint opera-
tors, of whose eigenstructures the following general property is well known.

Proposition  ([]) Let X be a nontrivial real or complex inner-product space, and let T
be a compact self-adjoint operator from X to X. Then the eigenvalues of T are real, and
the number of them is at most countably infinite. Moreover, the eigenvalues, denoted by
λ,λ,λ, . . . , can be ordered such that

|λ| > |λ| > |λ| > · · · > ,

and the L-norm ‖T ‖ := ‖T ‖ of T is |λ|.

For the operator Kl,α,k , we will prove the results below.

Theorem 
(a) The spectrum of the operator Kl,α,k is of the form

{
μn

k

∣∣∣ n = , , , . . .
}

∪
{

νn

k

∣∣∣ n = , , , . . .
}

,
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where μn and νn depend only on L := lα, and, for n = , , , . . . ,


 + {h–(πn + π

 )} < νn <


 + {h–(πn)} < μn <


 + {h–(πn – π
 )} .

(b) μn ∼ νn ∼ n–, and


 + {h–(πn – π

 )} – μn ∼ νn –


 + {h–(πn + π
 )} ∼ n–e–πn,


 + 

L (π (n – ) – π
 )

– μn ∼ 
 + 

L (π (n – ) + π
 )

– νn ∼ n–.

Here, the function h, parametrized by L = lα, is strictly increasing, one-to-one and onto
from [,∞) to [,∞). See Section  for its definition and properties. See also Section 
for the definition of the notation ∼, which denotes ?asymptotically same order?. Thus  >
μ > ν > μ > ν > · · · > · · · ↘ , and the eigenvalues of Kl,α,k are ordered as

μ/k > ν/k > μ/k > ν/k > · · · ↘ .

In fact, the asymptotic approximation in Theorem (b) gives a quite precise description
of the distribution of the eigenvalues of Kl,α,k as n → ∞.

Theorem  also gives explicit upper and lower bounds on each of these eigenvalues.
Among these eigenvalues, the largest one, μ/k, is of special importance, since it is pre-
cisely the L-norm ‖Kl,α,k‖ of the operator Kl,α,k by Proposition . In consequence, we
obtain the following explicit upper and lower bounds on the L-norm ‖Kl,α,k‖ = μ/k of
the operator Kl,α,k :

 <


k[ + {h–(π )}]
< ‖Kl,α,k‖ <


k[ + {h–( π

 )}]
<


k

.

We can actually compute numerical values of μn and νn with Newton?s method on the
equation () in Section . See Section  for further details.

Each of the quantities μn and νn changes only when L changes. For example, if L remains
fixed, then they do not change even if k changes. In fact, L = lα = l √k/(EI) is dimen-
sionless and hence can be regarded as the dimension-free or intrinsic length of the beam.
Similarly, the dimensionless quantities μn and νn can also be regarded as dimension-free
or intrinsic eigenvalues of Kl,α,k , which depend only on L. Especially, the dimensionless
μ = k · ‖Kl,α,k‖ is the dimension-free or intrinsic L-norm of Kl,α,k .

We also analyze the behavior of the eigenvalues of Kl,α,k with respect to the intrinsic
length L of the beam.

Theorem  Each eigenvalue λ of Kl,α,k in Theorem  is continuous and strictly increasing
with respect to L, and limL→ λ = , limL→∞ λ = /k.

Thus each of the intrinsic eigenvalues μn and νn is continuous and strictly increas-
ing with respect to L, and limL→ μn = limL→ νn = , limL→∞ μn = limL→∞ νn =  for
n = , , , . . . Table , which results from the numerical computation in Section , illus-
trates the dependence of μn and νn on L in Theorem . In particular, the norm ‖Kl,α,k‖ =
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Table 1 Numerical values of μ1 = k‖Kl,α,k‖, ν1, μ2, ν2 corresponding to various L = 2lα

L μ1 ν1 μ2 ν2

10–2 0.003535504526434 0.000000029355791 0.000000000019880 0.000000000002624
10–1 0.035326704321880 0.000028406573449 0.000000190403618 0.000000025815905
1 0.331681981441542 0.020235634105536 0.001302361278230 0.000221108040807
2 0.578350951060946 0.109509249925520 0.014548864439394 0.003014813082734
3 0.737796746567301 0.249144755528815 0.052681487593071 0.013049474696160
4 0.835237998797342 0.400500295380442 0.119710823211630 0.035118466933057
5 0.894054175695477 0.537478928105431 0.209949500302561 0.072359812095134
6 0.929940126283050 0.649631031236143 0.312512968129316 0.125219441432141
7 0.952321667263849 0.736387662150921 0.416408511420210 0.191399578520264
8 0.966653810417898 0.801474122928057 0.513537323059282 0.266679190778082
9 0.976084258929463 0.849614047989366 0.599392090820732 0.346127057405707
10 0.982453999322008 0.885083551582694 0.672409494807652 0.425184184899229
102 0.999995523152271 0.999965988373225 0.999869326766519 0.999643102015955

μ/k is continuous and strictly increasing as a function of L, and limL→ ‖Kl,α,k‖ = ,
limL→∞ ‖Kl,α,k‖ = /k.

The rest of the paper is organized as follows. In Section , basic preliminaries and nota-
tions used in this paper are given. In Section , we derive a characteristic equation for the
eigenvalues of Kl,α,k , and transform it into a relatively manageable form (). Theorems 
and  are proved in Sections  and , respectively. In Section , examples of numerical
computation of the eigenvalues of Kl,α,k are given.

2 Preliminaries
Let f (t), g(t) be positive functions on [,∞). We will use the notation f (t) ∼ g(t), meaning
that f (t) and g(t) are of the same order asymptotically as t → ∞, if there exists T >  such
that m ≤ f (t)/g(t) ≤ M for every t > T for some constants  < m ≤ M < ∞. We also use
similar notation for positive sequences. Let {an}∞n=, {bn}∞n= be positive sequences. Then
we denote an ∼ bn if there exists N >  such that m ≤ an/bn ≤ M for every n > N for some
constants  < m ≤ M < ∞. Note that f (t) ∼ g(t) if  < limt→∞ f (t)/g(t) < ∞, and an ∼ bn if
 < limn→∞ an/bn < ∞.

For l > , let L[–l, l] be the space of all square-integrable complex functions on the
interval [–l, l], which is a Hilbert space with the usual inner product

〈u, v〉 =
∫ l

–l
u(x)v(x) dx, u, v ∈ L[–l, l].

The L-norm ‖T ‖, denoted also by ‖T ‖, of a linear operator T from L[–l, l] to L[–l, l],
is

‖T ‖ := ‖T ‖ = sup
�=u∈L[–l,l]

‖T [u]‖
‖u‖ ,

where ‖u‖ := ‖u‖ =
√〈u, u〉. For n = , , , . . . , let Cn[–l, l] be the space of all n-times

differentiable complex functions on [–l, l]. Note that C[–l, l] := C[–l, l] is the space of all
continuous complex functions on [–l, l].

One of the main tools for our analysis is the following necessary and sufficient condition
for being an eigenfunction of Kl,α,k .
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Proposition  (Lemma . in []) Let u ∈ L[–l, l]. Then Kl,α,k[u] = λu for some λ ∈C, if
and only if u ∈ C[–l, l], and u is a solution to the following fourth-order linear boundary
value problem:

λu() +
(

λ –

k

)
αu = , ()

u()(l) +
√

αu′′(l) + αu′(l) = , ()

u()(–l) –
√

αu′′(–l) + αu′(–l) = , ()

u()(l) – αu′(l) –
√

αu(l) = , ()

u()(–l) – αu′(–l) +
√

αu(–l) = . ()

Using Proposition , the following property of Kl,α,k was shown in [].

Proposition  (Theorem  in []) All the eigenvalues of Kl,α,k are in the real interval
(, /k).

3 Characteristic equation for the eigenvalues of Kl,α,k

It is well known [] that an operator of the type Kl,α,k is self-adjoint. Since the eigenvalues
of a self-adjoint operator are real, and the eigenspace corresponding to each eigenvalue is
spanned by real eigenfunctions, it is sufficient to consider only real eigenfunctions and
eigenvalues.

As noted in [], the solution space of the differential equation () changes qualitatively
according to the sign of the quantity  – /(λk), and we have the following three possibili-
ties:

(I)  – /(λk) = : λ = /k,
(II)  – /(λk) > : λ <  or λ > /k,

(III)  – /(λk) < :  < λ < /k.
It was shown in [] and [] that there are no eigenvalues in the cases (I) and (II) (Proposi-
tion ). We will investigate the remaining case (III). So we assume  – /(λk) < , or equiv-
alently,  < λ < /k for the rest of the paper.

We introduce the variable κ defined by

κ := 

√

λk

–  > , ()

which simplifies () to

u() – καu = . ()

Note that () gives a one-to-one correspondence between κ in (,∞) and λ in (, /k) for
any fixed k > .

3.1 Derivation of characteristic equation
Suppose  < λ < /k is an eigenvalue of Kl,α,k , and u is a nonzero eigenfunction corre-
sponding to λ. By Proposition , u should satisfy the differential equation (), and hence
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(). The general (real) solution of () is

u(x) = Ae(x) + Be(–x) + Cc(x) + Ds(x), A, B, C, D ∈R,

where we denote

e(x) := exp(καx), c(x) := cos(καx), s(x) := sin(καx).

So we have

u′(x) = κα
{

Ae(x) – Be(–x) – Cs(x) + Dc(x)
}

,

u′′(x) = (κα){Ae(x) + Be(–x) – Cc(x) – Ds(x)
}

,

u()(x) = (κα){Ae(x) – Be(–x) + Cs(x) – Dc(x)
}

,

and hence

u()(x) ± √
αu′′(x) + αu′(x)

= κα[(κ ± √
κ + 

)
e(x) · A –

(
κ ∓ √

κ + 
)
e(–x) · B

+
{∓√

κc(x) +
(
κ – 

)
s(x)

} · C

–
{(

κ – 
)
c(x) ± √

κs(x)
} · D

]
, ()

u()(x) – αu′(x) ∓ √
αu(x)

= α[(κ – κ ∓ √

)
e(x) · A –

(
κ – κ ± √


)
e(–x) · B

+
{∓√

c(x) +
(
κ + κ

)
s(x)

} · C

–
{(

κ + κ
)
c(x) ± √

s(x)
} · D

]
. ()

Using () and (), the boundary conditions (), (), (), () in Proposition , respectively,
become

 =
(
κ +

√
κ + 

)
e(l) · A –

(
κ –

√
κ + 

)
e(–l) · B

+
{

–
√

κc(l) +
(
κ – 

)
s(l)

} · C +
{

–
(
κ – 

)
c(l) –

√
κs(l)

} · D,

 =
(
κ –

√
κ + 

)
e(–l) · A –

(
κ +

√
κ + 

)
e(l) · B

+
{√

κc(l) –
(
κ – 

)
s(l)

} · C +
{

–
(
κ – 

)
c(l) –

√
κs(l)

} · D,

 =
(
κ – κ –

√

)
e(l) · A –

(
κ – κ +

√

)
e(–l) · B

+
{

–
√

c(l) +
(
κ + κ

)
s(l)

} · C +
{

–
(
κ + κ

)
c(l) –

√
s(l)

} · D,

 =
(
κ – κ +

√

)
e(–l) · A –

(
κ – κ –

√

)
e(l) · B

+
{√

c(l) –
(
κ + κ

)
s(l)

} · C +
{

–
(
κ + κ

)
c(l) –

√
s(l)

} · D,

which are equivalent collectively to

Q · (A B C D)T = O, ()
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where O is the  ×  zero matrix and Q is the following  ×  matrix:

Q =

⎛
⎜⎜⎜⎝

(κ +
√

κ + )e(l) –(κ –
√

κ + )e(–l)
(κ –

√
κ + )e(–l) –(κ +

√
κ + )e(l)

(κ – κ –
√

)e(l) –(κ – κ +
√

)e(–l)
(κ – κ +

√
)e(–l) –(κ – κ –

√
)e(l)

–
√

κc(l) + (κ – )s(l) –(κ – )c(l) –
√

κs(l)√
κc(l) – (κ – )s(l) –(κ – )c(l) –

√
κs(l)

–
√

c(l) + (κ + κ)s(l) –(κ + κ)c(l) –
√

s(l)√
c(l) – (κ + κ)s(l) –(κ + κ)c(l) –

√
s(l)

⎞
⎟⎟⎟⎠ .

By Proposition , the assumption that u is a nonzero eigenfunction ofKl,α,k is equivalent to
the existence of nontrivial (A B C D) satisfying (), which again is equivalent to det Q = .
Thus λ is an eigenvalue of Kl,α,k , if and only if det Q = .

A long and tedious computation, which can be facilitated by utilizing Computer Algebra
Systems, produces the following determinant of Q:

det Q = eLκ
[
–e–Lκ

(
κ + 

)

+
{(

κ – κ + 
)

cos(Lκ) + 
√

κ
(
κ – 

)
sin(Lκ)

}

· {e–Lκ
(
κ – 

√
κ + κ – 

√
κ + 

)

+
(
κ + 

√
κ + κ + 

√
κ + 

)}]
, ()

where L = lα is the intrinsic length of the beam. For checking the validity of (), we
provide a Mathematica notebook file. See Additional files  and .

3.2 Simplification of det Q
Since (κ – κ + ) + {√

κ(κ – )} = (κ + ), we have

(
κ – κ + 

)
cos(Lκ) + 

√
κ

(
κ – 

)
sin(Lκ)

=
(
κ + 

){κ – κ + 
κ + 

cos(Lκ) +

√

κ(κ – )
κ + 

sin(Lκ)
}

=
(
κ + 

){
cos ĥ(κ) cos(Lκ) + sin ĥ(κ) sin(Lκ)

}

=
(
κ + 

)
cos

(
Lκ – ĥ(κ)

)
()

for some function ĥ(κ) of κ . Specifically, we define ĥ by

ĥ(κ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan{ 
√

κ(κ–)
κ–κ+ } if  ≤ κ <

√
–√

 ,

– π
 if κ =

√
–√

 ,

–π + arctan{ 
√

κ(κ–)
κ–κ+ } if

√
–√

 < κ <
√

+√
 ,

– π
 if κ =

√
+√

 ,

–π + arctan{ 
√

κ(κ–)
κ–κ+ } if κ >

√
+√

 ,

()
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where the branch of arctan is taken such that arctan() = . Note that

κ – κ +  =
{
κ – ( –

√
)

}{
κ – ( +

√
)

}

=
(

κ +
√

 – √


)(
κ –

√
 – √



)(
κ +

√
 + √



)(
κ –

√
 + √



)
,

and hence


√

κ(κ – )
κ – κ + 

=

√

(κ + )
(κ +

√
–√

 )(κ +
√

+√
 )

· κ(κ – )
(κ –

√
–√

 )(κ –
√

+√
 )

.

So it is easy to see that ĥ thus defined is continuous. See Figure  for the graph of ĥ(κ).
Note that

ĥ′(κ) =


 + ( 
√

κ(κ–)
κ–κ+ )

·
(


√

κ(κ – )
κ – κ + 

)′

= –
(κ – κ + )

(κ + ) · 
√

(κ + )(κ + )
(κ – κ + )

= –

√

(κ + )
κ + 

< . ()

This shows that ĥ is in fact real-analytic and strictly decreasing. We also have ĥ() =  and
limκ→∞ ĥ(κ) = –π from ().

Figure 1 Graph of ĥ(κ ). The solid curve represents ĥ(κ ) which decreases on [0,∞) approaching –2π . The

dashed curves represent the function arctan{ 2
√
2κ (κ2–1)

κ4–4κ2+1
}.
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Define

h(κ) := Lκ – ĥ(κ). ()

Then () becomes

(
κ – κ + 

)
cos(Lκ) + 

√
κ

(
κ – 

)
sin(Lκ) =

(
κ + 

)
cos h(κ). ()

By () and (), we have

h′(κ) = L +

√

(κ + )
(κ + )

> . ()

The properties of the function h(κ), which we will need later, are summarized in Lemma .

Lemma 
(a) h(κ) is real-analytic, and is strictly increasing with h() = , limκ→∞ h(κ) = ∞.
(b) h′(κ) is strictly increasing on [,

√√
 – ] from h′() = L + 

√
 to

h′(
√√

 – ) = L +  +
√

, and strictly decreasing on [
√√

 – ,∞) approaching
limκ→∞ h′(κ) = L. In particular, L < h′(κ) ≤ L +  +

√
 for every κ ≥ , and hence

limκ→∞ h(κ)/κ = L implying h(κ) ∼ κ .

Proof (a) follows immediately from (), (), (). Since

h′′(κ) =
{


√

(κ + )
(κ + )

}′
= –


√

κ(κ + κ – )
(κ + )

= –

√

(κ + (
√

 + ))(κ +
√√

 – )
(κ + ) · κ(κ –

√√
 – ),

h′ is strictly increasing on [,
√√

 – ] from h′() = L + 
√

 to h′(
√√

 – ) = L +  +
√

,
and is strictly decreasing on [

√√
 – ,∞) to limκ→∞ h′(κ) = L. Hence, (b) follows. �

Using (), the determinant of Q in () can be rewritten as

det Q = eLκ
[
–e–Lκ

(
κ + 

) +
(
κ + 

)
cos h(κ)

· {e–Lκ
(
κ – 

√
κ + κ – 

√
κ + 

)

+
(
κ + 

√
κ + κ + 

√
κ + 

)}]

= 
(
κ + 

)
eLκ

[
–

(
κ + 

) · e–Lκ +
(
κ –

√
κ + 

)
cos h(κ) · (e–Lκ

)

+
(
κ +

√
κ + 

)
cos h(κ)

]
, ()

since (κ ±√
κ +) = κ ±

√
κ +κ ±

√
κ +. It follows from () that the equation

det Q = , regarding it as a quadratic equation in e–Lκ , is equivalent to

e–Lκ =


(κ –
√

κ + ) · cos h(κ)

· [(κ + 
) ±

√(
κ + 

) –
(
κ +

√
κ + 

)(
κ –

√
κ + 

)
cos h(κ)

]
,
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which, using the identity

(
κ +

√
κ + 

)(
κ –

√
κ + 

)
= κ + , ()

is again equivalent to

κ –
√

κ + 
κ +

√
κ + 

= eLκ ·  ± sin h(κ)
cos h(κ)

. ()

Note from () that det Q �= , when cos(h(κ)) = .
Define

p(κ) :=
κ –

√
κ + 

κ +
√

κ + 
()

and

ϕ+(κ) := eLκ ·  + sin h(κ)
cos h(κ)

,

ϕ–(κ) := eLκ ·  – sin h(κ)
cos h(κ)

.
()

We also use the notation

ϕ±(κ) := eLκ ·  ± sin h(κ)
cos h(κ)

.

Then (), and hence the characteristic equation det Q =  for κ > , is finally reduced to
the following equivalent form:

p(κ) = ϕ±(κ) for κ > , ()

which means p(κ) = ϕ+(κ) or p(κ) = ϕ–(κ) for κ > .

3.3 Properties of the functions p(κ ) and ϕ±(κ )
Note from () that

p′(κ) =
(κ –

√
)(κ +

√
κ + ) – (κ +

√
)(κ –

√
κ + )

(κ +
√

κ + )

=

√

(κ – )
(κ +

√
κ + )

=

√

(κ + )
(κ +

√
κ + )

· (κ – ). ()

The following lemma on the property of the function p(κ) immediately follows from ()
and (). See Figure  for the graph of p(κ).

Lemma  p(κ) is strictly decreasing on [, ] from p() =  to p() =  – 
√

, and is strictly
increasing on [,∞) approaching limκ→∞ p(κ) = . In particular, we have  <  – 

√
 <

p(κ) <  for every κ > .
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Figure 2 Graph of p(κ ). p(κ ) decreases on [0, 1] from p(0) = 1 to p(1) = 3 – 2
√
2≈ 0.17157, and increases on

[1,∞) approaching 1.

By Lemma (a), the inverse h– of the function h is well defined from [,∞) onto [,∞),
and is also strictly increasing. From the definition () of ϕ±, we have

ϕ±
(
h–(πn)

)
= eL·h–(πn) ·  ± sin(πn)

cos(πn)
= exp

(
L · h–(πn)

)
> ,

ϕ±
(
h–(πn + π )

)
= eL·h–(πn+π ) ·  ± sin(πn + π )

cos(πn + π )
()

= – exp
(
L · h–(πn + π )

)

and

lim
κ→h–(πn+π/)–

ϕ+(κ) = ∞, lim
κ→h–(πn+π/)+

ϕ+(κ) = –∞,

lim
κ→h–(πn–π/)–

ϕ–(κ) = –∞, lim
κ→h–(πn–π/)+

ϕ–(κ) = ∞

for every n = ,±,±, . . . Note that

ϕ±(κ) = eLκ  ± sin h(κ)
cos h(κ)

= eLκ ( ± sin h(κ)) cos h(κ)
cos h(κ)

= eLκ ( ± sin h(κ)) cos h(κ)
 – sin h(κ)

= eLκ cos h(κ)
 ∓ sin h(κ)

.

So ϕ+ (respectively, ϕ–) has removable singularities at h–(πn – π/) (respectively,
h–(πn + π/)) for n = ,±,±, . . . We regard these singularities all to be removed in
the definition of ϕ±, so that

ϕ±
(

h–
(

πn ∓ π



))
:=  ()

for n = ,±,±, . . . Thus ϕ+ and ϕ– are continuous, respectively, on the intervals
(h–(πn + π/), h–(π (n + ) + π/)) and (h–(πn – π/), h–(π (n + ) – π/)) for every
n = ,±,±, . . . In fact, ϕ+ and ϕ– are real-analytic in these respective intervals, since h(κ)
is real-analytic by Lemma (a). Since

d
dt

(
 ± sin t

cos t

)
=

± cos t · cos t – ( ± sin t) · (– sin t)
cos t

= ± ± sin t
cos t

, ()
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we have

ϕ′
±(κ) =

d
dκ

(
eLκ  ± sin h(κ)

cos h(κ)

)

= eLκ

{
L ·  ± sin h(κ)

cos h(κ)
±  ± sin h(κ)

cos h(κ)
· h′(κ)

}
, ()

hence, by (),

ϕ′
±(κ)

= eLκ

{
L( ± sin h(κ))

cos h(κ)
±  ± sin h(κ)

cos h(κ)
·
(

L +

√

(κ + )
κ + 

)}

= ± eLκ ( ± sin h(κ))
(κ + ) cos h(κ)

{
L
(
κ + 

)(
 ± cos h(κ)

)
+ 

√

(
κ + 

)}

= ± eLκ

(κ + )( ∓ sin h(κ))
{

L
(
κ + 

)(
 ± cos h(κ)

)
+ 

√

(
κ + 

)}
. ()

Here we used the fact that

 ± sin t
cos t

=
 ± sin t

( + sin t)( – sin t)
=


 ∓ sin t

.

Since  ± sin t and  ± cos t are positive except at discrete points, () shows that ϕ+ is
strictly increasing and ϕ– is strictly decreasing on the intervals where they are defined.

We summarize properties of ϕ± in Lemma . See Figure  for the graphs of ϕ±.

Figure 3 Graphs of ϕ+(κ ) and ϕ–(κ ). Solid red lines (——) represent ϕ+(κ ), and dashed blue lines (- - -)
represent ϕ–(κ ). ϕ+ increases on (h–1(2πn +π /2),h–1(2π (n + 1) +π /2)) from –∞ to ∞, and ϕ– decreases on
(h–1(2πn –π /2),h–1(2π (n + 1) –π /2)) from ∞ to –∞. ϕ±(h–1(2πn)) = exp{L · h–1(2πn)},
ϕ±(h–1(2πn +π )) = –exp{L · h–1(2πn +π )}, ϕ±(h–1(2πn∓ π /2)) = 0.
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Lemma 
(a) For every n = ,±,±, . . . , ϕ+(κ) is strictly increasing on the interval

(h–(πn + π/), h–(π (n + ) + π/)) from –∞ to ∞, and ϕ–(κ) is strictly
decreasing on the interval (h–(πn – π/), h–(π (n + ) – π/)) from ∞ to –∞.
ϕ±(κ), where defined, are real-analytic.

(b) Suppose κ > . If  < ϕ+(κ) < , then h–(πn – π/) < κ < h–(πn) for n = , , , . . .
If  < ϕ–(κ) < , then h–(πn) < κ < h–(πn + π/) for n = , , , . . .

The next result on the relationship between p and ϕ±, will play a crucial role in analyzing
the characteristic equation (). Note that, by Lemma , () would hold only when  <
ϕ±(κ) < .

Lemma 
(a) ϕ′

+(κ) > p′(κ) for every κ >  such that p(κ) ≤ ϕ+(κ) < .
(b) ϕ′

–(κ) < p′(κ) for every κ >  such that p(κ) ≤ ϕ–(κ) < .

Proof By (), we have

ϕ′
±(κ) = eLκ  ± sin h(κ)

cos h(κ)
{

L ± h′(κ) sec h(κ)
}

= ϕ±(κ)
{

L ± h′(κ) sec h(κ)
}

. ()

Suppose κ > . Since p(κ) >  by Lemma , both of the conditions p(κ) ≤ ϕ+(κ) <  and
p(κ) ≤ ϕ–(κ) <  imply  < cos h(κ) < , and hence sec h(κ) >  by Lemma (b). (See also
Figure .) Note also that h′(κ) > L >  by Lemma (b).

Suppose p(κ) ≤ ϕ+(κ) < . Then ϕ+(κ) > , sec h(κ) > . Hence from (), we have

ϕ′
+(κ) > ϕ+(κ)

{
L + h′(κ) · 

}
= ϕ+(κ)

{
h′(κ) – L

} ≥ p(κ)
{

h′(κ) – L
}

,

where we used the assumption ϕ+(κ) ≥ p(κ) for the last inequality. So (a) will follow if we
show p(κ){h′(κ) – L} > p′(κ), which, by (), (), (), is equivalent to

κ –
√

κ + 
κ +

√
κ + 

· 
√

(κ + )
κ + 

>

√

(κ – )
(κ +

√
κ + )

. ()

Using (), () is reduced to κ +  > κ – , which is true. Thus () is true, and this
show (a).

Suppose p(κ) ≤ ϕ–(κ) < . Then ϕ–(κ) > , sec h(κ) > . From (), we have

ϕ′
–(κ) < ϕ–(κ)

{
L – h′(κ) · 

}
= –ϕ–(κ)

{
h′(κ) – L

} ≤ –p(κ)
{

h′(κ) – L
}

,

where we used the assumption ϕ–(κ) ≥ p(κ) for the last inequality. So (b) will follow if we
show –p(κ){h′(κ) – L} < p′(κ), which, by (), (), (), is equivalent to

κ –
√

κ + 
κ +

√
κ + 

· 
√

(κ + )
κ + 

> –

√

(κ – )
(κ +

√
κ + )

. ()

Using () again, () is reduced to κ +  > –κ + , which is true since κ > . Thus () is
true, and this show (b). �



Choi Boundary Value Problems  (2015) 2015:6 Page 14 of 27

4 The eigenstructure of Kl,α,k: proof of Theorem 1
We now analyze the eigenstructure of the operator Kl,α,k by proving Theorem . It is pre-
cisely the solution structure of the equation det Q =  in λ, which is equivalent to that of
() in λ. Remember that we only need to consider the case when  < λ < /k, which is
equivalent to κ >  by ().

By Lemma , () has a solution only when  < ϕ+(κ) <  or  < ϕ–(κ) < . By (), (),
and Lemma (a), the set of κ >  satisfying  < ϕ+(κ) <  is contained in the union of the
intervals

A+
n :=

(
h–

(
πn –

π



)
, h–(πn)

)
, n = , , , . . .

Similarly, the set of κ >  satisfying  < ϕ–(κ) <  is contained in the union of the intervals

A–
n :=

(
h–(πn), h–

(
πn +

π



))
, n = , , , . . .

In fact, by the intermediate value theorem, there exists at least one κ in each A+
n , for n =

, , , . . . , satisfying p(κ) = ϕ+(κ), since

p
(

h–
(

πn –
π



))
>  = ϕ+

(
h–

(
πn –

π



))
,

p
(
h–(πn)

)
<  < ϕ+

(
h–(πn)

) ()

for n = , , , . . . , by Lemma  and (), (). Similarly, there exists at least one κ in each
A–

n , for n = , , , . . . , satisfying p(κ) = ϕ–(κ), since

p
(
h–(πn)

)
<  < ϕ–

(
h–(πn)

)
,

p
(

h–
(

πn +
π



))
>  = ϕ–

(
h–

(
πn +

π



)) ()

for n = , , , . . . Note that we cannot apply the intermediate value theorem to A–
 , since

p() =  = ϕ–(). In fact, it will be shown in Lemma  that A–
 contains no κ satisfying

p(κ) = ϕ–(κ).
Since the functions p(κ) and ϕ±(κ) are real-analytic (and different), the set of κ satisfying

() is discrete. Thus we can take the smallest βn in A+
n satisfying p(κ) = ϕ+(κ), and the

largest γn in A–
n satisfying p(κ) = ϕ–(κ) for n = , , , . . . Then we have

h–
(

nπ –
π



)
< βn < h–(nπ ) < γn < h–

(
nπ +

π



)
, n = , , , . . . ()

Lemma  The set of κ satisfying the characteristic equation () is

{βn | n = , , , . . .} ∪ {γn | n = , , , . . .}.

Proof It is sufficient to show that there is no κ in A–
 satisfying p(κ) = ϕ–(κ), and there is

at most one κ in A+
n (respectively, A–

n ) satisfying p(κ) = ϕ+(κ) (respectively, p(κ) = ϕ–(κ))
for n = , , , . . .
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Let n = , , , . . . Note that, by () and the definition of βn, we have p(κ) > ϕ+(κ) for
every κ ∈ (h–(πn–π/),βn). Suppose there exists another κ in A+

n satisfying p(κ) = ϕ+(κ),
which we denote β̃n. By the definition of βn, we have βn < β̃n. We can assume β̃n is chosen
such that there is no κ between βn and β̃n satisfying p(κ) = ϕ+(κ), since the set of solutions
of () is discrete. So we have either p(κ) > ϕ+(κ) for every κ ∈ (βn, β̃n), or p(κ) < ϕ+(κ)
for every κ ∈ (βn, β̃n). Suppose the former. Then the graphs of p(κ) and ϕ+(κ) should be
tangent to each other at κ = βn, which implies p′(βn) = ϕ′

+(βn). Since p(βn) = ϕ+(βn), this
contradicts Lemma (a), and it follows that p(κ) < ϕ+(κ) for every κ ∈ (βn, β̃n). Then by
Lemma (a) again, we have p′(κ) < ϕ′

+(κ) for every κ ∈ (βn, β̃n). Applying the mean value
theorem to the function p(κ) – ϕ+(κ) on [βn, β̃n], we have

 =
{

p(β̃n) – ϕ+(β̃n)
}

–
{

p(βn) – ϕ+(βn)
}

=
{

p′(κ̃) – ϕ+
′ (κ̃)

} · (β̃n – βn)

for some κ̃ ∈ (βn, β̃n). Then we have p′(κ̃) = ϕ′
+(κ̃), which is a contradiction. Thus we con-

clude that there is no κ in A+
n other than βn, which satisfies p(κ) = ϕ+(κ).

Let n = , , , . . . Note that, by () and the definition of γn, we have p(κ) > ϕ–(κ) for
every κ ∈ (γn, h–(πn+π/)). Suppose there exists another κ in A–

n satisfying p(κ) = ϕ–(κ),
which we denote γ̃n. By the definition of γn, we have γ̃n < γn. We can assume γ̃n is chosen
such that there is no κ between γ̃n and γn satisfying p(κ) = ϕ–(κ), since the set of solutions
of () is discrete. So we have either p(κ) > ϕ–(κ) for every κ ∈ (γ̃n,γn), or p(κ) < ϕ–(κ)
for every κ ∈ (γ̃n,γn). Suppose the former. Then the graphs of p(κ) and ϕ–(κ) should be
tangent to each other at κ = γn, which implies p′(γn) = ϕ′

–(γn). Since p(γn) = ϕ–(γn), this
contradicts Lemma (b), and it follows that p(κ) < ϕ–(κ) for every κ ∈ (γ̃n,γn). Then by
Lemma (b) again, we have p′(κ) > ϕ′

–(κ) for every κ ∈ (γ̃n,γn). Applying the mean value
theorem to the function p(κ) – ϕ–(κ) on [γ̃n,γn], we have

 =
{

p(γn) – ϕ–(γn)
}

–
{

p(γ̃n) – ϕ–(γ̃n)
}

=
{

p′(κ̃) – ϕ′
–(κ̃)

} · (γn – γ̃n)

for some κ̃ ∈ (γ̃n,γn). Then we have p′(κ̃) = ϕ′
–(κ̃), which is a contradiction. Thus we con-

clude that there is no κ in A–
n other than γn, which satisfies p(κ) = ϕ–(κ).

Suppose there exists κ in A–
 satisfying p(κ) = ϕ–(κ). Since the set of solutions of ()

is discrete, we can take γ to be the largest among such κ . Then we have p(κ) > ϕ–(κ) for
every κ ∈ (γ, h–(π/)), since p(h–(π/)) >  = ϕ–(h–(π/)) by Lemma  and (). Let γ̃

be the largest in [,γ) satisfying p(κ) = ϕ–(κ). Note that γ̃ exists, since p() = ϕ–() = .
Replacing γ̃n, γn by γ̃, γ, respectively, and applying the same argument in the above
paragraph again, results in a contradiction. Thus we conclude that there is no κ in A–



satisfying p(κ) = ϕ–(κ), and the proof is complete. �

Note that the inverse function h– of h is strictly increasing from [,∞) onto [,∞) by
Lemma (a). Putting t = h(κ), () can be written as

L · h–(t) = t + ĥ
(
h–(t)

)
for t ≥ . ()

Lemma 
(a) /(L +  +

√
) ≤ (h–)′(t) < /L for t ≥ .

(b) h–(t) ∼ t and h–(t) – (t – π )/L ∼ t–.
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Proof (a) follows immediately from Lemma (b), since (h–)′(t) = /{h′(h–(t))} = /h′(κ),
where we put t = h(κ).

By (), we have

lim
t→∞ t

(
h–(t) –

t – π

L

)

= lim
t→∞ t

{
t + ĥ(h–(t))

L
–

t – π

L

}

=

L

lim
t→∞ t

{
ĥ
(
h–(t)

)
+ π

}
=


L

lim
κ→∞ h(κ)

{
ĥ(κ) + π

}

=

L

lim
κ→∞

h(κ)
κ

· lim
κ→∞κ

{
h̃(κ) + π

}
=


L

· L · lim
κ→∞

ĥ(κ) + π

κ

,

where the last equality comes from Lemma (b). Since limκ→∞ ĥ(κ) = –π , we can use
l?Hôspital?s rule to get

lim
t→∞ t

(
h–(t) –

t – π

L

)
= lim

κ→∞
ĥ′(κ)
– 

κ
= lim

κ→∞

√

κ(κ + )
κ + 

= 
√

 ()

by (). This shows |h–(t) – (t – π )/L| ∼ t–, which also implies h–(t) ∼ t. �

Note that, for  < t < π/, we have

d
dt

(
 – cos t

sin t

)
=

sin t · sin t – ( – cos t) · cos t
sin t

=
 – cos t

sin t
> ,

d

dt

(
 – cos t

sin t

)
=

sin t · sin t – ( – cos t) ·  sin t cos t
sin t

=
 + cos t –  cos t

sin t
=

( – cos t)

sin t
> .

This implies that the function ( – cos t)/ sin t is increasing and convex on (,π/), and
hence t/ < ( – cos t)/ sin t < t/π for  < t < π/, since limt→{( – cos t)/ sin t} = , ( –
cos(π/))/ sin(π/) = , and limt→{( – cos t)/ sin t}′ = limt→{( – cos t)/ sin t} = /. It
follows that

t


<
 + sin(πn – π

 + t)
cos(πn – π

 + t)
=

 – sin(πn + π
 – t)

cos(πn + π
 – t)

<
t
π

for  < t <
π


, ()

since

 + sin(πn – π
 + t)

cos(πn – π
 + t)

=
 – sin( π

 – t)
cos( π

 – t)
=

 – cos t
sin t

.

Note that  < p(κ) <  for κ >  by Lemma . For each n = , , , . . . , we can take  < ε+
n <

δ+
n < π/ such that

ϕ+

(
h–

(
πn –

π


+ ε+

n

))
= p

(
h–

(
πn –

π



))
, ()

ϕ+

(
h–

(
πn –

π


+ δ+

n

))
= , ()
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since ϕ+ is strictly increasing on A+
n from ϕ+(h–(πn – π/)) =  to ϕ+(h–(πn)) >  by

(), (), Lemma (a). Similarly, we can take  < ε–
n < δ–

n < π/ for each n = , , , . . . , such
that

ϕ–

(
h–

(
πn +

π


– δ–

n

))
= , ()

ϕ–

(
h–

(
πn +

π


– ε–

n

))
= p

(
h–

(
πn –

π



))
, ()

since ϕ– is strictly decreasing on A–
n from ϕ+(h–(πn)) >  to ϕ+(h–(πn + π/)) =  by

(), (), Lemma (a).
Suppose n is sufficiently large, so that h–(πn – π/) > . This is possible, since h– is

one-to-one and onto from [,∞) to [,∞) by Lemma (a). Then, since p is strictly in-
creasing on (,∞) by Lemma , we have

p
(

h–
(

πn –
π



))
< p

(
h–

(
πn –

π


+ ε+

n

))
< p

(
h–

(
πn +

π


– ε–

n

))
,

and hence by (), (), (), (),

ϕ+

(
h–

(
πn –

π


+ ε+

n

))
< p

(
h–

(
πn –

π


+ ε+

n

))
,

ϕ+

(
h–

(
πn –

π


+ δ+

n

))
> p

(
h–

(
πn –

π


+ δ+

n

))
,

ϕ–

(
h–

(
πn +

π


– δ–

n

))
> p

(
h–

(
πn +

π


– δ–

n

))
,

ϕ–

(
h–

(
πn +

π


– ε–

n

))
< p

(
h–

(
πn +

π


– ε–

n

))
.

It follows from the intermediate value theorem that, for sufficiently large n,

h–
(

πn –
π



)
< h–

(
πn –

π


+ ε+

n

)
< βn < h–

(
πn –

π


+ δ+

n

)
, ()

h–
(

πn +
π


– δ–

n

)
< γn < h–

(
πn +

π


– ε–

n

)
< h–

(
πn +

π



)
, ()

since βn (respectively, γn) is the only κ in A+
n (respectively, A–

n ) satisfying p(κ) = ϕ+(κ)
(respectively, p(κ) = ϕ–(κ)).

Lemma  βn ∼ γn ∼ n, and βn – h–(πn – π/) ∼ h–(πn + π/) – γn ∼ e–πn, βn –
(π (n – ) – π/)/L ∼ γn – (π (n – ) + π/)/L ∼ n–.

Proof Suppose n is sufficiently large so that (), () hold. The fact βn ∼ γn ∼ n imme-
diately follows from (), (), since h–(t) ∼ t by Lemma (b). By (), (), we have

βn – h–
(

πn –
π



)
> h–

(
πn –

π


+ ε+

n

)
– h–

(
πn –

π



)
, ()

βn – h–
(

πn –
π



)
< h–

(
πn –

π


+ δ+

n

)
– h–

(
πn –

π



)
, ()
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h–
(

πn +
π



)
– γn > h–

(
πn +

π



)
– h–

(
πn +

π


– ε–

n

)
, ()

h–
(

πn +
π



)
– γn < h–

(
πn +

π



)
– h–

(
πn +

π


– δ–

n

)
. ()

By applying the mean value theorem to h–, we have

h–
(

πn –
π


+ ε+

n

)
– h–

(
πn –

π



)
=

(
h–)′

(
πn –

π


+ ε̃+

n

)
· ε+

n ,

h–
(

πn –
π


+ δ+

n

)
– h–

(
πn –

π



)
=

(
h–)′

(
πn –

π


+ δ̃+

n

)
· δ+

n ,

h–
(

πn +
π



)
– h–

(
πn +

π


– ε–

n

)
=

(
h–)′

(
πn +

π


– ε̃–

n

)
· ε–

n ,

h–
(

πn +
π



)
– h–

(
πn +

π


– δ–

n

)
=

(
h–)′

(
πn +

π


– δ̃–

n

)
· δ–

n

for some  ≤ ε̃+
n ≤ ε+

n ,  ≤ δ̃+
n ≤ δ+

n ,  ≤ ε̃–
n ≤ ε–

n ,  ≤ δ̃–
n ≤ δ–

n . So by Lemma (a), we have

h–
(

πn –
π


+ ε+

n

)
– h–

(
πn –

π



)
≥ ε+

n

L +  +
√


,

h–
(

πn –
π


+ δ+

n

)
– h–

(
πn –

π



)
<

δ+
n

L
,

h–
(

πn +
π



)
– h–

(
πn +

π


– ε–

n

)
≥ ε–

n

L +  +
√


,

h–
(

πn +
π



)
– h–

(
πn +

π


– δ–

n

)
<

δ–
n
L

,

and hence by (), (), (), (),

ε+
n

L +  +
√


< βn – h–

(
πn –

π



)
<

δ+
n

L
, ()

ε–
n

L +  +
√


< h–

(
πn +

π



)
– γn <

δ–
n
L

. ()

Using (), (), (), (), (), and the definition () of ϕ±, we have

p
(

h–
(

πn –
π



))

= ϕ+

(
h–

(
πn –

π


+ ε+

n

))

= exp

{
L · h–

(
πn –

π


+ ε+

n

)}
·  + sin(πn – π

 + ε+
n )

cos(πn – π
 + ε+

n )

< exp
{

L · h–(πn)
} · 

π
ε+

n ,

p
(

h–
(

πn –
π



))

= ϕ–

(
h–

(
πn +

π


– ε–

n

))
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= exp

{
L · h–

(
πn +

π


– ε–

n

)}
·  – sin(πn + π

 – ε–
n )

cos(πn + π
 – ε–

n )

< exp

{
L · h–

(
πn +

π



)}
· 
π

ε–
n

and

 = ϕ+

(
h–

(
πn –

π


+ δ+

n

))

= exp

{
L · h–

(
πn –

π


+ δ+

n

)}
·  + sin(πn – π

 + δ+
n )

cos(πn – π
 + δ+

n )

> exp

{
L · h–

(
πn –

π



)}
· 


δ+

n ,

 = ϕ–

(
h–

(
πn +

π


– δ–

n

))

= exp

{
L · h–

(
πn +

π


– δ–

n

)}
·  – sin(πn + π

 – δ–
n )

cos(πn + π
 – δ–

n )

> exp
{

L · h–(πn)
} · 


δ–

n ,

and hence

ε+
n >

π


· p

(
h–

(
πn –

π



))
exp

{
–L · h–(πn)

}
, ()

ε–
n >

π


· p

(
h–

(
πn –

π



))
exp

{
–L · h–

(
πn +

π



)}
, ()

δ+
n <  exp

{
–L · h–

(
πn –

π



)}
, ()

δ–
n <  exp

{
–L · h–(πn)

}
. ()

Note that, for any constant c, we have limn→∞ p(h–(πn + c)) =  by Lemma  and

lim
n→∞

[
eπn · exp

{
–L · h–(πn + c)

}]

= lim
n→∞ exp

{
πn – L · h–(πn + c)

}

= lim
t→∞ exp

{
t – c – L · h–(t)

}
= lim

t→∞ exp
{

t – π + π – c – L · h–(t)
}

= lim
t→∞ exp

[
L ·

{
t – π

L
– h–(t)

}
+ (π – c)

]
= eπ–c

by Lemma (b). So by combining (), (), and (), (), (), (), we have

πeπ

(L +  +
√

)
≤ lim

n→∞

[
eπn ·

{
βn – h–

(
πn –

π



)}]
≤ eπ+ π



L
, ()

πeπ– π


(L +  +
√

)
≤ lim

n→∞

[
eπn ·

{
h–

(
πn +

π



)
– γn

}]
≤ eπ

L
, ()

which shows βn – h–(πn – π/) ∼ h–(πn + π/) – γn ∼ e–πn.
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By (), (), we have

 ≤ lim
n→∞ n

{
βn – h–

(
πn –

π



)}

= lim
n→∞ ne–πn · lim

n→∞

[
eπn ·

{
βn – h–

(
πn –

π



)}]

≤ eπ+ π


L
· lim

n→∞ ne–πn = ,

 ≤ lim
n→∞ n

{
h–

(
πn +

π



)
– γn

}

= lim
n→∞ ne–πn · lim

n→∞

[
eπn ·

{
h–

(
πn +

π



)
– γn

}]

≤ eπ

L
· lim

n→∞ ne–πn = ,

and hence

lim
n→∞ n

{
βn – h–

(
πn –

π



)}
= lim

n→∞ n
{

h–
(

πn +
π



)
– γn

}
= .

So by (), we have

lim
n→∞ n

{
βn –


L

(
π (n – ) –

π



)}

= lim
n→∞ n

{
βn – h–

(
πn –

π



)}

+ lim
n→∞ n

{
h–

(
πn –

π



)
–


L

(
πn –

π



)
+

π

L

}

= lim
t→∞

t + π


π

(
h–(t) –

t – π

L

)

= lim
t→∞

t + π


π t
· lim

t→∞ t
(

h–(t) –
t – π

L

)
=


π

· 
√

 =
√


π

,

lim
n→∞ n

{
γn –


L

(
π (n – ) +

π



)}

= lim
n→∞ n

{
γn – h–

(
πn +

π



)}

+ lim
n→∞ n

{
h–

(
πn +

π



)
–


L

(
πn +

π



)
+

π

L

}

= lim
t→∞

t – π


π

(
h–(t) –

t – π

L

)

= lim
t→∞

t – π


π t
· lim

t→∞ t
(

h–(t) –
t – π

L

)
=


π

· 
√

 =
√


π

,

which shows βn – (π (n – ) – π/)/L ∼ γn – (π (n – ) + π/)/L ∼ n–, and the proof is
complete. �
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Lemma  Suppose positive sequences {an}∞n=, {bn}∞n=, {cn}∞n= satisfy an ∼ bn ∼ n and an –
bn ∼ cn. Then /( + b

n) – /( + a
n) ∼ n–cn.

Proof Let f (x) = /( + x). By the mean value theorem, we have


 + b

n
–


 + a

n
= f (bn) – f (an) = f ′(ξn) · (bn – an)

=
ξ 

n
( + ξ

n ) · (an – bn)

for some bn ≤ ξn ≤ an for n = , , , . . . Note that ξn ∼ an ∼ bn ∼ n. So we have

nc–
n ·

(


 + b
n

–


 + a
n

)
=

( ξn
n )

{ 
n + ( ξn

n )}
· an – bn

cn
,

which is bounded below and above by some positive constants for every sufficiently large
n, since ξn ∼ n and an – bn ∼ cn. This implies /( + b

n) – /( + a
n) ∼ n–cn. �

Proof of Theorem  By Proposition , Kl,α,k has no eigenvalues outside the interval (, /k).
By () and Lemma , the eigenvalues in (, /k) are μn/k, νn/k, n = , , , . . . , where we put

μn :=


 + β
n

, νn :=


 + γ 
n

()

for n = , , , . . . Note that L is the only parameter involved with the characteristic equation
(). So its solutions βn, γn, and hence μn, νn, depend only on L for n = , , , . . . The
bounds on μn, νn in (a) follow from () and (), and thus we showed (a).

Since βn ∼ γn ∼ n by Lemma , it follows easily from () that μn ∼ νn ∼ n–. Note that
h–(πn – π/) ∼ h–(πn + π/) ∼ n by Lemma (b). So by Lemma  and (), we have


 + {h–(πn – π

 )} – μn =


 + {h–(πn – π
 )} –


 + β

n
∼ n–e–πn,

νn –


 + {h–(πn + π
 )} =


 + γ 

n
–


 + {h–(πn + π

 )} ∼ n–e–πn,


 + 

L (π (n – ) – π
 )

– μn =


 + 
L (π (n – ) – π

 )
–


 + β

n
∼ n–,


 + 

L (π (n – ) + π
 )

– νn =


 + 
L (π (n – ) + π

 )
–


 + γ 

n
∼ n–,

since βn – h–(πn – π/) ∼ h–(πn + π/) – γn ∼ e–πn and βn – (π (n – ) – π/)/L ∼
γn – (π (n – ) + π/)/L ∼ n– by Lemma . This shows (b), and the proof is complete. �

5 Behavior of the eigenvalues with respect to the beam length: proof of
Theorem 2

In this section, we prove Theorem  by investigating the behavior of the eigenvalues of
Kl,α,k obtained in Theorem , as the intrinsic length L of the given beam changes.

Lemma  βn and γn are strictly decreasing with respect to L for n = , , , . . .
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Proof Since βn and γn are solutions of the equations ϕ+(κ) – p(κ) =  and ϕ–(κ) – p(κ) = ,
respectively, we have ϕ+(βn) – p(βn) = , and ϕ–(γn) – p(γn) = . Differentiation of these
equations with respect to L gives

 =
d

dL
ϕ+(βn) –

d
dL

p(βn)

=
{

∂ϕ+

∂κ
(βn) · dβn

dL
+

∂ϕ+

∂L
(βn)

}
–

dp
dκ

(βn) · dβn

dL

=
{
ϕ′

+(βn) – p′(βn)
} · dβn

dL
+

∂ϕ+

∂L
(βn),

 =
d

dL
ϕ–(γn) –

d
dL

p(γn)

=
{

∂ϕ–

∂κ
(γn) · dγn

dL
+

∂ϕ–

∂L
(γn)

}
–

dp
dκ

(γn) · dγn

dL

=
{
ϕ′

–(γn) – p′(γn)
} · dγn

dL
+

∂ϕ–

∂L
(γn),

and hence

dβn

dL
= –

∂ϕ+

∂L
(βn) · 

ϕ+ ′ (βn) – p′(βn)
, ()

dγn

dL
= –

∂ϕ–

∂L
(γn) · 

ϕ– ′ (γn) – p′(γn)
. ()

By differentiating () with respect to L, we have

∂ϕ±
∂L

(κ) =
∂

∂L

{
eLκ ·  ± sin(Lκ – ĥ(κ))

cos(Lκ – ĥ(κ))

}

= eLκ

{
κ ·  ± sin(Lκ – ĥ(κ))

cos(Lκ – ĥ(κ))
±  ± sin(Lκ – ĥ(κ))

cos(Lκ – ĥ(κ))
· κ

}

= ±κeLκ{ ± sin(Lκ – ĥ(κ))}{ ± cos(Lκ – ĥ(κ))}
cos(Lκ – ĥ(κ))

,

where we used () for the second equality. So we have (∂ϕ+/∂L)(βn) >  and (∂ϕ–/
∂L)(γn) < . Since p(βn) = ϕ+(βn) and p(γn) = ϕ–(γn), we have ϕ′

+(βn) – p′(βn) >  and
ϕ′

–(γn)–p′(γn) <  by Lemma . Thus, by () and (), we have dβn/dL <  and dγn/dL < ,
which completes the proof. �

Lemma  For any fixed t > , h–(t) is strictly decreasing with respect to L, and
limL→∞ h–(t) = ,

lim
L→

h–(t) =

⎧⎨
⎩

ĥ–(–t) if  < t < π ,

∞ if t ≥ π .

Proof Fix t > . Differentiating both sides of () with respect to L, we have

h–(t) + L · d
dL

h–(t) = ĥ′(h–(t)
) · d

dL
h–(t).
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Hence, by putting κ = h–(t) > , we have

d
dL

h–(t) = –
h–(t)

L – ĥ′(h–(t))
= –

κ

L – ĥ′(κ)
= –

κ

h′(κ)
< 

by () and Lemma (b). This shows that h–(t) is strictly decreasing with respect to L.
From (), we have

lim
L→∞ h–(t) = t · lim

L→∞

L

+ lim
L→∞

ĥ(h–(t))
L

= lim
L→∞

ĥ(κ)
L

= ,

since –π < ĥ(κ) <  for every κ > .
Since h–(t) is strictly decreasing with respect to L, either limL→ h–(t) = ∞, or

limL→ h–(t) = c for some constant c > . Suppose the latter. Taking the limits as L → 
on both sides of (), we have

 = c · lim
L→

L = lim
L→

{
L · h–(t)

}
= lim

L→

{
t + ĥ

(
h–(t)

)}
= t + lim

L→
ĥ
(
h–(t)

)
= t + ĥ(c). ()

But this is impossible for t ≥ π , since ĥ(c) > –π for every c > . Thus limL→ h–(t) = ∞
for t ≥ π .

Let  < t < π , and suppose limL→ h–(t) = ∞. From (), we have t = L · h–(t) –
ĥ(h–(t)), and hence

π > t = lim
L→

{
L · h–(t)

}
– lim

L→
ĥ
(
h–(t)

)
= lim

L→

{
L · h–(t)

}
– lim

κ→∞ ĥ(κ)

= lim
L→

{
L · h–(t)

}
– (–π ) ≥ π ,

since limκ→∞ ˆh(κ) = –π by (). This is a contradiction, and we conclude that
limL→ h–(t) = c for some c >  when  < t < π . The value of c can be obtained from
() so that limL→ h–(t) = ĥ–(–t). �

Note that h–(π/) < β < h–(π ) by (). In proving the following result, this fact
makes the case limL→ β subtler than the others. For this case, we need to utilize addi-
tionally the fact that it is a solution of the equation p(κ) = ϕ+(κ). Note that limL→ β → ∞
is equivalent to limL→ h(β) = π .

Lemma  limL→ βn = limL→ γn = ∞ and limL→∞ βn = limL→∞ γn =  for n = , , , . . .

Proof By () and Lemma , we have

lim
L→

βn ≥ lim
L→

h–
(

πn –
π



)
= ∞, n = , , , . . . ,

lim
L→

γn ≥ lim
L→

h–(πn) = ∞, n = , , , . . . ,

 ≤ lim
L→∞βn ≤ lim

L→∞ h–(πn) = , n = , , , . . . ,

 ≤ lim
L→∞γn ≤ lim

L→∞ h–
(

πn +
π



)
= , n = , , , . . . ,
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which shows limL→ βn = ∞ for n = , , , . . . , and limL→ γn = ∞, limL→∞ βn = ,
limL→∞ γn =  for n = , , , . . .

It remains to show limL→ β = ∞. Note that we cannot directly use Lemma , as we
did above for the others, because β < h–(π ). Since β is strictly decreasing with respect
to L by Lemma , either limL→ β = ∞ or limL→ β = β for some β < ∞. Suppose the
latter. Then, since h–(π/) < β, we have

√
 + √


= ĥ–

(
–

π



)
= lim

L→
h–

(
π



)
≤ lim

L→
β = β < ∞ ()

by Lemma  and (). Since β satisfies the equation p(β) = ϕ+(β), we have

p(β) = eLβ
 + sin(Lβ – ĥ(β))

cos(Lβ – ĥ(β))
,

and hence

p(β) cos
(
Lβ – ĥ(β)

)
– eLβ

{
 + sin

(
Lβ – ĥ(β)

)}
= .

Taking the limits of the both sides as L → , we have

 = lim
L→

[
p(β) cos

(
Lβ – ĥ(β)

)
– eLβ

{
 + sin

(
Lβ – ĥ(β)

)}]

= p(β) cos
(
–ĥ(β)

)
–

{
 + sin

(
–ĥ(β)

)}
= p(β) cos ĥ(β) + sin ĥ(β) – . ()

Note that

d
dκ

{
p(κ) cos ĥ(κ) + sin ĥ(κ) – 

}

= p′(κ) cos ĥ(κ) – p(κ) sin ĥ(κ) · ĥ′(κ) + cos ĥ(κ) · ĥ′(κ)

=
{

p′(κ) + ĥ′(κ)
}

cos ĥ(κ) – p(κ)ĥ′(κ) sin ĥ(κ). ()

For every κ > , we have p(κ) >  by Lemma , ĥ′(κ) <  by (), and

p′(κ) + ĥ′(κ) =

√

(κ – )
(κ +

√
κ + )

–

√

(κ + )
κ + 

=

√

{(κ – )(κ + ) – (κ + )(κ +
√

κ + )}
(κ +

√
κ + )(κ + )

= –

√

(
√

κ + κ + 
√

κ + κ + 
√

κ + )
(κ +

√
κ + )(κ + )

< 

by () and (). Suppose κ > (
√

 + )/
√

. Then –π < ĥ(κ) < –π/ by (), and hence
cos ĥ(κ) >  and sin ĥ(κ) < . From these facts, we conclude that () is always negative
for κ > (

√
 + )/

√
, and hence p(κ) cos ĥ(κ) + sin ĥ(κ) –  is strictly decreasing for κ ≥

(
√

 + )/
√

. It follows that p(κ) cos ĥ(κ) + sin ĥ(κ) –  <  for κ ≥ (
√

 + )/
√

, since

p
(√

 + √


)
cos

{
ĥ
(√

 + √


)}
+ sin

{
ĥ
(√

 + √


)}
– 

= p
(√

 + √


)
cos

(
–

π



)
+ sin

(
–

π



)
–  = – < 
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by (). This is a contradiction to () and (), and thus we conclude that limL→ β =
∞. �

Proof of Theorem  The proof follows immediately from () and Lemmas , . �

6 Numerical computation of the eigenvalues
We use Newton?s method for our numerical computation. We first compute approxi-
mate values of βn and γn. To compute βn (respectively, γn), we have to solve the equation
p(κ) = ϕ+(κ) (respectively, p(κ) = ϕ–(κ)). By Lemma , βn (respectively, γn) is the unique so-
lution in the interval A+

n = (h–(πn–π/), h–(π )) (respectively, A–
n = (h–(πn), h–(π +

π/))). As an initial guess for βn (respectively, γn), we use h–(πn – π/) (respectively,
h–(πn + π/)), an approximate value of which is obtained by solving (again by Newton?s
method) the equation h(κ) = πn – π/ (respectively, h(κ) = πn + π/). Note that h is
one-to-one and onto, and so h(κ) = c has a unique global solution for any c > .

For example, to compute β when L = , we first solve the equation h(κ) = π –π/ when
L = , which is κ – ĥ(κ) = π/, to get

h–(π – π/) ≈ ..

With this value as an initial guess, we use Newton?s method to the equationp(κ) = ϕ+(κ)
when L = , which is

κ –
√

κ + 
κ +

√
κ + 

= eκ  + sin(κ – ĥ(κ))
cos(κ – ĥ(κ))

,

to get β ≈ .. We mention that, in view of the approximation in Theo-
rem (b), it is more advantageous to use h–(πn∓π/) as initial guesses for large n. We list
the result of our computation of a few initial βn and γn when L =  in Table . To illustrate
the bounds in () and the approximations in Lemma , we also list there corresponding
values of h–(π ), h–(π ± π/), and (π (n – ) ± π/)/L when L = .

The computation of μn (respectively, νn) can be done by using the relations () and the
result of computation of βn (respectively, γn) above. For example, we compute μ when
L =  as

μ ≈ /
(
 + .) ≈ ..

Using (), we could also apply Newton?s method directly to the equations

p
(



√

λ

– 
)

= ϕ±
(



√

λ

– 
)

with the initial guesses /{ + (h–(πn ∓π/))}, but we mention that this method can be
quite sensitive to initial guesses. We list the result of our computation of a few initial μn

and νn when L =  in Table . There, we also list corresponding values of /{ + (h–(π ))},
/{ + (h–(π ± π/))}, and /{ + (π (n – ) ± π/)/L} when L =  to illustrate the
bounds and the approximations in Theorem .
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Table 2 Numerical values of βn and γn when L = 1

n Name Value (2π (n – 1) ∓ π /2)/L

1 h–1(2π –π /2) 1.158670738392296
β1 1.191421197714390 –1.570796326794896
h–1(2π ) 1.750980760482237
γ1 2.637856739191656 1.570796326794896
h–1(2π +π /2) 2.673553841718542

2 h–1(4π –π /2) 5.256787217675680
β2 5.262300407849289 4.712388980384689
h–1(4π ) 6.707921416840514
γ2 8.200207778135508 7.853981633974483
h–1(4π +π /2) 8.200581481509233

3 h–1(6π –π /2) 11.247700835446595
β3 11.247720678493973 10.995574287564276
h–1(6π ) 12.787998043974640
γ3 14.334797074430887 14.137166941154069
h–1(6π +π /2) 14.334798038235459

4 h–1(8π –π /2) 17.441107108879219
β4 17.441107153760840 17.278759594743862
h–1(8π ) 18.998568977749238
γ4 20.558043111829927 20.420352248333656
h–1(8π +π /2) 20.558043113872500

5 h–1(10π –π /2) 23.681452204590053
β5 23.681452204681734 23.561944901923449
h–1(10π ) 25.244839588317457
γ5 26.809088990153228 26.703537555513242
h–1(10π +π /2) 26.809088990157306

The last column lists values of the approximations (2π (n – 1) –π /2)/L to βn and (2π (n – 1) +π /2)/L to γn .

Table 3 Numerical values of μn and νn when L = 1

n Name Value 1/{1 + (2π (n – 1) ∓ π /2)4/L4}
1 1/{1 + (h–1(2π –π /2))4} 0.356842821387149

μ1 0.331681981441542 0.141082164173265
1/{1 + (h–1(2π ))4} 0.096154317825982
ν1 0.020235634105536 0.141082164173265
1/{1 + (h–1(2π +π /2))4} 0.019196682744858

2 1/{1 + (h–1(4π –π /2))4} 0.001307826261601
μ2 0.001302361278230 0.002023744499666
1/{1 + (h–1(4π ))4} 0.000493666532259
ν2 0.000221108040807 0.000262740095219
1/{1 + (h–1(4π +π /2))4} 0.000221067748587

3 1/{1 + (h–1(6π –π /2))4} 0.000062476665124
μ3 0.000062476224272 0.000068406697161
1/{1 + (h–1(6π ))4} 0.000037391554101
ν3 0.000023682280310 0.000025034538029
1/{1 + (h–1(6π +π /2))4} 0.000023682273941

4 1/{1 + (h–1(8π –π /2))4} 0.000010806849662
μ4 0.000010806849551 0.000011218760557
1/{1 + (h–1(8π ))4} 0.000007675613651
ν4 0.000005598484481 0.000005751016121
1/{1 + (h–1(8π +π /2))4} 0.000005598484479

5 1/{1 + (h–1(10π –π /2))4} 0.000003179547340
μ5 0.000003179547340 0.000003244546827
1/{1 + (h–1(10π ))4} 0.000002462115765
ν5 0.000001935846573 0.000001966635852
1/{1 + (h–1(10π +π /2))4} 0.000001935846573

The last column lists values of the approximations 1/{1 + (2π (n – 1) –π /2)4/L4} to μn and 1/{1 + (2π (n – 1) +π /2)4/L4} to νn .
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Finally, Table  in Section  lists the result of our computation of μ, ν, μ, ν for various
L, which illustrates Theorem . Especially, the μ part in Table  lists the L-norm of the
operator Kl,α,k for various L.

Additional material

Additional file 1: This Mathematica notebook file is for checking the validity of (13) in Section 3.1. Open it
with Mathematica, and execute (shift + enter) the series of commands there.
Additional file 2: This pdf file is just a printed version of the file choi.nb, as it looks after it is opened with
Mathematica and all the commands therein are executed.
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