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Abstract
In this article, we first propose a kind of mixed boundary value problem for the
inhomogeneous Cimmino system, which consists of first order linear partial
differential equations in R

4. Then, by using the one-to-one correspondence between
the theory of quaternion valued hyperholomorphic functions and that of Cimmino
system’s solutions, we transform the problem as stated above into a problem related
to the ψ -hyperholomorphic functions in quaternionic analysis. Moreover, we show
the boundedness, Hölder continuity, and generalized derivatives of a kind of singular
integral operator ψTC2 [g] related to ψ -hyperholomorphic functions in quaternionic
analysis. Lastly, the solution of the mixed boundary value problem for the
inhomogeneous Cimmino system is explicitly described.
Keywords: Cimmino system; quaternionic analysis; ψ -hyperholomorphic functions;
Cimmino singular integral operator; mixed boundary value problem

1 Introduction
The skew field of quaternions H gives an example of a noncommutative Clifford algebra
with minimal dimension. It serves as a very convenient model of general Clifford con-
structions. Today, quaternionic analysis is regarded as a broadly accepted branch of clas-
sical analysis offering a successful generalization of complex analysis. It studies functions
defined on domains in R

 or R with values in the skew field of real quaternions H. This
theory is centered around the concept of ψ-hyperholomorphic functions related to a so-
called structural set ψ of H or H, respectively.

Quaternionic analysis initiated new solution methods for boundary value problems in
several research areas of mathematical physics, in particular in planar fluids, quantum
field theory, electromagnetic wave equations etc. Many scholars and experts have studied
some boundary and initial value problems in higher dimensions by using them, such as
Gürlebeck, Sprössig, Adler, Alesker, Yang, and so on [–].

The Cimmino system (.) offers a natural and elegant generalization to the four-
dimensional case of that of Cauchy-Riemann. Cimmino, Dragomir and Lanconelli have
done a lot of research on it [, ]. Recently, Abreu Blaya et al. [] studied the Dirichlet
boundary value problem for the inhomogeneous Cimmino system (.). We have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f
∂x

– ∂f
∂x

+ ∂f
∂x

– ∂f
∂x

= ,
∂f
∂x

+ ∂f
∂x

– ∂f
∂x

– ∂f
∂x

= ,
∂f
∂x

– ∂f
∂x

– ∂f
∂x

+ ∂f
∂x

= ,
∂f
∂x

+ ∂f
∂x

+ ∂f
∂x

+ ∂f
∂x

= ,

(.)

© 2015 Wang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13661-014-0273-5
mailto:qiaoyuying@mail.hebtu.edu.cn


Wang et al. Boundary Value Problems  (2015) 2015:13 Page 2 of 16

where fm (m = , , , ) are continuously differentiable R-valued functions in � ⊂R
. The

corresponding inhomogeneous Cimmino system is as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂f
∂x

– ∂f
∂x

+ ∂f
∂x

– ∂f
∂x

= g,
∂f
∂x

+ ∂f
∂x

– ∂f
∂x

– ∂f
∂x

= g,
∂f
∂x

– ∂f
∂x

– ∂f
∂x

+ ∂f
∂x

= g,
∂f
∂x

+ ∂f
∂x

+ ∂f
∂x

+ ∂f
∂x

= g,

(.)

where fm are as stated above, gm ∈ Lp(�,R) (m = , , , ).
In this article, we will study a kind of mixed boundary value problem for the inhomoge-

neous Cimmino system (.) by using the quaternionic analysis approach. This article is
organized as follows. In Section , we recall some basic knowledge of quaternionic analy-
sis. In Section , we construct a singular integral operator and study some of its properties.
In Section , we first propose a kind of mixed boundary value problem for the inhomoge-
neous Cimmino system (.); then we obtain an integral representation of the solution of
the mixed boundary value problem by using the one-to-one correspondence between the
theory of quaternion valued hyperholomorphic functions and that of a Cimmino system’s
solutions.

2 Preliminaries
Quaternionic analysis studies functions defined on R

 with their values in quaternion al-
gebra space H, which is a four-dimensional vector space with basis e, i, j, k. The basis
element e is a unit element, henceforth we shall abbreviate e to . Also, i, j, k satisfy the
following multiplication rule:

i = j = k = –, ij = –ji = k, jk = –kj = i, ki = –ik = j.

An arbitrary element of the quaternion algebra space H can be written as x = x + ix +
jx + kx, xm ∈ R (m = , , , ), and x̄ = x – ix – jx – kx. The norm for an element
x ∈ H is taken to be |x| =

√

x
 + x

 + x
 + x

 and satisfies |x̄| = |x|, |x + y| ≤ |x| + |y|, |xy| =
|x||y|. Obviously, xy = ȳx̄ and xx̄ = x̄x = |x|. In addition, suppose the imaginary unit of C is
identified with the basis element i in quaternion algebra space H, then for arbitrary z ∈C,
we have z = x + ix and its complex conjugate z̄ = x – ix. In this way it is easily seen that
zj = jz̄.

By means of the mapping x + ix + jx + kx → (x + ix) + (x + ix)j (→ (x, x, x, x)),
one can see H as C (or R). From now on, an arbitrary element ξ ∈ H can be written as
ξ = z +zj, z, z ∈ C. From the multiplication rule as stated above, for arbitrary ξ = z +zj,
η = ς + ςj ∈ H, z, z,ς,ς ∈ C. We have ξη = (zς – zς̄) + (zς + zς̄)j, ξ̄ = z + zj =
z̄ + zj = z̄ – zj, and ξ ξ̄ = ξ̄ ξ = |z| + |z| = |ξ |.

Let � ⊂R
 be a nonempty open bounded connected set and the boundary � = ∂� be a

differentiable, oriented, and compact Liapunov surface. The functions f which are defined
in � with values in H can be expressed as f (x) = f + fi + fj + fk, where fm (m = , , , )
are continuously differentiable R-valued functions in � ⊂ R

. On C()(�,H), we define
the differential operators ψD and ψ̄D as follows:
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where
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Obviously, the differential operators ψD and ψ̄D can be written as
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which are associated to the structural set ψ = {, i, –j, k} and ψ̄ = {, –i, j, –k}, respectively.
Let 	R =

∑
m= ∂

xm , then the following equalities hold on C()(�,H):

ψDψ̄D = ψ̄DψD = 	R ∼= 	C ∼= 	H.

Taking into account that the multiplication in H is noncommutative, the functions f are
called left ψ-hyperholomorphic in � if ψD[f ](ξ ) =  (ξ ∈ �). The functions g are called
right ψ-hyperholomorphic in � if [g]ψD(ξ ) =  (ξ ∈ �).

Denote by 
 the fundamental solution of the Laplace operator


(ξ ) = –


π


|ξ | ,

and by Kψ the fundamental solution of the operator ψD:

Kψ (ξ ) = ψ̄D[
] = [
]ψ̄D =


π

ξψ̄

|ξ | =


π
z̄ + z̄j

(|z| + |z|) .

Then the corresponding Cauchy type integral operator is

ψK�[f ](ξ ) =
∫

�

Kψ (η – ξ )nψ (η)f (η) d�η =
∫

�

Kψ (η – ξ ) dσηf (η),

and the Teodorescu type integral operator is

ψT�[f ](ξ ) = –
∫

�

Kψ (η – ξ )f (η) d�η.

In this article, g(x) ∈ Lp(C,H) means that g(x) ∈ Lp(E,H), gσ (x) = |x|–σ g( x̄
|x| ) ∈ Lp(E,H),

in which E = {ξ ||ξ | ≤ }, σ is a real number, ‖g‖Lp = ‖g‖Lp(E) + ‖gσ ‖Lp(E), p ≥ . The fol-
lowing fundamental statements are widely known to hold and can be found in [, , ],
respectively.

Definition . Suppose that the functions f , g , ϕ are defined in � with values in H and
f , g ∈ L(�,H). If for arbitrary ϕ ∈ C∞

 (�,H), f , g satisfy
∫

�

[ϕ]ψD(ξ )g(ξ ) d�ξ +
∫

�

ϕ(ξ )f (ξ ) d�ξ = ,

then f is called a generalized derivative of the function g , denoted by f = ψD[g].
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Lemma . ([]) If σ,σ > ,  ≤ γ ≤ , then we have

∣
∣σ

γ
 – σ

γ

∣
∣ ≤ |σ – σ|γ .

Lemma . (Integral form of the quaternionic Stokes formula []) Let �,� = ∂� be as
stated above and f , g ∈ C()(�,H), then

∫

�

g(ξ )nψ (ξ )f (ξ ) d�ξ =
∫

�

(
[g]ψD(ξ ) · f (ξ ) + g(ξ ) · ψD[f ](ξ )

)
d�ξ .

Lemma . (Borel-Pompeiu quaternionic formula []) Let �,� = ∂� be as stated above
and f ∈ C()(�,H), then for arbitrary ξ ∈ �, we have

∫

�

Kψ (η – ξ ) dσηf (η) –
∫

�

Kψ (η – ξ )ψD[f ](η) d�η = f (ξ )

and
∫

�

f (η) dσηKψ (η – ξ ) –
∫

�

[f ]ψD(η)Kψ (η – ξ ) d�η = f (ξ ).

Lemma . (Hadamard lemma []) Suppose � be as stated above. If α′, β ′ satisfy  <
α′,β ′ < , α′ + β ′ > , then for all x, x ∈R

 and x �= x, we have

∫

�

|t – x|–α′ |t – x|–β ′
dt ≤ M

(
α′,β ′)|x – x|–α′–β ′

.

3 Some useful properties of the Cimmino singular integral operator
By means of the idea as stated above, we suppose

ξ = z + zj ∈H, z = x + ix, z = x + ix ∈ C,

η = ς + ςj ∈ H, ς = y + iy,ς = y + iy ∈C,

f (ξ ) = f (z, z) = u(z, z) + u(z, z)j, u = f + if, u = f + if ∈C,

g(ξ ) = g(z, z) = v(z, z) + v(z, z)j, v = g + ig, v = g + ig ∈C.

Then system (.) can be written as

(.) ⇐⇒
{

∂z̄ u + ∂z ū = ,
∂z̄ u – ∂z ū = 

⇐⇒ ψD[f ] = . (.)

Moreover, if the pair (u, u) of continuously differentiable (up to the second order)
complex-valued functions give a solution of system (.) then

	R u ∼= 	C u = 
(
∂

z z̄ + ∂
z z̄

)
u = .

A similar observation is valid for ū, so u, ū are complex-valued harmonic functions,
i.e. the set of solutions of system (.) contains all holomorphic functions of two complex
variables.
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Similarly, system (.) can be written as

(.) ⇐⇒
{

∂z̄ u + ∂z ū = v,
∂z̄ u – ∂z ū = v

⇐⇒ ψD[f ] = g. (.)

The generalized Teodorescu type integral operator ψTC [g] can be written as

ψTC [g](z, z) = ψTC [g](ξ )

= –
∫

C
Kψ (η – ξ )g(η) dC

η

=


π

∫

C

(z̄ – ς̄) + (z̄ – ς̄)j
(|z – ς| + |z – ς|) g(ς,ς) dC

ς,ς

= ψT ()
C [g](z, z) + ψT ()

C [g](z, z)j,

where the Cimmino singular integral operators ψT ()
C [g], ψT ()

C [g] are as follows:

ψT ()
C [g](z, z) =


π

∫

C

(z̄ – ς̄)
(|z – ς| + |z – ς|) g(ς,ς) dC

ς,ς
,

ψT ()
C [g](z, z) =


π

∫

C

(z̄ – ς̄)
(|z – ς| + |z – ς|) g(ς,ς) dC

ς,ς
.

Theorem . Let E be as stated above. If g ∈ Lp(C,H),  < p < +∞, then we have
() |ψTC [g](ξ )| ≤ M(p)‖g‖Lp , ξ ∈C

 ∼= R
,

() ψTC [g] ∈ Cβ (C,H) ∼= Cβ (R,H) ( < β =  – /p < ),
() ψD(ψTC [g])(ξ ) = g(ξ ), ξ ∈C

 ∼= R
.

Proof () First, we have

∣
∣ψTC [g](ξ )

∣
∣ ≤ 

π

∣
∣
∣
∣

∫

E

(z̄ – ς̄) + (z̄ – ς̄)j
(|z – ς| + |z – ς|) g(η) dEη

∣
∣
∣
∣

+


π

∣
∣
∣
∣

∫

C–E

(z̄ – ς̄) + (z̄ – ς̄)j
(|z – ς| + |z – ς|) g(η) d(C–E)η

∣
∣
∣
∣

= O + O.

By the Hölder inequality, we have

O =


π

∣
∣
∣
∣

∫

E

(z̄ – ς̄) + (z̄ – ς̄)j
(|z – ς| + |z – ς|) g(η) dEη

∣
∣
∣
∣
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∫

E

|z – ς| + |z – ς|
|ξ – η|

∣
∣g(η)

∣
∣dEη

≤ 
π

∫

E


|ξ – η|

∣
∣g(η)

∣
∣dEη ≤ 

π ‖g‖Lp

(∫

E


|ξ – η|q dEη

) 
q

,

where /p + /q = .
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When ξ ∈ Ē, because of  < p < +∞, /p + /q = , we have  < q < /. Thus
∫

E


|ξ–η|q dEη

is bounded. Hence we have

(∫

E


|ξ – η|q dEη

) 
q

≤ J.

When ξ ∈C
 – Ē, by Lemma . and the generalized spherical coordinate, we have

(∫

E


|ξ – η|q dEη

) 
q

≤ J

(∫ d+

d

ρ–q dρ

) 
q

≤ J,

where ρ = |ξ – η|, d = d(ξ , Ē).
Therefore, for ∀ξ ∈C

 ∼= R
, we can obtain

O ≤ M′
(p)‖g‖Lp , ξ ∈ C

 ∼= R
,

where M′
(p) = max{J/π, J/π}.

For η ∈ C
 – E, we suppose that η = η̄′

|η′| , then we have |η′| ≤ . Thus by g ∈ Lp(C,H),
similar to the proof as stated above, we have

O ≤ M′′
 (p)‖g‖Lp .

Therefore, we obtain

∣
∣ψTC [g](ξ )

∣
∣ ≤ M(p)‖g‖Lp , ξ ∈C

 ∼= R
,

where M(p) = M′
(p) + M′′

 (p).
() For arbitrary ξ ′, ξ ′′ ∈ C

 ∼= R
, ξ ′ �= ξ ′′, we have

∣
∣ψTC [g]

(
ξ ′) – ψTC [g]

(
ξ ′′)∣∣

=


π

∣
∣
∣
∣

∫

C

[
(z̄′

 – ς̄) + (z̄′
 – ς̄)j

|ξ ′ – η| –
(z̄′′

 – ς̄) + (z̄′′
 – ς̄)j

|ξ ′′ – η|
]

g(η) dC
η

∣
∣
∣
∣

≤ 
π

∣
∣
∣
∣

∫

E

[
(z̄′

 – ς̄) + (z̄′
 – ς̄)j

|ξ ′ – η| –
(z̄′′

 – ς̄) + (z̄′′
 – ς̄)j

|ξ ′′ – η|
]

g(η) dEη

∣
∣
∣
∣

+


π

∣
∣
∣
∣

∫

C–E

[
(z̄′

 – ς̄) + (z̄′
 – ς̄)j

|ξ ′ – η| –
(z̄′′

 – ς̄) + (z̄′′
 – ς̄)j

|ξ ′′ – η|
]

g(η) d(C–E)η

∣
∣
∣
∣

= O + O

and

O ≤ 
π

∣
∣
∣
∣

∫

E

[
(z̄′

 – ς̄)
|ξ ′ – η| –

(z̄′′
 – ς̄)

|ξ ′′ – η|
]

g(η) dEη

∣
∣
∣
∣

+


π

∣
∣
∣
∣

∫

E

[
(z̄′

 – ς̄)j
|ξ ′ – η| –

(z̄′′
 – ς̄)j

|ξ ′′ – η|
]

g(η) dEη

∣
∣
∣
∣

=
∣
∣ψT ()

E [g]
(
z′

, z′

)

– ψT ()
E [g]

(
z′′

 , z′′

)∣
∣ +

∣
∣ψT ()

E [g]
(
z′

, z′

)

– ψT ()
E [g]

(
z′′

 , z′′

)∣
∣

= I + I. (.)
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Since
∣
∣
∣
∣

z̄′
 – ς̄

|ξ ′ – η| –
z̄′′

 – ς̄

|ξ ′′ – η|
∣
∣
∣
∣

=
∣
∣
∣
∣
(z̄′

 – ς̄)|ξ ′′ – η|(|z′′
 – ς| + |z′′

 – ς|)
|ξ ′ – η||ξ ′′ – η|

–
(|z′

 – ς| + |z′
 – ς|)|ξ ′ – η|(z̄′′

 – ς̄)
|ξ ′ – η||ξ ′′ – η|

∣
∣
∣
∣

≤ |(z̄′
 – ς̄)|ξ ′′ – η||z′′

 – ς| – |z′
 – ς||ξ ′ – η|(z̄′′

 – ς̄)|
|ξ ′ – η||ξ ′′ – η|

+
|(z̄′

 – ς̄)|ξ ′′ – η||z′′
 – ς| – |z′

 – ς||ξ ′ – η|(z̄′′
 – ς̄)|

|ξ ′ – η||ξ ′′ – η|
= K

(
ξ ′, ξ ′′,η

)
+ K

(
ξ ′, ξ ′′,η

)
. (.)

Thus

I ≤ 
π

∫

E
K

(
ξ ′, ξ ′′,η

)∣
∣g(η)

∣
∣dEη +


π

∫

E
K

(
ξ ′, ξ ′′,η

)∣
∣g(η)

∣
∣dEη = I + I . (.)

Again, because of

K
(
ξ ′, ξ ′′,η

)

=
|(z̄′

 – ς̄)|ξ ′′ – η||z′′
 – ς| – |z′

 – ς||ξ ′ – η|(z̄′′
 – ς̄)|

|ξ ′ – η||ξ ′′ – η|

=
|(z̄′

 – ς̄)|ξ ′′ – η|(z′′
 – ς)(z̄′′

 – ς̄) – (z̄′
 – ς̄)(z′

 – ς)|ξ ′ – η|(z̄′′
 – ς̄)|

|ξ ′ – η||ξ ′′ – η|

=
|z̄′

 – ς̄|||ξ ′′ – η|(z′′
 – ς) – (z′

 – ς)|ξ ′ – η|||z̄′′
 – ς̄|

|ξ ′ – η||ξ ′′ – η|

≤ |z̄′
 – ς̄|[|ξ ′′ – η||z′′

 – z′
| + ||ξ ′′ – η| – |ξ ′ – η|||z′

 – ς|]|z̄′′
 – ς̄|

|ξ ′ – η||ξ ′′ – η|

≤ |z̄′
 – ς̄|[|ξ ′′ – η||z′′

 – z′
| + |ξ ′′ – ξ ′|(|ξ ′′ – η| + |ξ ′ – η|)|z′

 – ς|]|z̄′′
 – ς̄|

|ξ ′ – η||ξ ′′ – η|

≤ |ξ ′ – η|[|ξ ′′ – η||ξ ′′ – ξ ′| + |ξ ′′ – ξ ′|(|ξ ′′ – η| + |ξ ′ – η|)|ξ ′ – η|]|ξ ′′ – η|
|ξ ′ – η||ξ ′′ – η|

=
∣
∣ξ ′ – ξ ′′∣∣

∑

l=


|ξ ′ – η|–l|ξ ′′ – η|l . (.)

Thus by (.), (.), and the Hölder inequality, we have

I ≤ 
π

∫

E

∑

l=


|ξ ′ – η|–l|ξ ′′ – η|l

∣
∣g(η)

∣
∣dEη

∣
∣ξ ′ – ξ ′′∣∣

≤ 
π ‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣

∑

l=

(∫

E


|ξ ′ – η|(–l)q|ξ ′′ – η|lq dEη

) 
q

=


π ‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣

∑

l=

(
I(l)



) 
q . (.)
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Suppose αl = ( – l)q, βl = lq (l = , , ). By  < q < /, we know

 < αl,βl < , αl + βl = q > .

Thus, by Lemma ., for l = , , , we have

I(l)
 =

∫

E


|ξ ′ – η|(–l)q|ξ ′′ – η|lq dEη

≤ M(αl,βl)
∣
∣ξ ′ – ξ ′′∣∣–αl–βl

= M(αl,βl)
∣
∣ξ ′ – ξ ′′∣∣–q. (.)

Thus, by inequalities (.) and (.), we obtain

I ≤ 
π ‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣

∑

l=

(
M(αl,βl)

∣
∣ξ ′ – ξ ′′∣∣–q) 

q

≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β , (.)

where  < β =  + ( – q)/q =  – /p < .
Next, we discuss I .
For arbitrary ξ ′, ξ ′′ ∈ C

 ∼= R
, ξ ′ �= ξ ′′, we suppose |ξ ′ – ξ ′′| = δ and construct a sphere

B(ξ ′, δ) with the center at ξ ′ and radius δ. Next we discuss I in two cases.
(i) If B(ξ ′, δ) ∩ Ē �= ∅, then we may suppose B(ξ ′, δ) ∩ Ē = �, Ē – � = �. Thus we

have

I =


π

∫

E
K

(
ξ ′, ξ ′′,η

)∣
∣g(η)

∣
∣dEη

=


π

∫

�

K
(
ξ ′, ξ ′′,η

)∣
∣g(η)

∣
∣d�η

+


π

∫

�

K
(
ξ ′, ξ ′′,η

)∣
∣g(η)

∣
∣d�η

= I()
 + I()

 . (.)

Again, by inequality (.), the Hölder inequality, and the use of a local generalized spher-
ical coordinate, we have

I()
 ≤ 

π

∫

�

|z̄′
 – ς̄||ξ ′′ – η||z′′

 – ς|
|ξ ′ – η||ξ ′′ – η|

∣
∣g(η)

∣
∣d�η

+


π

∫

�

|z′
 – ς||ξ ′ – η||z̄′′

 – ς̄|
|ξ ′ – η||ξ ′′ – η|

∣
∣g(η)

∣
∣d�η

≤ 
π

∫

�


|ξ ′ – η|

∣
∣g(η)

∣
∣d�η +


π

∫

�


|ξ ′′ – η|

∣
∣g(η)

∣
∣d�η

≤ J‖g‖Lp

[(∫

�


|ξ ′ – η|q d�η

) 
q

+
(∫

�


|ξ ′′ – η|q d�η

) 
q
]

≤ J‖g‖Lp

[(∫ δ




ρq– dρ

) 
q

+
(∫ δ




ρq– dρ

) 
q
]
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≤ J‖g‖Lpδ
–q

q = J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣– 

p

= J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β . (.)

In addition,

K
(
ξ ′, ξ ′′,η

)

=
|(z̄′

 – ς̄)|ξ ′′ – η||z′′
 – ς| – |z′

 – ς||ξ ′ – η|(z̄′′
 – ς̄)|

|ξ ′ – η||ξ ′′ – η|

=
|(z̄′′

 – ς̄ + z̄′
 – z̄′′

 )|ξ ′′ – η||z′′
 – ς| – |z′

 – ς||ξ ′ – η|(z̄′′
 – ς̄)|

|ξ ′ – η||ξ ′′ – η|

=
∣
∣
∣
∣
(z̄′′

 – ς̄)|ξ ′′ – η||z′′
 – ς| + (z̄′

 – z̄′′
 )|ξ ′′ – η||z′′

 – ς|
|ξ ′ – η||ξ ′′ – η|

–
(z̄′′

 – ς̄)|z′
 – ς||ξ ′ – η|

|ξ ′ – η||ξ ′′ – η|
∣
∣
∣
∣

≤ |z′′
 – ς|||ξ ′′ – η||z′′

 – ς| – |z′
 – ς||ξ ′ – η||

|ξ ′ – η||ξ ′′ – η|

+
|z′

 – z′′
 ||ξ ′′ – η||z′′

 – ς|
|ξ ′ – η||ξ ′′ – η| .

Again, because of

∣
∣
∣
∣ξ ′′ – η

∣
∣∣∣z′′

 – ς
∣
∣ –

∣
∣z′

 – ς
∣
∣∣∣ξ ′ – η

∣
∣∣∣

=
∣
∣
∣
∣ξ ′′ – η

∣
∣∣∣z′′

 – ς
∣
∣ –

∣
∣ξ ′′ – η

∣
∣∣∣z′

 – ς
∣
∣

+
∣
∣ξ ′′ – η

∣
∣∣∣z′

 – ς
∣
∣ –

∣
∣z′

 – ς
∣
∣∣∣ξ ′ – η

∣
∣∣∣

≤ ∣
∣ξ ′′ – η

∣
∣∣∣

∣
∣z′′

 – ς
∣
∣ –

∣
∣z′

 – ς
∣
∣∣∣ +

∣
∣z′

 – ς
∣
∣∣∣

∣
∣ξ ′′ – η

∣
∣ –

∣
∣ξ ′ – η

∣
∣∣∣

≤ ∣
∣ξ ′′ – η

∣
∣∣∣z′′

 – z′

∣
∣
(∣
∣z′′

 – ς
∣
∣ +

∣
∣z′

 – ς
∣
∣
)

+
∣
∣z′

 – ς
∣
∣∣∣ξ ′′ – ξ ′∣∣(∣∣ξ ′′ – η

∣
∣ +

∣
∣ξ ′ – η

∣
∣
)

≤ ∣
∣ξ ′′ – ξ ′∣∣

∑

m=

∣
∣ξ ′′ – η

∣
∣–m∣

∣ξ ′ – η
∣
∣m.

Thus, we have

K
(
ξ ′, ξ ′′,η

)

≤ |ξ ′′ – η||ξ ′′ – ξ ′|∑
m= |ξ ′′ – η|–m|ξ ′ – η|m + |ξ ′ – ξ ′′||ξ ′′ – η||ξ ′′ – η|

|ξ ′ – η||ξ ′′ – η|

=
∣
∣ξ ′ – ξ ′′∣∣

(


|ξ ′ – η| +
∑

l=


|ξ ′ – η|–l|ξ ′′ – η|l

)

. (.)

So by (.) and (.), we obtain

I()
 =


π

∫

�

K
(
ξ ′, ξ ′′,η

)∣
∣g(η)

∣
∣d�η

≤ ∣
∣ξ ′ – ξ ′′∣∣ 

π

∫

�

|g(η)|
|ξ ′ – η| d�η
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+
∣
∣ξ ′ – ξ ′′∣∣ 

π

∫

�

∑

l=

|g(η)|
|ξ ′ – η|–l|ξ ′′ – η|l d�η

= I()


′
+ I()



′′
. (.)

First, similar to the method estimating I , we have

I()


′′ ≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β . (.)

Second, when η ∈ �, |ξ ′ – η| > δ, |ξ ′′ – η| > δ. Thus we have

δ ≤ ∣
∣ξ ′ – η

∣
∣ –

∣
∣ξ ′ – ξ ′′∣∣ ≤ ∣

∣ξ ′′ – η
∣
∣ ≤ ∣

∣ξ ′ – ξ ′′∣∣ +
∣
∣ξ ′ – η

∣
∣ = δ +

∣
∣ξ ′ – η

∣
∣,

δ ≤ ∣
∣ξ ′′ – η

∣
∣ –

∣
∣ξ ′′ – ξ ′∣∣ ≤ ∣

∣ξ ′ – η
∣
∣ ≤ ∣

∣ξ ′ – ξ ′′∣∣ +
∣
∣ξ ′′ – η

∣
∣ = δ +

∣
∣ξ ′′ – η

∣
∣.

(.)

So we know




≤ |ξ ′ – η|
|ξ ′′ – η| ≤ 


. (.)

Thus, by (.), the Hölder inequality, and Lemma ., we can obtain

I()


′
=

∣
∣ξ ′ – ξ ′′∣∣ 

π

∫

�

|g(η)|
|ξ ′ – η| d�η

≤ ∣
∣ξ ′ – ξ ′′∣∣ 

π

∫

�

|g(η)|
|ξ ′ – η||ξ ′′ – η| d�η

≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣– 

p

= J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β . (.)

So, by (.), (.), and (.), we have

I()
 ≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β . (.)

Therefore, by (.), (.), and (.), we can obtain

I ≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β . (.)

(ii) If B(ξ ′, δ) ∩ Ē = ∅, then for arbitrary η ∈ E, we have |ξ ′ – η| > δ, |ξ ′′ – η| > δ. Thus
similar to the method estimating I()

 , we have

I ≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β . (.)

So, by (.) and (.), we have

I ≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β , ξ ′, ξ ′′ ∈R

 ∼= C
, (.)

where J = max{J, J}.
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Thus, to sum up, by (.), (.), and (.), we obtain

I ≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β , ξ ′, ξ ′′ ∈R

 ∼= C
. (.)

Similarly, we have

I ≤ J‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β , ξ ′, ξ ′′ ∈R

 ∼= C
. (.)

So, by (.), (.), and (.), we obtain

O ≤ M′
(p)‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β , ξ ′, ξ ′′ ∈R

 ∼= C
, (.)

where M′
(p) = J + J.

For η ∈ C
 – E, we suppose that η = η̄′

|η′| , then we have |η′| ≤ . Thus by g ∈ Lp(C,H),
similar to the proof as stated above, we have

O ≤ M′′
(p)‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β , ξ ′, ξ ′′ ∈R

 ∼= C
.

Therefore, for arbitrary ξ ′, ξ ′′ ∈ C
 ∼= R

, ξ ′ �= ξ ′′, we obtain

∣
∣ψTC [g]

(
ξ ′) – ψTC [g]

(
ξ ′′)∣∣ ≤ M(p)‖g‖Lp

∣
∣ξ ′ – ξ ′′∣∣β , ξ ′, ξ ′′ ∈R

 ∼= C
,

where M(p) = M′
(p) + M′′

(p), i.e. ψTC [g] ∈ Cβ (C,H) ∼= Cβ (R,H) ( < β < ).
() For arbitrary ϕ ∈ C∞

 (C,H), there exists a bounded closed set Q ⊂ C
, such that

suppϕ ⊂⊂ Q. Thus, by TC [g](∞) = , Definition ., Lemma ., and the Fubini theorem,
we have

∫

C
[ϕ]ψD(ξ )ψTC [g](ξ ) dC

ξ

= lim
d→∞

∫

Q
[ϕ]ψD(ξ )ψTC [g](ξ ) dQξ

= – lim
d→∞

∫

Q
[ϕ]ψD(ξ )

∫

C
Kψ (η – ξ )g(η) dC

η
dQξ

= lim
d→∞

∫

C

∫

Q
[ϕ]ψD(ξ )Kψ (ξ – η) dQξ g(η) dC

η

= lim
d→∞

∫

C

[∫

∂Q
ϕ(ξ ) dσξKψ (ξ – η) – ϕ(η)

]

g(η) dC
η

= –
∫

C
ϕ(η)g(η) dC

η
= –

∫

C
ϕ(ξ )g(ξ ) dC

ξ
,

where d = supξ ′ ,ξ ′′∈Q |ξ ′ – ξ ′′|. Hence, in the sense of generalized derivatives, we have
ψD(ψTC [g])(ξ ) = g(ξ ). �

Remark . By the process of proof in Theorem ., it is easy to show that ψT ()
C [g],

ψT ()
C [g] ∈ Cβ (C,C) ∼= Cβ (R,C) ( < β < ).
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4 Integral representation of solution of the mixed boundary value problem for
the inhomogeneous Cimmino system

In this section, let E = E ×E be a bounded domain, ∂Em (m = , ) be simply closed curves
in the zm-plane, and ∂Em ∈ C()

μ ,  < μ < . Without loss of generality, we may consider
∂Em = {zm||zm| = } and Em = {zm||zm| < } (m = , ). Denote by E+

m, E–
m the inner domain

and outer domain of ∂Em, respectively, and E++ = E+
 × E+

 , E+– = E+
 × E–

 , E–+ = E–
 × E+

 ,
E–– = E–

 × E–
 , � = ∂E × ∂E.

Problem P The mixed boundary value problem for the inhomogeneous Cimmino system
(.) is to find a function f (z, z) = u(z, z) + u(z, z)j satisfying the Cimmino system
(.) and the following boundary condition:

u++
 (t, t) = G(t, t)u+–

 (t, t) + G(t, t)u–+
 (t, t)

+ G(t, t)u––
 (t, t) + H(t, t), t = (t, t) ∈ �, (.)

u(t, t) = h(t, t), t = (t, t) ∈ ∂E, (.)

where u = f + if, u = f + if, z = x + ix, z = x + ix. G(z, z), G(z, z), G(z, z) are
analytic in E+–, E–+, E–– and are continuous in Ē+–, Ē–+, Ē––, respectively, which have no
zero. We have Gm(t, t) (m = , , ), H(t, t) ∈ Cα(�,C), h(t, t) ∈ Cα(∂E,C) ( < α < ).

Lemma . If � ∈ C()(E,H), h ∈ Cα(∂E,C) ( < α < ), g ∈ Lp(C,H) ( < p < +∞), then
the equation ψD[�] =  with the boundary condition w̄|∂E = h̄(t, t) – ψT ()

C [g](t, t) has
the solution � = w + wj = w + jw̄ and

w̄(ξ ) =
∫

∂E

[
h̄(t) – ψT ()

C [g](t)
] ∂

∂ν
G(ξ , t) d∂Et ,

w(ξ ) = �(ξ ) + w(ξ )

or

w̄(z, z) =
∫

∂E

[
h̄(t, t) – ψT ()

C [g](t, t)
] ∂

∂ν
G(z, z, t, t) d∂Et,t ,

w(z, z) = �(z, z) + w(z, z),

where ν is the unit outward normal on ∂E, G(ξ ,η) is the Green’s function in E = E × E,
�(z, z) is an arbitrary analytic function in E = E × E, and

ψT ()
C [g](t, t) =


π

∫

C

(t̄ – ς̄)
(|t – ς| + |t – ς|) g(ς,ς) d

C

ς,ς

,

w(z, z) = T̃E [–∂z w̄] + T̃E [�],

T̃E [–∂z w̄] = –

π

∫

E

–∂z w̄(ς, z)
ς – z

dEς ,

T̃E [�] = –

π

∫

E

�(z,ς)
ς – z

dEς ,

�(z, z) =


π i

∫

∂E

∂z w̄(ς, z)
ς – z

d∂Eς.
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Proof From Remark ., we know ψT ()
C [g] ∈ Cβ (C,C) ∼= Cβ (R,C) ( < β < ). Thus by

[], we have h̄ – ψT ()
C [g] ∈ Cμ(∂E,C) ( < μ = min{α,β} < ). So we may construct

w̄(ξ ) =
∫

∂E

[
h̄(t) – ψT ()

C [g](t)
] ∂

∂ν
G(ξ , t) d∂Et ,

where ν is the unit outward normal on ∂E, G(ξ ,η) is the Green’s function in E = E × E,
and

ψT ()
C [g](t, t) =


π

∫

C

(t̄ – ς̄)
(|t – ς| + |t – ς|) g(ς,ς) d

C

ς,ς

.

Then w̄(ξ ) is a complex-value harmonic function in E, i.e. 	C w̄ = (∂
z z̄

+ ∂
z z̄

)w̄ = .
Hence

∂z̄ (∂z w̄) = –∂z̄ (∂z w̄). (.)

Again, by (.), we have

ψD[�] =  ⇐⇒
{

∂z̄ w + ∂z w̄ = ,
∂z̄ w – ∂z w̄ = 

⇐⇒
{

∂z̄ w = –∂z w̄,
∂z̄ w = ∂z w̄.

(.)

By (.), we know –∂z w̄, ∂z w̄ satisfy the compatibility condition

∂z̄ (–∂z w̄) = ∂z̄ (∂z w̄).

Thus by Theorem .. of Chapter  in [], the general solution w(z, z) of system (.)
possesses the form

w(z, z) = �(z, z) + w(z, z),

where �(z, z) is an arbitrary analytic function in E = E × E and

w(z, z) = T̃E [–∂z w̄] + T̃E [�],

T̃E [–∂z w̄] = –

π

∫

E

–∂z w̄(ς, z)
ς – z

dEς ,

T̃E [�] = –

π

∫

E

�(z,ς)
ς – z

dEς ,

�(z, z) =


π i

∫

∂E

∂z w̄(ς, z)
ς – z

d∂Eς. �

Lemma . Let Gm (m = , , ), H , w, E etc. be as stated above. Find a sectionally analytic
function �(z, z) in E++, E+–, E–+, E––, such that �(z, z) is continuous in E++, E+–, E–+,
E–– and satisfies the boundary condition

�++(t, t) = G(t, t)�+–(t, t) + G(t, t)�–+(t, t)

+ G(t, t)�––(t, t) + (G + G + G – )
(
w(t, t)

+ ψT ()
C [g](t, t)

)
+ H(t, t), t = (t, t) ∈ �, (.)
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where

ψT ()
C [g](t, t) =


π

∫

C

(t̄ – ς̄)
(|t – ς| + |t – ς|) g(ς,ς) d

C

ς,ς

.

Then the solution has the form

�(z, z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(z, z), z = (z, z) ∈ E++,
F(z, z)/G(z, z), z = (z, z) ∈ E+–,
F(z, z)/G(z, z), z = (z, z) ∈ E–+,
–F(z, z)/G(z, z), z = (z, z) ∈ E––,

(.)

where

F(z, z) =


(π i)

∫

∂E×∂E

H̃(ς,ς)
(ς – z)(ς – z)

d∂Eς d∂Eς ,

and H̃ = (G + G + G – )(w + ψT ()
C [g]) + H .

Proof From Remark ., we know ψT ()
C [g] ∈ Cβ (C,C) ∼= Cβ (R,C) ( < β < ). Thus by

[], we have H̃ = (G + G + G – )(w + ψT ()
C [g]) + H ∈ Cμ(�,C) ( < μ = min{α,β} < ).

Hence by Theorem .. of Chapter  in [], it is not difficult to verify this lemma. �

Theorem . Let E, ∂E etc. be as stated above. If g ∈ Lp(C,H) ( < p < +∞), then the
solution of Problem P can be expressed as

f (ξ ) = �(ξ ) + ψTC [g](ξ ),

where ψD[�] =  and
⎧
⎪⎨

⎪⎩

�(ξ ) = w(ξ ) + w(ξ )j = w(ξ ) + jw̄(ξ ),
w(ξ ) = �(ξ ) + w(ξ ),
w̄(ξ ) =

∫

∂E[h̄(t) – ψT ()
C [g](t)] ∂

∂ν
G(ξ , t) d∂Et ,

ψTC [g](ξ ) = ψTC [g](z, z) =


π

∫

C

(z̄ – ς̄) + (z̄ – ς̄)j
(|z – ς| + |z – ς|) g(ς,ς) d

C

ς,ς

= ψT ()
C [g](z, z) + ψT ()

C [g](z, z)j,

herein w, ψT ()
C [g] are as stated in Lemma ., �, ψT ()

C [g] are as stated in Lemma ..

Proof By Theorem ., we know ψD[ψTC [g]](ξ ) = g(ξ ), thus ψD[�(ξ ) + ψTC [g](ξ )] = g(ξ ).
Hence, by (.), we know the general solution of system (.) has the form

f (ξ ) = �(ξ ) + ψTC [g](ξ ), (.)

where ψD[�] = , ξ = z + zj, f (ξ ) = f (z, z) = u(z, z) + u(z, z)j = u(z, z) + jū(z, z),
�(ξ ) = �(z, z) = w(z, z) + w(z, z)j = w(z, z) + jw̄(z, z), and

ψTC [g](ξ ) = ψTC [g](z, z) =


π

∫

C

(z̄ – ς̄) + (z̄ – ς̄)j
(|z – ς| + |z – ς|) g(ς,ς) d

C

ς,ς

= ψT ()
C [g](z, z) + ψT ()

C [g](z, z)j = ψT ()
C [g](z, z) + jψT ()

C [g](z, z).
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Thus

ū(z, z) = w̄(z, z) + ψT ()
C [g](z, z).

So the boundary condition (.) in Problem P can be written as

w̄ = h̄(t, t) – ψT ()
C [g](t, t), t = (t, t) ∈ ∂E. (.)

Therefore, by Lemma ., the solution to the equation ψD[�] =  with boundary condition
(.) can be expressed as

�(ξ ) = w(ξ ) + w(ξ )j = w(ξ ) + jw̄(ξ ),

where w, w̄ are as stated in Lemma .. Again, by (.), we have

u(z, z) = w(z, z) + ψT ()
C [g](z, z).

From Lemma ., we have

w(z, z) = �(z, z) + w(z, z),

where �(z, z) is an arbitrary analytic function in E = E ×E, w is as stated in Lemma ..
In addition, by Chapter  in [], we know w ∈ Cα(C,C) ( < α < ), by Remark ., we
know ψT ()

C [g] ∈ Cβ (C,C) ( < β < ). So the boundary condition (.) in Problem P can
be written as

�++(t, t) = G(t, t)�+–(t, t) + G(t, t)�–+(t, t)

+ G(t, t)�––(t, t) + (G + G + G – )
(
w(t, t)

+ ψT ()
C [g](t, t)

)
+ H(t, t), t = (t, t) ∈ �.

Therefore, by Lemma ., we know �(z, z) can be expressed as (.) in Lemma .. In
conclusion, we complete the proof. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LPW has presented the main purpose of the article. All authors read and approved the final manuscript.

Author details
1College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei province, 050024,
P.R. China. 2School of Information, Renmin University of China, Beijing, 100872, P.R. China.

Acknowledgements
This work was supported by the National Science Foundation of China (No. 11401162, No. 11171349, No. 11301136), the
Natural Science Foundation of Hebei Province (No. A2015205012, No. A2014205069, No. A2014208158) and Hebei
Normal University Dr. Fund (No. L2015B03, No. L2015B04).

Received: 3 September 2014 Accepted: 22 December 2014



Wang et al. Boundary Value Problems  (2015) 2015:13 Page 16 of 16

References
1. Gürlebeck, K, Sprössig, W: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, New York (1997)
2. Adler, SL: Quaternionic quantum field theory. Commun. Math. Phys. 104, 611-656 (1986)
3. Sprössig, W: Quaternionic operator methods in fluid dynamics. Adv. Appl. Clifford Algebras 18, 963-978 (2008)
4. Alesker, S: Quaternionic Monge-Ampère equations. J. Geom. Anal. 13, 205-238 (2003)
5. Yang, PW, Li, D: Hλ-Regular vector functions and their boundary value problems. Bound. Value Probl. 2012, 75 (2012)
6. Cimmino, G: Su alcuni sistemi lineari omogenei di equazioni alle derivate parziali del primo ordine. Rend. Semin. Mat.

Univ. Padova 12, 89-113 (1941)
7. Dragomir, S, Lanconelli, E: On first order linear PDE systems all of whose solutions are harmonic functions. Tsukuba J.

Math. 30, 149-170 (2006)
8. Abreu Blaya, R, Bory Reyes, J, Guzmán Adán, A, Schneider, B: Boundary value problems for the Cimmino system via

quaternionic analysis. Appl. Math. Comput. 219, 3872-3881 (2012)
9. Iftimie, V: Functions hypercomplexes. Bull. Math. Soc. Sci. Math. Roum. 57, 279-332 (1965)
10. Gilbert, RP, Buchanan, JL: First Order Elliptic Systems: A Function Theoretic Approach. Academic Press, New York

(1983)
11. Wen, GC: Recent Progress in Theory and Applications of Modern Complex Analysis. Science Press, Beijing (2010)


	The mixed boundary value problem for the inhomogeneous Cimmino system
	Abstract
	Keywords

	Introduction
	Preliminaries
	Some useful properties of the Cimmino singular integral operator
	Integral representation of solution of the mixed boundary value problem for the inhomogeneous Cimmino system
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


