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Abstract
The a priori boundedness principle is proved for the two-point right-focal boundary
value problems for strongly singular higher-order nonlinear functional-differential
equations. Several sufficient conditions of solvability of the two-point right-focal
problem under consideration are derived from the a priori boundedness principle.
The proof of the a priori boundedness principle is based on Agarwal-Kiguradze type
theorems, which guarantee the existence of the Fredholm property for strongly
singular higher-order linear differential equations with argument deviations under
the two-point right-focal boundary conditions.
MSC: Primary 34B15; 34K10

Keywords: higher order nonlinear functional-differential equations; two-point
right-focal boundary value problem; strong singularity; Fredholm property

1 Statement of the main results
1.1 Statement of the problem and the literature survey
Consider the functional differential equation

u(n)(t) = F(u)(t) (.)

with the two-point boundary conditions

u(i–)(a) =  (i = , . . . , m), u(j–)(b) =  (j = m + , . . . , n). (.)

Here n ≥ , m is the integer part of n/, –∞ < a < b < +∞, and the operator F acts from the
set of (m – )th time continuously differentiable on ]a, b] functions to the set Lloc(]a, b]).
By u(i–)(a) we denote the right limit of the function u(i–) at the point a.

The problem is singular in the sense that for an arbitrary u ∈ Cm–(]a, b]) the right-hand
side of equation (.) may have nonintegrable singularities at the point a. Throughout the
paper we use the following notations:

R+ = [, +∞[; [x]+ the positive part of number x, that is, [x]+ = x+|x|
 ;

Lloc(]a, b]) is the space of functions y : ]a, b] → R, which are integrable on [a + ε, b] for
arbitrarily small ε > ;
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Lα(]a, b]) (L
α(]a, b])) is the space of integrable (square integrable) with the weight (t –a)α

functions y : ]a, b] → R with the norm

‖y‖Lα =
∫ b

a
(s – a)α

∣∣y(s)
∣∣ds

(
‖y‖L

α
=

(∫ b

a
(s – a)αy(s) ds

)/)
;

L([a, b]) = L(]a, b]), L([a, b]) = L
(]a, b]);

M(]a, b]) is the set of measurable functions τ : ]a, b] →]a, b];
L̃

α(]a, b]) is the Banach space of y ∈ Lloc(]a, b]) functions with the norm

‖y‖L̃
α

≡ max

{[∫ t

a
(s – a)α

(∫ t

s
y(ξ ) dξ

)

ds
]/

: a ≤ t ≤ b
}

;

Ln(]a, b]) is the Banach space of y ∈ Lloc(]a, b]) functions with the norm

‖y‖Ln = sup

{
(s – a)m–/

∫ t

s
(ξ – a)n–m∣∣y(ξ )

∣∣dξ : a < s ≤ t ≤ b
}

< +∞;

C̃n–
loc (]a, b]) is the space of functions y : ]a, b] → R, which are continuous (absolutely con-

tinuous) together with y′, y′′, . . . , y(n–) on [a + ε, b] for arbitrarily small ε > ;
C̃n–,m(]a, b]) is the space of functions y ∈ C̃n–

loc (]a, b]) such that

∫ b

a

∣∣x(m)(s)
∣∣ ds < +∞; (.)

Cm–
 (]a, b]) is the Banach space of functions y ∈ Cm–

loc (]a, b]) such that

lim sup
t→a

|x(i–)(t)|
(t – a)m–i+/ < +∞ (i = , . . . , m) (.)

with the norm ‖x‖Cm–


=
∑m

i= sup{ |x(i–)(t)|
(t–a)m–i+/ : a < t ≤ b};

C̃m–
 (]a, b]) is the Banach space of functions y ∈ C̃m–

loc (]a, b]) such that conditions (.)
and (.) hold with the norm ‖x‖C̃m–


= ‖x‖Cm–


+ (

∫ b
a |x(m)(s)| ds)/;

Dn(]a, b]×R+) is the set of such functions δ : ]a, b]×R+ → Ln(]a, b]) that δ(t, ·) : R+ → R+

is nondecreasing for every t ∈ ]a, b], and δ(·,ρ) ∈ Ln(]a, b]) for any ρ ∈ R+.
A solution of problem (.), (.) is sought in the space C̃n–,m(]a, b]).
The principles of the theory of singular boundary value problems were built by Kigu-

radze in his study []. This theory has been intensively developed and studied with suffi-
cient completeness both for the ordinary differential equations and the functional differ-
ential equations (see [–]).

But equation (.), even under the boundary condition (.), is not studied in the case
when the operator F has the form F(x)(t) =

∑m
j= pj(t)x(j–)(τj(t)) + q(x)(t), where the singu-

larities of the functions pj : Lloc(]a, b]) (j = , . . . , m) are such that the inequalities

∫ b

a
(s – a)n–[(–)n–mp(s)

]
+ ds < +∞,

∫ b

a
(s – a)n–j∣∣pj(s)

∣∣ds < +∞ (.)

are not fulfilled (in this case we say that the linear part of the operator F is strongly singu-
lar), the operator q continuously acts from Cm–

 (]a, b]) to LL̃
n–m–

(]a, b]), and the inclu-
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sion

sup
{

q(x)(t) : ‖x‖Cm–


≤ ρ
} ∈ L̃

n–m–
(
]a, b]

)

holds. The first step in studying the differential equations with strong singularities was
made by Agarwal and Kiguradze in the article [], where the linear ordinary differential
equations under conditions (.), in the case when the functions pj have strong singu-
larities at the points a and b, are studied. Also the ordinary differential equations with
strong singularities under two-point boundary conditions are studied in the articles [,
] by Kiguradze. In the papers [–] these results are generalized for a linear differ-
ential equation with deviating arguments, i.e., the Agarwal-Kiguradze type theorems are
proved, which guarantee the Fredholm property for the linear differential equation with
deviating arguments. In this paper, on the basis of articles [, ], we prove the a priori
boundedness principle for problem (.), (.) from which several sufficient conditions of
the solvability of this problem follow.

Now we introduce some results from the articles [, ] in this section, which we need
for this work. Consider the equation

u(n)(t) =
m∑
j=

pj(t)u(j–)(τj(t)
)

+ q(t) for a < t < b (.)

with q, pj ∈ Lloc(]a, b]).
By hj : ]a, b]× ]a, b] → R+ and fj : [a, b] × M(]a, b]) → Cloc(]a, b]× ]a, b]) (j = , . . . , m) we

denote the functions and the operator, respectively, defined by the equalities

h(t, s) =
∣∣∣∣
∫ t

s
(ξ – a)n–m[

(–)n–mp(ξ )
]

+ dξ

∣∣∣∣,

hj(t, s) =
∣∣∣∣
∫ t

s
(ξ – a)n–mpj(ξ ) dξ

∣∣∣∣,
(.)

and

fj(c, τj)(t, s) =
∣∣∣∣
∫ t

s
(ξ – a)n–m∣∣pj(ξ )

∣∣
∣∣∣∣
∫ τj(ξ )

ξ

(ξ – c)(m–j) dξ

∣∣∣∣
/

dξ

∣∣∣∣. (.)

Let also k = k +  (k ∈ Z), then

k!! =

⎧⎨
⎩

 for k ≤ ,

 ·  ·  · · ·k for k ≥ .

Now we can introduce the main theorem of the papers [] and [].

Theorem . Let there exist the numbers �j > , �j ≥ , and γj >  (j = , . . . , m) such that
along with

B ≡
m∑
j=

(
(m – j)m–j+�j

(m – )!!(m – j + )!!
+

m–j–(b – a)γj�j

(m – j – )!!(m – )!!
√

γj

)
< , (.)
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the conditions

(t – a)m–jhj(t, s) ≤ �j, (t – a)m–γj–/fj(a, τj)(t, s) ≤ �j (.)

hold for a < t ≤ s ≤ b. Then problem (.), (.) is uniquely solvable in the space
C̃n–,m(]a, b]).

Remark . From Lemma . it is clear that any solution of problem (.), (.) from the
space C̃n–,m(]a, b]) belongs also to the space C̃m–

 (]a, b]).

Theorem . Let all the conditions of Theorem . be satisfied. Then the unique solution
u of problem (.), (.) for every q ∈ L̃

n–m–(]a, b]) admits the estimate

∥∥u(m)∥∥
L ≤ r‖q‖L̃

n–m–
, (.)

with

r =
m–(n – m – )
(νn – B)(m – )!!

, νm = , νm+ =
m + 


,

and thus constant r >  depends only on the numbers �j, �j, γj (j = , . . . , m), and a, b, n.

Remark . Under the conditions of Theorem ., for every q ∈ L̃
n–m–(]a, b]), the

unique solution u of problem (.), (.) admits the estimate

‖u‖C̃m–


≤ rn‖q‖L̃
n–m–

, (.)

with rn = ( +
∑m

j=
(m–j+)–/

(m–j)! ) m–(n–m–)
(νn–B)(m–)!! .

1.2 Theorems on the solvability of problem (1.1), (1.2)
Define the operator P : Cm–

 (]a, b]) × Cm–
 (]a, b]) → Lloc(]a, b]) by the equality

P(x, y)(t) =
m∑
j=

pj(x)(t)y(j–)(τj(t)
)

for a < t ≤ b, (.)

where pj : Cm–
 (]a, b]) → Lloc(]a, b]) and τj ∈ M(]a, b]). Also, for any γ > , define the set

Aγ by the relation

Aγ =
{

x ∈ C̃m–


(
]a, b]

)
: ‖x‖C̃m–


≤ γ

}
. (.)

Now, following the article [] by Kiguradze and Půža, we introduce the following defi-
nitions.

Definition . Let γ and γ be positive numbers. We say that the continuous operator
P : Cm–

 (]a, b])×Cm–
 (]a, b]) → Ln(]a, b]) is γ, γ consistent with boundary condition (.)

if:
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(i) for any x ∈ Aγ and almost all t ∈ ]a, b], the inequality

m∑
j=

∣∣pj(x)(t)x(j–)(τj(t)
)∣∣ ≤ δ

(
t,‖x‖C̃m–



)‖x‖C̃m–


(.)

holds, where δ ∈ Dn(]a, b] × R+);
(ii) for any x ∈ Aγ and q ∈ L̃

n–m–(]a, b]), the equation

y(n)(t) =
m∑
j=

pj(x)(t)y(j–)(τj(t)
)

+ q(t) (.)

under boundary conditions (.) has the unique solution y in the space C̃n–,m(]a, b])
and

‖y‖C̃m–


≤ γ ‖q‖L̃
n–m–

. (.)

Definition . We say that the operator P is γ consistent with boundary condition (.)
if the operator P is γ, γ consistent with boundary condition (.) for any γ > .

In the sequel it will always be assumed that the operator Fp is defined by the equality

Fp(x)(t) =

∣∣∣∣∣F(x)(t) –
m∑
j=

pj(x)(t)x(j–)(τj(t)
)
(t)

∣∣∣∣∣,

continuously acting from Cm–
 (]a, b]) to LL̃

n–m–
(]a, b]), and

F̃p(t,ρ) ≡ sup
{

Fp(x)(t) : ‖x‖Cm–


≤ ρ
} ∈ L̃

n–m–
(
]a, b]

)
(.)

for each ρ ∈ [, +∞[. Then the following theorem is valid.

Theorem . Let the operator P be γ, γ consistent with boundary condition (.), and let
there exist a positive number ρ ≤ γ such that

∥∥F̃p
(·, min{ρ,γ}

)∥∥
L̃

n–m–
≤ γ

γ
. (.)

Let, moreover, for any λ ∈ ], [, an arbitrary solution x ∈ Aγ of the equation

x(n)(t) = ( – λ)P(x, x)(t) + λF(x)(t) (.)

under conditions (.) admit the estimate

‖x‖C̃m–


≤ ρ. (.)

Then problem (.), (.) is solvable in the space C̃n–,m(]a, b]).

From Theorem . with ρ = γ, the corollary immediately follows.
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Corollary . Let the operator P be γ, γ consistent with boundary condition (.), and

∣∣∣∣∣F(x)(t) –
m∑
j=

pj(x)(t)x(j–)(τj(t)
)
(t)

∣∣∣∣∣ ≤ η
(
t,‖x‖C̃m–



)
(.)

for x ∈ Aγ and almost all t ∈ ]a, b], and

∥∥η(·,γ)
∥∥

L̃
n–m–

≤ γ

γ
, (.)

where η ∈ Dn–m–(]a, b] × R+). Then problem (.), (.) is solvable in the space
C̃n–,m(]a, b]).

Corollary . Let the operator P be γ consistent with boundary condition (.), let inequal-
ity (.) hold for x ∈ C̃m–

 (]a, b]) and almost all t ∈ ]a, b], where η(·,ρ) ∈ L̃
n–m–(]a, b])

for any ρ ∈ R+, and

lim sup
ρ→+∞


ρ

∥∥η(·,ρ)
∥∥

L̃
n–m–

<

γ

. (.)

Then problem (.), (.) is solvable in the space C̃n–,m(]a, b]).

Now define the operators hj : Cm–
 (]a, b])× ]a, b]× ]a, b] → Lloc(]a, b]× ]a, b]), fj :

Cm–
 (]a, b]) × [a, b] × M(]a, b]) → Cloc(]a, b]× ]a, b]) (j = , . . . , m) by the equalities

h(x, t, s) =
∣∣∣∣
∫ t

s
(ξ – a)n–m[

(–)n–mp(x)(ξ )
]

+dξ

∣∣∣∣,

hj(x, t, s) =
∣∣∣∣
∫ t

s
(ξ – a)n–mpj(x)(ξ ) dξ

∣∣∣∣ (j = , . . . , m),
(.)

fj(x, c, τj)(t, s) =
∣∣∣∣
∫ t

s
(ξ – a)n–m∣∣pj(x)(ξ )

∣∣
∣∣∣∣
∫ τj(ξ )

ξ

(ξ – c)(m–j) dξ

∣∣∣∣
/

dξ

∣∣∣∣ (.)

and the functions αj : [a, b] → R+ by the equality αj(t) = (t – a)m–j+/.

Theorem . Let the continuous operator P : Cm–
 (]a, b]) × Cm–

 (]a, b]) → Ln(]a, b]) ad-
mit condition (.) where δ ∈ Dn(]a, b]×R+), τj ∈ M(]a, b]), and let the numbers γ ∈ ]a, b],
lj > , lj > , γj >  (j = , . . . , m) be such that the inequalities

(t – a)m–jhj(x, t, s) ≤ lj, lim sup
t→a

(t – a)m– 
 –γj fj(x, a, τj)(t, s) ≤ lj (.)

for a < t ≤ s ≤ b, ‖x‖C̃m–


≤ γ, and conditions (.) hold. Let, moreover, the operator F and
the function η ∈ Dn–m–(]a, b] × R+) be such that condition (.) and the inequality

∥∥η(·,γ)
∥∥

L̃
n–m–

<
γ

rn
, (.)

are fulfilled, where rn = ( +
∑m

j=
(m–j+)–/

(m–j)! ) m–(n–m–)
(νn–B)(m–)!! . Then problem (.), (.) is solv-

able in the space C̃n–,m(]a, b]).
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Theorem . Let the operator F and the function η be such that conditions (.), (.)
hold, and let the continuous operator P : Cm–

 (]a, b]) × Cm–
 (]a, b]) → Ln(]a, b]) admit

condition (.), where δ ∈ Dn(]a, b] × R+). Let, moreover, the measurable functions τj ∈
M(]a, b]) and the numbers lj > , lj > , γj >  (j = , . . . , m) be such that the inequalities

(t – a)m–jhj(x, t, s) ≤ lj, lim sup
t→a

(t – a)m– 
 –γj fj(x, a, τj)(t, s) ≤ lj (.)

for a < t ≤ s ≤ b, x ∈ C̃m–
 (]a, b]), and conditions (.) hold. Then problem (.), (.) is

solvable in the space C̃n–,m(]a, b]).

Remark . Let γ > , let the operators αjpj (j = , . . . , m) continuously act from the space
Cm–

 (]a, b]) to the space Ln(]a, b]), let there exist the function δj ∈ Dn(]a, b]) such that for
any x ∈ Aγ ,

∣∣pj(x)(t)
∣∣αj(t) ≤ δj

(
t,‖x‖C̃m–



)
for a < t ≤ b, (.)

and let there exist constants κ > , ε >  such that

∣∣τj(t) – t
∣∣ ≤ κ(t – a) (j = , . . . , m) for a < t < a + ε. (.)

Then the operator P defined by equality (.) continuously acts from Aγ to the space
Ln(]a, b]), and there exists the function δ ∈ Dn(]a, b]) such that item (i) of Definition .
holds.

Now consider the equation with deviating arguments

u(n)(t) = f
(
t, u

(
τ(t)

)
, u′(τ(t)

)
, . . . , u(m–)(τm(t)

))
for a < t ≤ b, (.)

where –∞ < a < b < +∞, f : ]a, b]×Rm → R is a function satisfying the local Carathéodory
conditions and τj ∈ M(]a, b]) (j = , . . . , n – ) are measurable functions.

Corollary . Let the functions τj ∈ M(]a, b]) and the numbers κ ≥ , ε > , lj > , lj > ,
γj >  (j = , . . . , m) be such that conditions (.), (.), (.) and the inclusions

αjpj ∈ Ln
(
]a, b]

)
(j = , . . . , m) (.)

are fulfilled. Let, moreover,

∣∣∣∣∣f
(
t, x

(
τ(t)

)
, x′(τ(t)

)
, . . . , x(m–)(τm(t)

))
–

m∑
j=

pj(t)x(j–)(τj(t)
)
(t)

∣∣∣∣∣
≤ η

(
t,‖x‖C̃m–



)

for x ∈ C̃m–
 (]a, b]) and almost all t ∈ ]a, b], where η(·,ρ) ∈ L̃

n–m–(]a, b]) for any ρ ∈
R+, and let condition (.) hold. Then problem (.), (.) is solvable in the space
C̃n–,m(]a, b]).
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Remark . Conditions (.) do not follow from conditions (.).

Now, to illustrate our results, consider on ]a, b] the second-order functional-differential
equations

u′′(t) = –
λ|u(t)|k

(t – a)+k/ u
(
τ (t)

)
+ q(x)(t), (.)

u′′(t) = –
λ| sin uk(t)|

(t – a) u
(
τ (t)

)
+ q(x)(t), (.)

where λ, k ∈ R+ the function τ ∈ M(]a, b]), the operator q : Cm–
 (]a, b]) → L̃

(]a, b]) is con-
tinuous and

η(t,ρ) ≡ sup
{∣∣q(x)(t)

∣∣ : ‖x‖C̃m–


≤ ρ
} ∈ L̃


(
]a, b]

)
.

Then, from Theorems . and . with n = , the corollary follows.

Corollary . Let the function τ ∈ M(]a, b]), the continuous operator q : Cm–
 (]a, b]) →

L̃
(]a, b]), and the numbers γ > , λ ≥ , k >  be such that

∣∣τ (t) – t
∣∣ ≤ (t – a)/ for a < t ≤ b, (.)

∥∥η(t,γ)
∥∥

L̃

≤  – λγ k

 ( + [(b – a)]/)


γ, (.)

and

λ <


γ k
 ( + [(b – a)]/)

. (.)

Then problem (.), (.) is solvable.

Corollary . Let the function τ ∈ M(]a, b]), the continuous operator q : Cm–
 (]a, b[) →

L̃
,(]a, b]), and the number λ ≥  be such that inequalities (.), (.) and

λ <


( + [(b – a)]/)
, (.)

hold. Then problem (.), (.) is solvable.

2 Auxiliary propositions
2.1 Lemmas on some properties of the equation x(n)(t) = λ(t)
First, we introduce two lemmas without proofs. The first lemma is proved in [].

Lemma . Let i ∈ {, }, x ∈ C̃m–
loc (]t, t[) and

x(j–)(ti) =  (j = , . . . , m),
∫ t

t

∣∣x(m)(s)
∣∣ ds < +∞. (.)
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Then

∣∣∣∣
∫ t

ti

(x(j–)(s))

(s – ti)m–j+ ds
∣∣∣∣
/

≤ m–j+

(m – j + )!!

∣∣∣∣
∫ t

ti

∣∣x(m)(s)
∣∣ ds

∣∣∣∣
/

(.)

for t ≤ t ≤ t.

This second lemma is a particular case of Lemma . in [].

Lemma . If x ∈ Cn–
loc (]a, a]), then for any s, t ∈ ]a, a] the equality

(–)n–m
∫ t

s
(ξ – a)n–mx(n)(ξ )x(ξ ) dξ = wn(x)(t) – wn(x)(s) + νn

∫ t

s

∣∣x(m)(ξ )
∣∣ dξ

is valid, where νm = , νm+ = m+
 , wm(x)(t) =

∑m
j=(–)m+j–x(m–j)(t)x(t),

wm+(x)(t) =
m∑
j=

(–)m+j[(t – a)x(m+–j)(t) – jx(m–j)(t)
]
x(j–)(t) –

t – a


∣∣x(m)(t)
∣∣.

Lemma . Let the numbers a ∈ ]a, b[, t,k ∈ ]a, a[, and εi,k , εi,βk ,β ∈ R+, k ∈ N , i = m +
, . . . , n, be such that

lim
k→+∞

t,k = a, lim
k→+∞

βk = β , lim
k→+∞

εi,k = εi. (.)

Let, moreover,

λ ∈ L̃
n–m–

(
]a, a]

)
(.)

be a nonnegative function, xk ∈ C̃n–,m(]a, a]) be a solution of the problem

x(n)(t) = βkλ(t), (.)

x(i–)(t,k) =  (i = , . . . , m), x(j–)(a) = εj,k (j = m + , . . . , n), (.)

and x ∈ C̃n–,m(]a, a]) be a solution of the problem

x(n)(t) = βλ(t), (.)

x(i–)(a) =  (i = , . . . , m), x(j–)(a) = εj (j = m + , . . . , n). (.)

Then

lim
k→+∞

x(j–)
k (t) = x(j–)(t) (j = , . . . , n) uniformly in ]a, a]. (.)

Proof First, let us prove our lemma under the assumption that there exists the number
r >  such that the estimates

∫ a

t,k

∣∣x(m)
k (s)

∣∣ ds ≤ r, k ∈ N (.)



Mukhigulashvili and Půža Boundary Value Problems  (2015) 2015:17 Page 10 of 21

hold. Now, suppose that t, . . . , tn are such numbers that tk < t < · · · < tn < a (k ∈ N ),
and gi are the polynomials of (n – )th degree satisfying the conditions gj(tj) = , gj(ti) = 
(i 
= j; i, j = , . . . , n). Then if xk is a solution of problem (.), (.), and x is a solution of
problem (.), (.), for the solution x – xk of the equation dn(x(t)–xk (t))

dtn = (β – βk)λ(t), the
representation

x(t) – xk(t) =
n∑

j=

((
x(tj) – xk(tj)

)
–

β – βk

(n – )!

∫ tj

t

(tj – s)n–λ(s) ds
)

gj(t)

+
β – βk

(n – )!

∫ t

t

(t – s)n–λ(s) ds k ∈ N for t,k ≤ t ≤ a (.)

is valid. On the other hand, in view of inequality (.), the identities

x(i–)
k (t) =


(m – i)!

∫ t

tk

(t – s)m–ix(m)
k (s) ds (i = , , k ∈ N)

by Schwarz’s inequality yield

∣∣x(i–)
k (t)

∣∣ ≤ r(t – a)m–i–/ for t,k ≤ t ≤ a (i = , , k ∈ N), (.)

where r = r
(m–i)!

√
m–i+ . By virtue of the Arzela-Ascoli lemma and (.), the sequence

{xk}+∞
k= contains a subsequence {xkl}+∞

l= which is uniformly convergent in ]a, a]. Suppose
liml→+∞ xkl (t) = x(t). Thus from (.) by (.) the existence of such r >  that

∣∣x(j–)
kl

(t)
∣∣ ≤ r +

∣∣x(j–)(t)
∣∣ (j = , . . . , n) for t,kl ≤ t ≤ a

follows, and then, without loss of generality, we can assume that

lim
l→+∞

x(j–)
kl

(t) = x(j–)
 (t) (j = , . . . , n) uniformly in ]a, a]. (.)

Then, by virtue of (.), (.) and (.), we have

x(t) – x(t) =
n∑

j=

((
x(tj) – x(tj)

))
gj(t) for a ≤ t ≤ a.

From the last two relations by (.) it is clear that x(n) = x(n)
 and x ∈ C̃n–,m(]a, a]), i.e.,

the function x ∈ C̃n–,m(]a, a]) is a solution of problem (.), (.). In view of (.) all the
conditions of Theorem . are fulfilled, thus problem (.), (.) is uniquely solvable in the
space C̃n–,m(]a, a]) and x = x. Therefore from (.) it follows that

lim
l→+∞

x(j–)
kl

(t) = x(j–)(t) (j = , . . . , n) uniformly in ]a, a]. (.)

Now suppose that relations (.) are not fulfilled. Then there exist δ ∈ ], a–a
 [, ε > , and

the increasing sequence of natural numbers {kl}+∞
l= such that

max

{ n∑
j=

∣∣x(j–)
kl

(t) – x(j–)(t)
∣∣ : a + δ ≤ t ≤ a

}
> ε (l ∈ N). (.)
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By virtue of the Arzela-Ascoli lemma and condition (.), the sequence {x(j–)
kl

}+∞
l= (j =

, . . . , m), without loss of generality, can be assumed to be uniformly converging in ]a + δ,
a]. Then, in view of what we have shown above, equality (.) holds. But this contradicts
condition (.). Thus (.) holds if conditions (.) are fulfilled.

Now assume that conditions (.) are not fulfilled. Then there exists the subsequence
{t,kl}+∞

l= of the sequence {t,k}+∞
k= such that

∫ a

t,k

∣∣x(m)
kl

(s)
∣∣ ds ≥ l (l ∈ N). (.)

Suppose that β̃l = (
∫ a

t,k
|x(m)

kl
(s)| ds)– and vl(t) = xkl (t)β̃l . Thus in view of (.) and our

notations,

∫ a

t,kl

∣∣v(m)
kl

(s)
∣∣ ds =  (l ∈ N), lim

l→+∞
β̃l = , (.)

v(n)
l (t) = βkl β̃lλ(t), (.)

v(i–)
l (t,kl ) =  (i = , . . . , m),

v(j–)
l (a) = εj,kl β̃l (j = m + , . . . , n, l ∈ N).

(.)

From the first part of our lemma by (.) it follows that there exists limit liml→+∞ vl(t) ≡
v(t), and v is a solution of the corresponding homogeneous problem (.), (.). Thus
v ≡ . On the other hand, from (.) it is clear that

∫ a
t,kl

|v(m)
 (s)| ds = , which contradicts

with v ≡ . Thus our assumption is invalid and (.) holds. �

Lemma . Let a < a < b, εj ∈ R+ and λ ∈ L̃
n–m–(]a, a]) be a nonnegative function.

Then, for the solution x ∈ C̃n–,m(]a, a]) of problem (.), (.) with β = , the estimate

∫ a

a

∣∣x(m)(s)
∣∣ ds ≤ �(x, a,λ) (k ∈ N) (.)

is valid, where

�(x, a,λ) = 
∣∣wn(x)(a)

∣∣ +
(

m–(m + )
(m – )!!

)

‖λ‖
L̃

n–m–(]a,a]). (.)

Proof Suppose that xk is a solution of problem (.), (.) with βk = , εj,k = εj. Then, in
view of Lemma ., relations (.) hold. On the other hand, by Lemma . we get

νn

∫ a

t,k

∣∣x(m)
k (s)

∣∣ ds ≤ –wn(xk)(a) +
∫ a

t,k

(s – a)n–mλ(s)
∣∣xk(s)

∣∣ds. (.)

Now, on the basis of Lemma ., Schwarz’s and Young’s inequalities, we get

∣∣∣∣
∫ a

t,k

(s – a)n–mλ(s)xk(s) ds
∣∣∣∣

=
∣∣∣∣
∫ a

t,k

[
(n – m)xk(s) + (s – a)n–mx′

k(s)
](∫ a

s
λ(ξ ) dξ

)
ds

∣∣∣∣
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≤
[

(n – m)
(∫ a

t,k

x
k(s)

(s – a)m ds
)/

+
(∫ a

t,k

x′
k (s)

(s – a)m– ds
)/]

‖λ‖L̃n–m–(]a,a])

≤ m–(m + )
(m – )!!

(∫ a

tk

∣∣x(m)
k (s)

∣∣ ds
)/

‖λ‖L̃n–m–(]a,a])

≤ 


∫ a

t,k

∣∣x(m)
k (s)

∣∣ ds +



(
m–(m + )

(m – )!!

)

‖λ‖
L̃n–m–(]a,a]).

Thus from (.) by the definition of numbers νn it immediately follows that the estimate

∫ a

t,k

∣∣x(m)
k (s)

∣∣ds ≤ 
∣∣wn(xk)(a)

∣∣ +
(

m–(m + )
(m – )!!

)

‖λ‖
L̃n–m–(]a,a]) (k ∈ N).

By means of (.), from the last inequality, (.) and (.) follow. �

2.2 Lemmas on the Banach space ˜Cm–1
1 (]a, b])

Definition . Let ρ ∈ R+ and the function η ∈ Lloc(]a, b]) be nonnegative. Then S(ρ,η) is
a set of such y ∈ Cn–

loc (]a, b]) that

∣∣∣∣y(i–)
(

a + b


)∣∣∣∣ ≤ ρ (i = , . . . , n), (.)

∣∣y(n–)(t) – y(n–)(s)
∣∣ ≤

∫ t

s
η(ξ ) dξ for a < s ≤ t ≤ b, (.)

and

y(i–)(a) =  (i = , . . . , m), y(j–)(b) =  (j = m + , . . . , n). (.)

Lemma . Let, for the function y ∈ C̃n–,m(]a, b]), conditions (.) be satisfied. Then y ∈
C̃m–

 (]a, b]) and the estimates

∣∣y(i–)(t)
∣∣ ≤ (t – a)m–i+/

(m – i)!(m – i + )/

(∫ t

a

∣∣y(m)(s)
∣∣ ds

)/

, (.)

a < t ≤ b, i = , . . . , m.

Proof First note that in view of inclusion y ∈ C̃n–,m(]a, b]), the equality

y(i–)(t) =
l∑

j=i

(t – c)j–i

(j – i)!
y(j–)(c) +


(l – i)!

∫ t

c
(t – s)l–iy(l)(s) ds (.)

on [a, b], for i = , . . . , l, l = , . . . , n, holds, where: () c ∈ [a, b] if l ≤ m; () c ∈ ]a, b] if l > m;
and there exists r >  such that

∫ b

a

∣∣y(m)(s)
∣∣ ds ≤ r. (.)

Equality (.), with l = m, c = a, by conditions (.), (.) and Schwarz’s inequality
yields (.). From (.) and (.) it is clear that y ∈ C̃m

 (]a, b]). �
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Lemma . Let ρ ∈ R+, and let η ∈ L̃
n–m–(]a, b]) be a nonnegative function. Then S(ρ,η)

is a compact subset of the space C̃m–
 (]a, b]).

Proof Condition (.) yields the inequality |y(n)(t)| ≤ η(t). Thus there exists such function
η ∈ L̃

n–m–(]a, b]) that

y(n)(t) = η(t), for a < t ≤ b, (.)

where

∣∣η(t)
∣∣ ≤ η(t) for a < t ≤ b. (.)

From Theorem . it follows that problem (.), (.) has the unique solution y ∈
Cn–,m(]a, b]), i.e., there exists r >  such that inequality (.) holds.

For any y ∈ S(ρ,η), from equality (.) with l = n, by (.), (.) and (.), we get

∣∣y(i–)(t)
∣∣ ≤ γi(t) for a < t < b (i = , . . . , n), (.)

where γi(t) = ρi + 
(n–i)! |

∫ t
c (t –s)n–iη(s) ds| (i = , . . . , n), and ρi ∈ R+. Let now yk ∈ S(ρ,η) (k ∈

N ). By virtue of the Arzela-Ascoli lemma and conditions (.), (.), the sequence {yk}+∞
k=

contains a subsequence {yk�
}+∞
�= such that {y(i–)

k�
}+∞
�= (i = , . . . , n) are uniformly convergent

on ]a, b]. Thus, without loss of generality, we can assume that {y(i–)
k }+∞

k= (i = , . . . , n) are
uniformly convergent on ]a, b]. Let limk→+∞ yk(t) = y(t), then y ∈ C̃n–

loc (]a, b]) and

lim
k→+∞

y(i–)
k (t) = y(i–)

 (t) (i = , . . . , n) uniformly on ]a, b]. (.)

From (.), in view of the inclusions yk ∈ S(ρ,η), it immediately follows that
∣∣∣∣y(i–)



(
a + b



)∣∣∣∣ ≤ ρ (i = , . . . , n), (.)

y(i–)
 (a) =  (j = , . . . , m), y(j–)

 (b) =  (j = m + , . . . , n), (.)

and

∣∣y(n–)
 (t) – y(n–)

 (s)
∣∣ ≤

∫ t

s
η(ξ ) dξ for a < s ≤ t ≤ b. (.)

From (.)-(.) it is clear that y ∈ S(ρ,η). To finish the proof, we must show that

lim
k→+∞

∥∥yk(t) – y(t)
∥∥

C̃m–


=  (.)

and

S(ρ,η) ⊂ C̃m–


(
]a, b]

)
. (.)

Let xk = y – yk and a ∈ ]a, b]. Then it is clear that xk ∈ S(ρ ′,η′), where ρ ′ = ρ , η′ = η.
Thus, for any xk , there exists ηk ∈ L̃

n–m–(]a, b]) such that

x(n)
k (t) = ηk(t), (.)
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x(i–)
k (a) =  (i = , . . . , m), x(j–)

k (b) =  (j = m + , . . . , n), (.)

where

∣∣ηk(t)
∣∣ ≤ η(t) for a < t ≤ b (k ∈ N). (.)

On the other hand, from (.) with y = xk , in view of (.) we get

∣∣x(i–)
k (t)

∣∣ ≤
(∫ t

a

∣∣x(m)
k (s)

∣∣ ds
)/

(t – a)m–i+/ for a < t < a, (.)

for i = , . . . , m.
Let now wn be the operator defined in Lemma . and � be a function defined by (.)

with λ = ηk . Then conditions (.) yield

lim
k→+∞

wn(xk)(a) =  (k ∈ N), (.)

and from the definition of the norm ‖ · ‖L̃
α

, (.) and (.) it follows that for any ε > ,
we can choose a ∈ ]a, min{a + , b}[ and k ∈ N such that

�(xk , a, η) ≤ ε

m (k ≥ k). (.)

By using Lemma . for xk , in view of (.) and (.), we get respectively

∫ a

a

∣∣x(m)
k (s)

∣∣ ds ≤ ε

m (k ≥ k) (.)

and

|x(i–)
k (t)|

(t – a)m–i–/ ≤ ε

m
for t ∈ ]a, a] ( ≤ i ≤ m, k ≥ k). (.)

Also, in view of (.), without loss of generality, we can assume that

|x(i–)
k (t)|

(t – a)m–i–/ ≤ ε

m
for a ≤ t ≤ b ( ≤ i ≤ m, k ≥ k), (.)

and

∫ b

a

∣∣x(m)
k (s)

∣∣ ds ≤ ε(m – )
m (k ≥ k). (.)

From (.)-(.), equality (.) immediately follows.
Let now y ∈ S(ρ,η) and yk = δky, where limk→+∞ δk = . Then by (.) it is clear that

y ≡ , and then from (.) it follows that y ∈ C̃m–
 (]a, b]), i.e., the inclusion (.)

holds. �

Now we introduce one lemma which is proved in [].
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Lemma . Let τ ∈ M(]a, b]), α,β , k ≥ , and let there exist δ ∈ ], b – a[ such that

∣∣τ (t) – t
∣∣ ≤ k(t – a)β for a < t ≤ a + δ. (.)

Then

∣∣∣∣
∫ τ (t)

t
(s – a)α ds

∣∣∣∣ ≤
⎧⎨
⎩

k[ + kδ
β–]α(t – a)α+β for β ≥ ,

k[δ–β + k]α(t – a)αβ+β for  ≤ β < ,

for a < t ≤ a + δ.

2.3 Lemmas on the solutions of auxiliary problems
Throughout this section we assume that the operator P : Cm–

 (]a, b]) × Cm–
 (]a, b]) →

Ln(]a, b]) is γ, γ consistent with boundary condition (.), and the operator q : Cm–
 (]a,

b]) → L̃
n–m–(]a, b]) is continuous.

Consider, for any x ∈ C̃m–
 (]a, b]) ⊂ Cm–

 (]a, b]), the nonhomogeneous equation

y(n)(t) =
m∑

i=

pi(x)(t)y(i–)(τi(t)
)

+ q(x)(t) (.)

and the corresponding homogeneous equation

y(n)(t) =
m∑

i=

pi(x)(t)y(i–)(τi(t)
)
, (.)

and let En be a set of the solutions of problem (.), (.).
From inequality (.) of item (ii) of Definition ., it follows that for any x ∈ Aγ bound-

ary problem (.), (.) has the unique solution y in the space C̃n–,m(]a, b]) such that
y ∈ C̃m–

 (]a, b]). Thus En ∩ C̃m–
 (]a, b]) 
= ∅, and there exists the operator U : Aγ →

En ∩ C̃m–
 (]a, b]) defined by the equality

U(x)(t) = y(t).

Lemma . U : Aγ → En ∩ C̃m–
 (]a, b]) is a continuous operator.

Proof Let xk ∈ Aγ and yk(t) = U(xk)(t) (k = , ), y = y – y, and let the operator P be
defined by (.). Then

y(n)(t) = P(x, y)(t) + q(x, x)(t),

where q(x, x)(t) = P(x, y)(t) – P(x, y)(t) + q(x)(t) – q(x)(t). Hence, by item (ii) of Def-
inition . we have

∥∥U(x) – U(x)
∥∥

C̃m–


≤ γ
∥∥q(x, x)

∥∥
L̃

n–m–
.

Since the operators P and q are continuous, this estimate implies the continuity of the
operator U . �
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3 Proofs
Proof of Remark . Let x be a solution of problem (.), (.), then from inequalities (.)
(with y = x), by the definition of the norm in the space C̃m–

 (]a, b]) and estimate (.),
estimate (.) immediately follows. �

Proof of Theorem . Let δ and λ be the functions and numbers appearing in Definition ..
We set

η(t) = δ(t,γ)γ + F̃p
(
t, min{ρ,γ}

)
, (.)

χ (s) =

⎧⎪⎪⎨
⎪⎪⎩

 for  ≤ s ≤ ρ,

 – s/ρ for ρ < s < ρ,

 for s ≥ ρ,

(.)

q(x)(t) = χ
(‖x‖C̃m–



)
Fp(x)(t). (.)

From (.) it is clear that the nonnegative functions F̃p, η admit the inclusion

F̃p
(·, min{ρ,γ}

)
,η ∈ L̃

n–m–
(
]a, b]

)
, (.)

and for every x ∈ Aγ ⊂ C̃m–
 (]a, b]) and almost all t ∈ ]a, b], the inequality

∣∣q(x)(t)
∣∣ ≤ F̃p

(
t, min{ρ,γ}

)
for a < t ≤ b (.)

holds.
Let U : Aγ → En ∩ C̃m–

 (]a, b]) be the operator in Lemma ., from which it follows that
U is a continuous operator. On the other hand, from items (i) and (ii) of Definition .,
(.) and (.), it is clear that for each x ∈ Aγ , the conditions

‖y‖C̃m–


≤ γ,
∣∣y(n–)(t) – y(n–)(s)

∣∣ ≤
∫ t

s
η(ξ ) dξ for a < t < b

hold. Thus, in view of Definition ., the operator U maps the ball Aγ into its own subset
S(ρ,η). From Lemma . it follows that S(ρ,η) is a compact subset of the ball Aγ ⊂
C̃m–

 (]a, b]), i.e., the operator u maps the ball Aγ into its own compact subset. Therefore,
owing to Schauder’s principle, there exists x ∈ S(ρ,η) ⊂ Aγ such that

x(t) = U(x)(t) for a < t ≤ b.

Thus by (.) and notation (.), the function x (x ∈ Aγ ) is a solution of problem (.),
(.), where

λ = χ
(‖x‖C̃m–



)
. (.)

If γ = ρ, then in view of the condition x ∈ Aγ , by (.) we have that λ = , and then, in
view of (.) and (.), the function x is a solution of problem (.), (.) which admits
estimate (.).
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Let us show now that x admits estimate (.) in the case when ρ < γ. Assume the
contrary. Then either

ρ < ‖x‖C̃m–


< ρ, (.)

or

‖x‖C̃m–


≥ ρ. (.)

If condition (.) holds, then by virtue of (.) and (.) we have that λ ∈ ], [, which by the
conditions of our theorem guarantees the validity of estimate (.). But this contradicts
(.).

Assume now that (.) is fulfilled. Then, by virtue of (.) and (.), we have that λ = .
Therefore x ∈ Aγ is a solution of problem (.), (.). Thus from item (ii) of Definition .
it is obvious that x ≡ , because problem (.), (.) has only a trivial solution. But this
contradicts condition (.), i.e., estimate (.) is valid. From estimates (.) and (.) we
have that λ = , and then in view of (.) and (.) the function x is a solution of problem
(.), (.) which admits estimate (.). �

Proof of Corollary . First note that in view of condition (.) there exists such γ > ρ

that condition (.) holds, and in view of Definition . the operator P is γ, γ consistent.
On the other hand, from (.) it follows the existence of the number ρ such that

γ
∥∥η(·,ρ)

∥∥
L̃

n–m–
< ρ for ρ > ρ. (.)

Let x be a solution of problem (.), (.) for some λ ∈ ], [. Then y = x is also a solution
of problem (.), (.) where q(t) = λ(F(x)(t) – P(x, x)(t)). Let now ρ = ‖x‖C̃m–


and assume

that

ρ > ρ (.)

holds. Then in view of the γ -consistency of the operator p with boundary conditions (.),
inequality (.) holds and thus by condition (.) we have

ρ = ‖x‖C̃m–


≤ γ
∥∥q(x)

∥∥
L̃

n–m–
≤ γ

∥∥η(·,ρ)
∥∥

L̃
n–m–

.

But the last inequality contradicts (.). Thus assumption (.) is not valid and ρ ≤ ρ.
Therefore, for any λ ∈ ], [, an arbitrary solution of problem (.), (.) admits estimate
(.). Therefore all the conditions of Theorem . are fulfilled, from which the solvability
of problem (.), (.) follows. �

Proof of Theorem . Let rn be the constant defined in Remark .. First prove that the
operator P is γ, rn consistent with boundary conditions (.). From the conditions of our
theorem it is obvious that item (i) of Definition . is satisfied. Let now x be an arbitrary
fixed function from the set Aγ , and let pj(t) ≡ pj(x)(t). Thus, in view of (.) and (.), all
the assumptions of Theorem . are satisfied, and then for any q ∈ L̃

n–m–(]a, b]) problem
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(.), (.) has the unique solution y. Also in view of Remark . there exists the constant
rn >  (which depends only on the numbers lj, lj, γj (j = , . . . , m), and a, b, n) such that
estimate (.) holds with γ = rn, i.e., the operator P is γ, rn consistent with boundary
conditions (.). Therefore all the assumptions of Corollary . are fulfilled, from which
the solvability of problem (.), (.) follows. �

Proof of Theorem . Let rn be the constant defined in Remark .. First prove that the
operator P is rn consistent with boundary conditions (.). From the conditions of our
theorem it is obvious that item (i) of Definition . is satisfied. Let now γ be an arbi-
trary nonnegative number, x be an arbitrary fixed function from the space Aγ , and let
pj(t) ≡ pj(x)(t). Then in view of (.) and (.) all the assumptions of Theorem . are
satisfied, and then for any q ∈ L̃

n–m–(]a, b]) problem (.), (.) has the unique solution
y. Also in view of Remark . there exists the constant rn >  (which depends only on the
numbers lj, lj, γj (j = , . . . , m), and a, b, n) such that estimate (.) holds with γ = rn, i.e.,
the operator P is γ, rn consistent with boundary conditions (.) for arbitrary γ > . Thus
by Definition ., the operator P is rn consistent with boundary conditions (.). There-
fore all the assumptions of Corollary . are fulfilled, from which the solvability of problem
(.), (.) follows. �

Proof of Remark . By Schwarz’s inequality, the definition of the norm ‖y‖C̃m–


and in-
equalities (.) for any x, y ∈ Aγ and z = y – x, we have

∣∣pj(y)(t)z(j–)(τj(t)
)∣∣

=
∣∣pj(y)(t)z(j–)(t)

∣∣ +
∣∣pj(y)(t)

∣∣
∣∣∣∣
∫ τj(t)

t
z(j)(ψ) dψ

∣∣∣∣

≤ ‖z‖C̃m–


∣∣pj(y)(t)
∣∣αj(t)

(
 +


αj(t)

(∫ τj(t)

t
(ψ – a)m–j dψ

)/)
(.)

for a < t ≤ b. On the other hand, from conditions (.) by Lemma . it is clear that

α–
j (s)

(∫ τj(s)

s
(ξ – a)m–j dξ

)/

≤ √
κ( + κ)m for s ∈ ]a, a + ε],

α–
j (s)

(∫ τj(s)

s
(ξ – a)m–j dξ

)/

≤ ε–m+j–/
(∫ b

a
(ξ – a)m–j dξ

)/

=
(b – a)m–j+/√

m – j + εm–j+/
for s ∈ ]a + ε, b].

Then if we put

κ = max
≤j≤m

{√
κ( + κ)m,

(b – a)m–j+/√
m – j + εm–j+/

}
, (.)

from (.) by the last estimates and (.), we get the inequality

∣∣pj(y)(t)z(j–)(τj(t)
)∣∣ ≤ ‖z‖C̃m–


( + κ)

∣∣pj(y)(t)
∣∣αj(t)

≤ ‖z‖C̃m–


( + κ)δj
(
t,‖y‖C̃m–



)
(.)
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for a < t ≤ b. Analogously, we get that

∣∣(pj(y)(t) – pj(x)(t)
)
x(j–)(τj(t)

)∣∣ ≤ ‖x‖C̃m–


( + κ)
∣∣pj(y)(t) – pj(x)(t)

∣∣αj(t)

for a < t ≤ b. From (.) and the last inequality it is obvious that the operator P defined
by equality (.) continuously acts from Aγ to the space Ln(]a, b]), and item (ii) of Defi-
nition . holds with δ(t,ρ) = ( + κ)

∑m
j= δj(t,ρ). �

Proof of Corollary . From conditions (.) and (.), by Remark ., we obtain that
the operator P defined by equality (.) with pj(x)(t) = pj(t) continuously acts from Aγ

to the space Ln(]a, b]) for any γ > , i.e., continuously acts from C̃m–
 (]a, b]) to the space

Ln(]a, b]).
Therefore it is clear that all the conditions of Theorem . would be satisfied with

F(x)(t) = f
(
t, x

(
τ(t)

)
, x′(τ(t)

)
, . . . , x(m–)(τm(t)

))
, δ(t,ρ) = ( + κ)

m∑
j=

∣∣pj(t)
∣∣,

where the constant κ is defined by equality (.). Thus problem (.), (.) is solvable.
�

Proof of Corollary . Let the operators F , p : Cm–(]a, b]) → Lloc(]a, b]), and the function
η : ]a, b] × R+ → R+ be defined by the equalities

F(x)(t) = –
λ|x(t)|k

(t – a)+k/ x
(
τ (t)

)
+ q(x)(t), p(x)(t) = –

λ|x(t)|k
(t – a)+k/

and

δ(t,ρ) = λ
(τ (t) – a)/ρk

(t – a) , l = γ k
 λ, l = γ k

 λ,

r =


 – λγ k
 ( + [(b – a)]/)

, B = λγ k

(
 +

[
(b – a)

]/), γ =



.
(.)

Then it is easy to verify that, in view of (.)-(.), conditions (.), (.), (.), (.),
(.) are satisfied and δ ∈ Dn(]a, b] × R+).

Thus all the condition of Theorem . are satisfied, from which the solvability of problem
(.), (.) follows. �

Proof of Corollary . Let the operators F , p : Cm–(]a, b]) → Lloc(]a, b]) and the function
η : ]a, b] × R+ → R+ be defined by the equalities

F(x)(t) = –
λ| sin xk(t)|

(t – a) x
(
τ (t)

)
+ q(x)(t), p(x)(t) = –

λ| sin xk(t)|
(t – a) .

Then it is easy to verify that, in view of (.), (.) and (.), all the conditions of The-
orem . follow, where δ, l, l, r, B, γ are defined by (.) with ρ = , γ = , from which
the solvability of problem (.), (.) follows. �
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6. Kiguradze, I, Půža, B: On boundary value problems for systems of linear functional differential equations. Czechoslov.
Math. J. 47(2), 341-373 (1997)
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17. Rachůnková, I, Staněk, S, Tvrdý, M: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations.
Contemporary Mathematics and Its Applications, vol. 5. Hindawi Publishing Corporation, New York (2008)
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