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1 Introduction
In the last two decades, the stationary nonlinear Schrödinger equation, given by

{
–ε�u + V (x)u = f (x, u) in R

N ,
u ∈ H(RN ),

(.)

has been widely studied by several authors in works dealing with the existence, the multi-
plicity, and the concentration of solutions when the parameter ε → . In order to highlight
some of the most influential works about this subject, we could quote the pioneering work
of Floer and Weinstein [], in which they used the Lyapunov-Schmidt reduction to ob-
tain positive solutions exhibiting the concentration behavior for the unidimensional case.
In [], Rabinowitz used a variational approach to obtain positive solutions of (.) under
global hypotheses on the potential V . Later, Wang in [] proved that the solutions obtained
by Rabinowitz concentrate around the global infimum of the potential. In the celebrated
paper [], del Pino and Felmer used the so called penalization technique to prove the same
kind of concentration behavior of solutions of (.), considering the potential V under a
local version of the Rabinowitz condition.

In all of the above mentioned works, the authors worked with potentials V bounded
away from zero. Stationary NLS problems with vanishing potentials were treated for in-
stance by Bonheure et al. in [, ], where the authors obtained concentration of positive
solutions around global minimum points of an auxiliary function and even around some
lower dimensional spheres in R

N .
In spite of this amount of results treating the second-order case, just few works can be

found dealing with similar questions involving the fourth-order equation
{

�u + V (x)u = f (x, u) in R
N ,

u ∈ H(RN ).
(.)
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In [, ], the author and Soares proved the existence of a concentrating sequence of so-
lutions of the singular perturbed version of (.), considering, respectively, a global and a
local condition on the potential V , and a subcritical power-type nonlinearity f . The main
arguments of these works were strongly inspired by Rabinowitz [], Wang [] and del Pino
and Felmer [], in which other arguments to overcome the lack of a maximum principle of
the biharmonic operator were required. In [] the author and Figueiredo, using Ljusternik-
Schnirelmann theory, deal with the same problem as in [], obtaining multiple solutions
exhibiting the concentration phenomenon.

Another relevant question about both problems (.) and (.) is the existence of sign-
changing solutions, sometimes called nodal solutions. For the second-order problem there
are several papers dealing with this subject. In a pioneering work [], Castro et al. have
obtained three solutions, including a nodal one, for a second-order problem in a bounded
domain and with Dirichlet boundary conditions. In [, ], Alves and Soares use the pe-
nalization technique to get nodal solutions concentrating around extremal points of the
potential V . In this approach, they use arguments based on the minimization of the en-
ergy functional in some Nehari sets, considering u+ = max{u, } and u– = min{u, }, re-
spectively, the positive and negative parts of a function u ∈ H(RN ). At first sight, one
could think that these arguments are trivially adaptable to the fourth-order case, however,
as long as in H(RN ) the decomposition u = u+ + u– is trivially allowed; in H(RN ) this
factorization is no longer to be available.

In this work, we consider the problem (.) where N ≥ , and f and V satisfy the follow-
ing assumption set:

(V)  < V := infRN V and V (x) = V (|x|), for all x ∈ R
N ;

(V) there exist � ⊂R
N ,  < V := infRN V , and V (x) = V (|x|), for all x ∈R

N ;
(f) f : RN ×R →R is a Carathéodory function;
(f) f (x, s) = o(|s|) as s →  a.e. in R

N ;
(f) there are constants c, c > , and  < p < ∗ – , where ∗ = N/(N – ), such that

∣∣f (x, s) – f (x, t)
∣∣ ≤ (

c + c
(|s|p + |t|p))|s – t|, for a.e. x ∈R

N and s, t ∈R;

(f) lim|s|→∞ F(x,s)
s = +∞ a.e. in R

N , where F(x, s) =
∫ s

 f (x, t) dt;
(f) f (x,s)

s is nondecreasing for s >  and nonincreasing for s < , for a.e. x ∈R
N .

Remark . Note that (f) implies that f (x, s) is nondecreasing in R and that (x, s) 	→
f (x, s)s – F(x, s) is also nondecreasing for s >  and nonincreasing for s < , for a.e. x ∈R

N .

Remark . An example of nonlinearity satisfying (f)-(f) is f (x, s) =
∑k

i= ai(x)|s|pi s,
where ai ∈ L∞(RN ), ai ≥  in a positive measure set of RN , and  < pi < ∗ – , for all
i ∈ {, . . . , k}.

In order to overcome the lack of the decomposition of H(RN ) in terms of positive and
negative parts of their functions, we use an alternative method developed by Moreau in
[] called the dual cones decomposition method, which consists in splitting a function u in
a Hilbert space H as u = u + u, in such a way that u ∈K and u ∈K∗, where K is a cone in
H and K∗ is called its dual cone. Considering H = H(RN ) and K = {u ∈ H(RN ); u ≥ },
if it is possible to prove that K∗ ⊂ –K, then we have a decomposition of a function u ∈
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H(RN ) in terms of a non-negative and a non-positive function such that many times we
can substitute the trivial decomposition not available in our case. Our approach follows
closely the work of Weth [], in which the author takes advantage of the Moreau method
to obtain signed and sign-changing solutions of the problem

�u = f (x, u) in � (.)

under Dirichlet or Navier boundary conditions in a bounded domain �. It is worth point-
ing out that to prove that K∗ ⊂ –K, it is necessary that we have some kind of a maximum
principle to �. In fact, this is the main reason why this method becomes so restrictive
when dealing with fourth-order problems. In [], Weth uses the fact that under Navier
boundary conditions, one can use twice the strong maximum principle to –� in �, in
order to obtain a version of this result to �. Considering Dirichlet boundary conditions,
the same is true at least to some domains like balls and limaçons. In this sense, our first
contribution is overcoming the lack of a maximum principle of � in R

N by using some
arguments of Chabrowski and Yang in [] to prove that there exist positive solutions of a
linear version of (.), which in particular implies that K∗ ⊂ –K (see Lemma .).

Another difficulty that deserves to be highlighted is the lack of compactness, since the
problem is in R

N . In order to overcome this difficulty, we consider the problem restricted
to H

rad(RN ) consisting in the radial functions belonging to H(RN ). This is interesting
because of a version of the Strauss lemma as regards higher-order Sobolev spaces proved
by Ebihara and Schonbek in []. At the end, once critical points of the restricted energy
functional are at hand we obtain critical points of the functional using the principle of
symmetric criticality of Palais.

Huang and Liu, in very recent papers [, ], have applied similar arguments to prove
the existence of sign-changing solutions to, respectively, a biharmonic and a p-biharmonic
problem. In the first one the authors have studied a biharmonic problem with an asymp-
totic linear nonlinearity and in the second, a p-biharmonic problem with a Hardy type
potential.

Our main result is the following.

Theorem . Assume that conditions (V) and (f)-(f) hold. Then there exist at least one
positive, one negative and one nodal classical radial solution of (.).

The proof involves variational arguments consisting in searching for critical points of
the energy functional, looking for stationary points of a Cauchy problem in Banach spaces.
In this sense, some results of Liu and Sun [] about the invariance of some sets will be
necessary.

Finally, we note that the nonlinearity f does not satisfy the well-known Ambrosetti-
Rabinowitz super-linearity condition, given by

(AR) there exists μ >  such that  < μF(x, s) ≤ f (x, s)s, for all s 
=  and a.e. in R
N .

Instead of this condition, in order to increase the range of admissible nonlinearities, we
consider the weaker assumption (f). This requires some arguments of Miyagaki and Souto
in [] to prove the boundedness of a certain sequence.

When proving Theorem . our main contribution is in providing a result on the ex-
istence of nodal solutions to the BNLS equation, which seems to be difficult to obtain
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by other methods like Nehari analysis. In fact the real difficulty here is in overcoming the
lack of the strong maximum principle in applying a method which works very well in those
situations where this principle is available.

In the first section we describe the variational framework. In the second one we intro-
duce the Cauchy problem and prove the invariance of some sets. The last section is left
for the proof of the main result.

To save notation in all of this paper we denote
∫
RN g dx just by

∫
g . The norm ‖ · ‖Lp(RN )

will be simple denoted by ‖ · ‖p.

2 The variational framework
As mentioned in the introduction, in order to overcome the lack of compactness, let us
consider H = H

rad(RN ) which is a Hilbert space when endowed with the following inner
product:

〈u, v〉 =
∫ (

�u�v + V (x)uv
)
,

which gives rise to the following norm:

‖u‖ =
(∫ (|�u| + V (x)u)) 


.

By (V), it follows easily that ‖ · ‖ is equivalent to the usual norm in H(RN ).
Before introducing the energy functional associated to (.), let us remember some re-

sults proved by Ebihara and Schonbek in [] that will be used along this text.

Lemma . (Corollary  in []) The following embeddings are compact:

H
rad

(
R

N)
↪→ Lq(

R
N)

, for all  < q < ∗ if N ≥ ,

H
rad

(
R

N)
↪→ Lq(

R
N)

, for all  < q if N = , , , .

Lemma . (Theorem . in []) H
rad(RN ) is not compactly embedded into L(RN ).

Let us consider the restriction to H of the energy functional whose Euler-Lagrange equa-
tion is (.), I : H →R, given by

I(u) =



∫ (|�u| + V (x)u) –
∫

F(x, u) =


‖u‖ –

∫
F(x, u).

Note that by (f) and Sobolev embeddings, I is well defined.
Since for each u ∈ H , v 	→ ∫

f (x, u)v is a continuous linear functional in H , it is well
defined A(u) ∈ H such that

〈
A(u), v

〉
=

∫
f (x, u)v, for all v ∈ H .

The following result states some interesting properties of the operator A : H → H de-
fined above.
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Lemma . A is a compact, locally Lipschitz operator, such that A(u) = ∇� where � :
H →R is given by �(u) =

∫
F(x, u). Moreover, for each ε > , there exists A(ε) >  such that

∣∣〈A(u), v
〉∣∣ ≤ (

ε‖u‖ + A(ε)‖u‖p+)‖v‖, for all u, v ∈ H ,

where p is given in (f).

Proof Let us prove the estimate. Note that from (f) and (f) it follows that for each ε < ,
there exists A(ε) >  such that

∣∣f (x, s)
∣∣ ≤ ε|s| + A(ε)|s|p+, for a.e. x ∈ R

N and for all s ∈ R.

Using Hölder with the conjugated exponents ∗
p+ and ∗

∗–(p+) , we have

∣∣〈A(u), v
〉∣∣ ≤

∫ (
ε|u| + A(ε)|u|p+)|v|

≤ ε‖u‖‖v‖ + A(ε)
∥∥up+∥∥‖v‖.

Just by definition and Lebesgue dominated convergence theorem, it follows that A = ∇� ,
where �(u) =

∫
F(u). On the other hand, (f) implies that A is a locally Lipschitz operator.

What is left to show is that A is a compact operator. Although this follows by straight-
forward calculations, we describe all the details, since this was the reason why we had to
consider the space H

rad(RN ) rather than H(RN ).
Let (un) ⊂ H

rad(RN ) be a bounded sequence. Along a subsequence, we have

un ⇀ u in H
rad

(
R

N)
,

un → u in Lq(
R

N)
, for  < q < N/(N – ).

(.)

For each v ∈ C∞
 (RN ), it follows by (f) and the Hölder inequality with  + ε and ( + ε)′,

for small enough ε > , that

∣∣〈A(un) – A(u), v
〉∣∣

≤
∫ ∣∣f (x, un) – f (x, u)

∣∣|v|
≤

∫
supp(v)

c|un – u||v| +
∫

supp(v)
c

(|un|p + |u|p)|un – u||v|

≤ C(v)‖un – u‖+ε + C(v)
(∫

supp(v)
|un|p|un – u| +

∫
supp(v)

|u|p|un – u|
)

.

By taking  < r < min{, ∗/p}, using the Hölder inequality with r and r′ and by (.), we
obtain

∣∣〈A(un) – A(u), v
〉∣∣ ≤ C(v)on() + C(v)‖un‖p

p,r‖un – u‖r′ + C(v)‖u‖p
p,r‖un – u‖r′

= on().
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Therefore, for all v ∈ C∞
 (RN ) it follows that

lim
n→∞

〈
A(un) – A(u), v

〉
= . (.)

Since C∞
 (RN ) is dense in H

rad(RN ), it follows that (.) holds for all v ∈ H
rad(RN ), and

this implies that

lim
n→∞ A(un) = A(u). �

It is straightforward to prove that critical points of I correspond to fixed points of A.
Let us consider the following Cauchy problem in the Hilbert space H :

{
∂
∂t ϕ(t, u) = –∇I(ϕ(t, u)) = A(ϕ(t, u)) – ϕ(t, u),
ϕ(, u) = u,

(.)

where ϕ : G → H and G = {(t, u) ∈R×H ; u ∈ H and t ∈ [, T(u))} and [, T(u)) is the max-
imal interval of the existence of the trajectory t 	→ ϕ(t, u). Note that since A is a Lipschitz
continuous operator, the flow ϕ is well defined.

The following is a key point in our approach.

Proposition . If for some u ∈ H , {I(ϕ(t, u));  ≤ t < T(u)} is bounded from below, then:
(i) T(u) = ∞,

(ii) there exists tn → ∞ such that {ϕ(tn, u), n ∈N} is bounded in H and the ω-limit set
of u,

ω(u) =
⋂

≤t<∞

⋃
t≤s<∞

ϕ(s, u)

is a non-empty set formed by critical points of I .

Proof (i) Note that

∥∥ϕ(t, u) – ϕ(s, u)
∥∥ ≤

∫ t

s

∥∥∇I
(
ϕ(τ , u)

)∥∥dτ

≤ √
t – s

(∫ t

s

∥∥∇I
(
ϕ(τ , u)

)∥∥ dτ

) 


=
√

t – s
(
I
(
ϕ(s, u)

)
– I

(
ϕ(t, u)

)) 
 ,

where we have used Hölder and (.). Suppose the assertion of the item is false. Then by
the last estimate, the trajectory {ϕ(t, u); t ∈ [, T(u))} would be bounded, which implies
that T(u) = ∞, which gives rise to a contradiction.

(ii) First of all, let us note that there exists a sequence tn → ∞ such that ‖∇I(ϕ(tn, u))‖ →
, as n → ∞. This follows just by noting that

∫ ∞



∥∥∇I
(
ϕ(τ , u)

)∥∥ dτ = lim
t→∞

∫ t



∥∥∇I
(
ϕ(τ , u)

)∥∥ dτ

= lim
t→∞

∣∣I(ϕ(t, u)
)

– I(u)
∣∣ < ∞.
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We claim that {ϕ(tn, u)}n∈N is uniformly bounded in H with respect to n ∈N.
Suppose, contrary to our claim, that ‖ϕ(tn, u)‖ → ∞ as n → ∞. Let us define

wn =
ϕ(tn, u)

‖ϕ(tn, u)‖ .

Since (wn) is a bounded sequence in H , it follows that there exists w ∈ H such that wn ⇀ w
in H , up to a subsequence. Then Lemma . implies that wn → w in Lq(RN ),  < q < ∗,
and also wn → w a.e. in R

N .
In order to prove that w = , let us consider � = {x ∈R

N ; w(x) 
= }, and prove that � has
zero Lebesgue measure. For all x ∈ �, we have limn→∞ ϕ(tn, u)(x) = ∞. By (f), for each
M > , there exists r >  such that

F(x, s) ≥ Ms, for all s ≥ r and for a.e. x ∈R
N .

Since {I(ϕ(tn, u))}n→∞ is bounded from below,




+ on() ≥
∫ F(x,ϕ(tn, u))

‖ϕ(tn, u)‖

≥
∫

{|ϕ(tn ,u)|>r}∩�

F(x,ϕ(tn, u))
ϕ(tn, u) w

n

≥ M
∫

{|ϕ(tn ,u)|>r}∩�

w
n.

Observing that ϕ(tn, u)(x) → +∞ as n → ∞ for all x ∈ � and by Fatou’s lemma, it follows
that




≥ M
∫

�

w,

which is a contradiction since
∫
�

w >  and M is arbitrary. Hence, |�| = .
Note that the function t 	→ I(tϕ(tn, u)) is smooth in (, ). Let sn ∈ [, ] such that

I
(
snϕ(tn, u)

)
= max

t∈[,]
I
(
tϕ(tn, u)

)
.

For each R > , and for all n large enough,

I
(
snϕ(tn, u)

) ≥ I
(

R
‖ϕ(tn, u)‖ϕ(tn, u)

)

=
R


–

∫
F(x, Rwn) =

R


+ on().

Hence limn→∞ I(snϕ(tn, u)) = +∞, which implies that sn ∈ (, ). Then, for n large enough
I ′(snϕ(tn, u))snϕ(tn, u) = . By (f), for all t ∈ [, ] we have

I
(
tϕ(tn, u)

) ≤ I
(
snϕ(tn, u)

)
– I ′(snϕ(tn, u)

)
snϕ(tn, u)

=
∫ (

f
(
x, snϕ(tn, u)

)
snϕ(tn, u) – F

(
x, snϕ(tn, u)

))
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≤
∫ (

f
(
x,ϕ(tn, u)

)
ϕ(tn, u) – F

(
x,ϕ(tn, u)

))
= I

(
ϕ(tn, u)

)
+ on() ≤ C.

For a given R > , for n large enough, it follows that R
‖ϕ(tn ,u)‖ < . Then

I(Rwn) = I
(

R

‖ϕ(tn, u)‖ϕ(tn, u)
)

≤ C. (.)

On the other hand, for all R > ,

I(Rwn) = R
 – 

∫
F(x, Rwn) = R

 + on(). (.)

Since (.) contradicts (.), we find that {ϕ(tn, u)}n∈N is uniformly bounded in H with
respect to n ∈N and the claim is proved.

In order to show that ω(u) 
= ∅, let us consider the bounded sequence {ϕ(tn, u)}. Since A
is compact, there exists u ∈ H such that A(ϕ(tn, u)) → u along a subsequence. Hence

 = lim
n→∞

∥∥∇I
(
ϕ(tn, u)

)∥∥
= lim

n→∞
(
ϕ(tn, u) – A

(
ϕ(tn, u)

))
= lim

n→∞
(
ϕ(tn, u) – u

)
.

Then limn→∞ ϕ(tn, u) = u and u ∈ ω(u).
Concerning the proof that every point in ω(u) is a critical point of I , note that

I(ϕ(t, u)) → d as t → +∞. Then, if v ∈ ω(u), there exists tn → ∞ such that ϕ(tn, u) → v in
H as n → ∞. Hence

I
(
ϕ(t, v)

)
= lim

n→∞ I
(
ϕ
(
t,ϕ(tn, u)

))
= lim

n→∞ I
(
ϕ(t + tn, u)

)
= d,

for all t ≥ . Then, for all t ≥ ,

 =
∂

∂t
I
(
ϕ(t, v)

)
=

∥∥∇I
(
ϕ(t, v)

)∥∥,

which implies that ∇I(v) =  and v is a critical point of I . �

Definition . We call D ⊂ H a positive invariant set if ϕ(t, u) ∈ D for all t ∈ [, T(u)) and
u ∈ D. If D is a positive invariant set we define its absorption domain by

A(D) =
{

u ∈ H ;∃t ∈ [
, T(u)

)
such that ϕ(t, u) ∈ D

}
.

Let us define the following set:

A =
{

u ∈ H ; T(u) = ∞ and ϕ(t, u) →  as t → ∞}
.

Lemma . A is an open subset of H and there exists r >  such that Br() ⊂A.
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Proof Let  < ε <  and A(ε) given in Lemma .. Let us consider α = ( –ε
A(ε) )


p . For each

u ∈ Bα (), by Lemma . we have

�(u) =
∫ 



∂

∂t
�(tu) dt

=
∫ 



〈
A(tu), u

〉
dt

≤
∫ 



(
ε‖tu‖ + A(ε)‖tu‖p+)‖u‖dt

≤
∫ 


t‖u‖(ε + A(ε)‖u‖p)dt

=
‖u‖


(
ε + A(ε)‖u‖p)

≤ ‖u‖


(
ε + A(ε)αp


)

=
ε + 


‖u‖.

Then

I(u) =


‖u‖ – �(u) ≥

(



–
ε + 



)
‖u‖ ≥ ,

since ε ∈ (, ).
Moreover, for all u ∈ ∂Bα (),

I(u) ≥
(




–
ε + 



)
α

 =: β > . (.)

By continuity, there exists r ∈ (,α) such that

I(u) < β, for all u ∈ Br().

Since the energy does not grow along any trajectory, if u ∈ Br(), then I(ϕ(t, u)) < β, for
all t ∈ [, T(u)). Then, by (.), ϕ(t, u) ∈ Bα () for all t ∈ [, T(u)). Hence I(ϕ(t, u)) ≥ 
for all t ∈ [, T(u)), which implies that T(u) = ∞. Moreover, ω(u) ⊂ Bα () is a compact
non-empty set formed of critical points of I . On the other hand, if v ∈ Bα () is a critical
point of I , then

‖v‖ =
〈
A(v), v

〉 ≤ ‖v‖(ε + A(ε)‖v‖p) ≤ ‖v‖(ε + A(ε)αp

)

=
ε + 


‖v‖,

which only is possible in the case where v = . Therefore, ω(u) = {} for all u ∈ Br() and
then Br() ⊂ A, which implies that A = A(Br()). Since Br() is an open set, then so is
A(Br()). �

The following is a key result in our argument and in particular implies that ∂A is a great
place to look for nontrivial critical points of I .
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Proposition . ∂A is a closed positively invariant set of H and infu∈∂A I(u) ≥ . In
particular, for all u ∈ ∂A, ω(u) is a non-empty set consisting in nontrivial critical points
of I .

The proof of the positively invariance can be found in [] while the other results are
straightforward to see.

Although ∂A is a great set to look for nontrivial critical points of I , once found, nothing
can be said about its signal. Let us introduce the concept of dual cone and state the dual
cone decomposition theorem, which is given by Moreau in [].

Definition . Given a cone K in a Hilbert space H , its dual cone is defined by

K∗ =
{

v ∈ H ; 〈u, v〉 ≤ ,∀u ∈K
}

.

Theorem . Let K ⊂ H a closed convex cone. Then for all x ∈ H , there exist y ∈ K and
z ∈K∗ such that

x = y + z and 〈y, z〉 = .

Let us define the following cones and afterwards prove some invariance properties of
them.

Let

K =
{

u ∈ H ; u ≥  a.e. in R
N}

,

– K =
{

u ∈ H ; u ≤  a.e. in R
N}

,
(.)

which are closed convex cones.
Let us denote by P and Q the orthogonal projections of H in K and –K, respectively.

Denoting by P∗ = Id – P and Q∗ = Id – Q, note that

〈
Pu, P∗u

〉
= , for all u ∈ H

and

P∗u ∈K∗,

where K∗ is the dual cone associated to K. We have analogous results involving Q, –K,
and (–K)∗.

In order to prove the invariance of K and –K, as we will see, it will be necessary to prove
that K∗ ⊂ –K and (–K)∗ ⊂ K. In the classical argument developed by Weth in [], the
maximum principle to the operator � under certain boundary conditions and in certain
domains is absolutely useful. Since this is not an option for us, let us prove some result
that in some sense will substitute the lack of this result.

Lemma . For each radially symmetric h ∈ C∞
 (RN ), h ≥ , and h 
≡ , there exists a

positive continuous radial solution v ∈ H
rad(RN ) of the linear problem

�v + V (x)v = h(x) in R
N . (.)
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Proof The existence of a solution v ∈ H
rad(RN ) follows straightforwardly just by applying

the Riesz theorem. Regularity is a simple matter just by calling Proposition . in [].
To the positiveness we apply some arguments of Chabrowski and Yang in [] which we

describe below.
Since v is smooth, � = {x ∈ R

N ; v(x) < } is an open subset of RN . Supposing by contra-
diction that there exists x ∈ �, let R >  such that

BR(x) ⊂ �.

Assuming for simplicity that R = , let us denote

v̄(x) =

{
v(x), if |x – x| ≤ ,
, if |x – x| > ,

and ρ ∈ C∞
 (RN ) with supp(ρ) ⊂ B() and

∫
ρ = . Let us define

ṽ(x) =
∫

r–Nρ

(
x – y

r

)
v̄(y) dy =

∫
B(x)

r–Nρ

(
x – y

r

)
v(y) dy,

where  < r ≤ .
Note that supp(ṽ) ⊂ Br+(x). Then, for x ∈ Br+(x), ṽ satisfies

�ṽ(x) =
∫

B(x)
r–N�

xρ

(
x – y

r

)
v(y) dy

=
∫

B(x)
r–N–ρ

(
x – y

r

)(
h(y) – V (y)v(y)

)
dy =: h̄(x),

where h̄ ≥  as for each y ∈ Br+(), h(y) – V (y)v(y) ≥ . Then ṽ satisfies the following
problem:

{
�ṽ = h̄ in Br+(),
ṽ = �ṽ =  on ∂Br+().

(.)

Let us recall that from standard minimization arguments and elliptic regularity the-
ory, as proved in [][Lemma ], for all bounded smooth domain � ⊂ R

N and for all
g ∈ LN/(N–)(�) ∩ C,α(�),  < α < , there exists a classical solution w >  of

{
�w = g in �,
w = �w =  on ∂�.

(.)

For any LN/(N–)(Br+(x)) ∩ C,α(Br+(x)) positive function g , let w be the positive
smooth solution of (.) with � = Br+(x). Using w as a test function in (.) we obtain

∫
Br+(x)

h̄w dx =
∫

Br+(x)
�ṽw dx

=
∫

Br+(x)
ṽ�w dx

=
∫

Br+(x)
ṽg dx.
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However, while the last integral is negative, the first one is positive, which gives us a con-
tradiction. �

Using the last lemma it is possible to prove the following claim.

Claim K∗ ⊂ –K.

Proof Let u ∈ K∗. For each h ∈ L(RN ), h ≥  a.e. in R
N let (hn) in C∞

 (RN ), hn ≥ , such
that hn → h in L(RN ). For each n ∈N, let vn be the positive solution of the linear problem
(.) with h = hn, given by Lemma .. Then vn ∈K and

 ≥ 〈u, vn〉 =
∫ (

�u�vn + V (x)uvn
)

=
∫

uhn. (.)

Hence, by (.) and Fatou’s lemma,
∫

uh ≤ lim inf
n→∞

∫
u(x)hn(x) ≤ .

Then it follows that u ≤  a.e. in R
N and therefore u ∈ –K. �

Remark . It is worth pointing out that if u ∈ H , then u = Pu + P∗u where Pu ≥  and
P∗u ≤  a.e. in R

N . Then u ≤ Pu, and consequently, u+ ≤ Pu a.e. in R
N . In the same way

one can prove that P∗u ≤ u–, Qu ≤ u–, and u+ ≤ Q∗u a.e. in R
N .

The following is a very important result to prove the invariance of K and –K under the
flow ϕ.

Lemma . The operator A satisfies the following conditions:
(i) 〈A(u), v〉 ≤ 〈A(P∗u), v〉, for all u ∈ H and v ∈K∗;

(ii) 〈A(u), v〉 ≤ 〈A(Q∗u), v〉, for all u ∈ H and v ∈ (–K)∗.

Proof Since (ii) can be proved in the same way, we just prove (i). Let u ∈ H and v ∈K∗. By
Remark ., P∗u ≤ u–, and by (f)

f
(
x, P∗u(x)

) ≤ f
(
x, u–(x)

)
.

Since v ≤ , once more by (f) it follows that

〈
A(u), v

〉
=

∫
f (x, u)v

≤
∫

f
(
x, u–)

v

≤
∫

f
(
x, P∗u

)
v =

〈
A

(
P∗u

)
, v

〉
. �

Lemma .
(i) A(K) ⊂K and A(–K) ⊂ –K.

(ii) For sufficiently small α > , the α-neighborhood of K, Bα(K) is positively invariant
under ϕ. Moreover, all critical points of I in Bα(K) belong to K. The same holds for
the cone –K.
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(iii) K and –K are positively invariant under ϕ.

Proof Let us prove the results just for K, since for –K the arguments are the same.
(i) By Lemma .(i), for u ∈K,

∥∥P∗(A(u)
)∥∥ =

〈
A(u) – P

(
A(u)

)
, A(u) – P

(
A(u)

)〉
=

〈
A(u), P∗(A(u)

)〉
≤ 〈

A
(
P∗u

)
, P∗(A(u)

)〉
= ,

which implies that A(u) ∈K.
(ii) Let u ∈ H , by Lemma . and Lemma .(i), for  < ε < , we have

∥∥P∗(A(u)
)∥∥ =

〈
A(u), P∗(A(u)

)〉
≤ 〈

A
(
P∗u

)
, P∗(A(u)

)〉
≤ ∥∥P∗(A(u)

)∥∥(
ε
∥∥P∗u

∥∥ + A(ε)
∥∥P∗u

∥∥p+),

which implies that

∥∥P∗(A(u)
)∥∥ ≤ ε

∥∥P∗u
∥∥ + A(ε)

∥∥P∗u
∥∥p+ =

∥∥P∗u
∥∥(

ε + A(ε)
∥∥P∗u

∥∥p), (.)

since ‖P∗(A(u))‖ 
= . Then, if  < ‖P∗u‖ < ( –ε
A(ε) )


p =: α,

∥∥P∗(A(u)
)∥∥ <

∥∥P∗u
∥∥. (.)

Hence, for all α < α, every fixed point of A in Bα(K) belongs to K. In fact, if u ∈ Bα(K)\K
and A(u) = u then  < ‖P∗u‖ ≤ α < α, which implies by (.) that

∥∥P∗u
∥∥ =

∥∥P∗(A(u)
)∥∥ <

∥∥P∗u
∥∥,

which is a contradiction.
Now let us prove that Bα(K) is positively invariant.
Note that by (.)

A
(
∂Bα(K)

) ⊂ int
(
Bα(K)

)
. (.)

Suppose, contrary to our claim, that there exists u ∈ Bα(K) such that ϕ(t, u) ∈ ∂Bα(K)
where t ∈ [, T(u)) is the least positive real with this property. As Bα(K) is a convex
open set and {ϕ(t, u)} is compact, by Mazur’s separation theorem, there exist a linear
functional ρ ∈ H∗ and a real number β such that ρ(ϕ(t, u)) = β and ρ(u) > β for all
u ∈ Bα(K).

By (.) it follows that

∂

∂t
ρ
(
ϕ(t, u)

)∣∣∣∣
t=t

= ρ
(
–∇I

(
ϕ(t, u)

))
= ρ

(
A

(
ϕ(t, u)

))
– β > .
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Therefore, there exists η >  such that ρ(ϕ(t, u)) < β as long as t ∈ (t – η, t). Then
ϕ(t, u) /∈ Bα(K) for all t ∈ (t – η, t), which contradicts the minimality of t.

(iii) This item follows straightforwardly observing that K =
⋂

α> Bα(K). �

From now on let us consider α >  such that the statement of Lemma . holds for K
and –K.

To obtain the signed solutions we will use the following result.

Proposition . Assume that there exists u ∈ K such that I(u) < , then there exists a
nontrivial critical point of I in K. The same holds for –K.

Proof First note that by definition of A, I(u) ≥  for all u ∈A. Then by continuity, I(u) ≥
 for all u ∈A.

Since I(u) <  then u /∈A. As A is an open neighborhood of the origin, there exists
s ∈ (, ) such that su ∈ ∂A ∩ K. Since ∂A ∩ K is a closed positively invariant set, by
Proposition ., ω(su) ⊂ ∂A ∩ K is non-empty and any of its points are critical points
of I . �

Let us denote by

A+ = A
(
Bα(K)

) ∩ ∂A and A– = A
(
Bα(–K)

) ∩ ∂A.

Lemma . A+ and A– are disjoint relatively open sets of ∂A.

Proof Since Bα(K) and Bα(–K) are open sets, then so are A(Bα(K)) and A(Bα(–K)).
Suppose, contrary to our claim, that there exists u ∈A+ ∩A–. Since u ∈ ∂A, then T(u) =

∞ and ω(u) 
= ∅. Further, since u ∈A(Bα(K)) ∩A(Bα(–K)), then ω(u) ⊂ Bα(K) ∩ Bα(–K).
But since ω(u) consists of critical points of I , by Lemma ., ω(u) ∈K∩ –K = {}, which
contradicts the fact that u ∈ ∂A. �

Proposition . Suppose that there exists a continuous path h : [, ] → H , such that
h() ∈ K, h() ∈ –K, and I(h(t)) <  for all t ∈ [, ]. Then I has at least three nontrivial
critical points, these being u ∈K, u ∈ –K, and u ∈ H\(K ∪ –K).

Proof Proposition . gives the existence of the signed critical points u ∈K and u ∈ –K.
To get the nodal one, let us first highlight that h([, ]) ∩A = ∅.
Let Q = [, ] and B ⊂ Q be defined by

B =
{

(s, s) ∈ Q; sh(s) ∈A
}

.

Note that B is relatively open in Q and the following hold:
• {} × [, ] ⊂ B, since h(s) =  ∈A, ∀s ∈ [, ];
• {} × [, ] ∩B = ∅, since I(h(s)) < , ∀s ∈ [, ].
By recalling the Leray-Schauder continuation principle, it follows that there exists a con-

nected component � of ∂B, such that

� ∩ (
[, ] × {}) 
= ∅ and � ∩ (

[, ] × {}) 
= ∅.
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Now, let us consider � the closure of the connected component of �\∂Q that intersects
[, ] × {} and [, ] × {}.

Denoting by � = {sh(s); (s, s) ∈ �}, we find that � is a connected subset of ∂A such
that � ∩ ±K 
= ∅. Since by Lemma ., A± are disjoint open subsets of ∂A, � ∩ A±
are open disjoints subsets of �. By connectedness of �, there exists u ∈ �\(A+ ∪ A–)
and once ∂A\(A+ ∪ A–) is positively invariant, then {ϕ(t, u); t ≥ } ⊂ ∂A\(A+ ∪ A–).
Using the fact that this is a closed subset in ∂A, it follows that ω(u) ⊂ ∂A\(A+ ∪A–). In
particular, ω(u) ∩ (K ∪ –K) 
= ∅ and any of his points are nodal critical points of I . �

The next result will be useful to put the energy functional I in the context of the last
proposition.

Lemma . If S ⊂ H\{} is a compact subset and S̃ = {tu; u ∈ S and t ≥ }, then

I(u) → –∞ as u ∈ S̃ and ‖u‖ → ∞.

Proof Let (un) ⊂ S̃ be a sequence such that ‖un‖ → ∞. Then there exists a sequence in
R+ (tn) such that un = tnvn and (vn) ⊂ S. Since S is compact, we can suppose that along a
subsequence vn → v, as n → ∞, for some v ∈ S. As ‖un‖ → ∞, then one trivially sees that
tn → ∞.

Now let us prove that

lim
n→∞

∫ F(x, tnvn)
t
n

= +∞.

In fact, let � = {x ∈R
N ; v(x) 
= }, then by Fatou’s lemma and (f), it follows that

lim
n→∞

∫ F(x, tnvn)
t
n

= lim
n→∞

∫ F(x, tnvn)
t
nv

n
v

n

≥ lim
n→∞

∫
�

F(x, tsnvn)
t
nv

n
v

n = +∞. (.)

Let M >  be such that ‖vn‖ ≤ M, for all n ∈N. Then we have

I(un) = I(tnvn)

= t
n

(‖vn‖


–

∫ F(x, tnvn)
t
n

)

≤ t
n

(
M


–

∫ F(x, tnvn)
t
n

)
→ –∞

as n → ∞. �

Now, let us prove the main result of this work

Proof of Theorem . Let u ∈ K and v ∈ K∗, such that u, v 
=  and u and v are linearly
independent in H . For each s > , let us define hs : [, ] → H as hs(t) = s(tu + ( – t)v).
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For each s > ,
• hs() = su ∈K\{},
• hs() = sv ∈K∗\{}.
By Lemma . applied to the compact set S = {tu + ( – t)v; t ∈ [, ]}, we see that if s is

large enough, then I(hs(t)) < , ∀t ∈ [, ]. Hence, Proposition . gives us the existence of
u, u, and u, respectively, a positive, a negative, and a nodal critical point of I restricted
to H . The existence of the critical points of I in all space H(RN ) follows just by applying
the principle of symmetric criticality of Palais to the functional I , once we have observed
that I is invariant by the action of the group O(N), and

H
rad

(
R

N)
=

{
u ∈ H(

R
N)

; u
(
g(x)

)
= u(x),∀g ∈ O(N)

}
.

Hence the theorem follows. �
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