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Abstract
Consider the following anisotropic degenerate parabolic equation:

du 0 i ou ab;(u)
5 (@@ ax,-) tog kneRx oD,
with the homogeneous Dirichlet boundary value. If the equation is not only
degenerate in the interior of €2, but also on the boundary 9€2, the paper discusses
how to quote the suitable partly boundary condition to assure the well-posedness of
an entropy solution of the equation. In particular, it is possible that the solution of the
equation is free from the limitation of the boundary condition.

MSC: 35165;35L85; 35R35

Keywords: anisotropic degenerate parabolic equation; boundary condition; entropy
solution

1 Introduction

The paper is to consider the anisotropic degenerate parabolic equation of the form

ou 9 [ . . 0u ob;(u) .
L 10 , =Qx(0,7), 11
5 (a () ax,) e mQr=2x(07) (L1)

where @ C RV is an open bounded domain and the boundary 322 = ¥ is C?, (a”) is a

symmetric matrix with nonnegative characteristic values, i.e., for any £ € RY,
a'=d',  d’&& >0,
the pairs of the indices i, j imply the sum from 1 to N. Moreover, we assume that
a’(0) = 0. (L2)

Equation (1.1) arises in many applications, e.g., heat flow in materials with temperature

dependent on conductivity, flow in a porous medium,

ou
—~ — AL (1.3)
ot
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It also arises in the boundary layer theory,
wzw,m - wy —nUwe + Aw, + Bw =0, (1.4)

where A, B are two known functions derived from the Prandtl system, one can refer to
[1] for details. Here and in what follows, we say that equation (1.1) is strongly degener-
ate if there are interior points in the set {s € R : (a%(s)) is a degenerate matrix}. Clearly,
equation (1.1) is of hyperbolic-parabolic mixed type and might have a discontinuous so-
lution. The posedness of the Cauchy problem of equation (1.1) has been deeply investi-
gated (see [2—14] etc.). At the same time, Li and Wang [15] studied the well-posedness for
anisotropic degenerate parabolic equation (1.1) with inhomogeneous boundary condition
on a bounded rectangle by using the kinetic formulation which was introduced in [16].
Kobayasi and Ohwa [17] considered the entropy solutions of equation (1.1) with the ho-
mogeneous Dirichlet boundary value in an arbitrary bounded domain. Since the entropy
solutions defined in [15, 17] are only in the L™ space, the existence of the trace (defined in
a traditional way, which was called the strong trace in [17]) on the boundary is not guaran-
teed, the appropriate definition of entropy solutions is quoted, and a new definition of the
trace of the solution on the boundary, defined in an integral formula sense, is introduced;
they called it the weak trace. So, not only is Definition 1.1 in what follows different from
the definitions of entropy solutions in [15, 17], but the trace of the solution in our paper is
also in the traditional way.

In fact, if we want to consider the initial boundary value problem of equation (1.1), the
initial value condition is always required

u(x,0) =up(x), xe€Q. (1.5)
But can we give Dirichlet homogeneous boundary condition
ulx,t)=0, (xt)ecdQx(0,T)=% x(0,T) (1.6)

as usual?

Clearly, if (1.2) and (1.6) are both true, equation (1.1) is not only degenerate in the interior
of 2, but also degenerate on the boundary X of Q. If equation (1.1) is weakly degenerate,
we can give the boundary value (1.6) as usual. But if equation (1.1) is strongly degenerate,
we shall show that only a portion of the boundary should be given the boundary value.
Let us give a basic review of the history of the corresponding problem and show what we
consider now.

The memoir by Tricomi [18], as well as subsequent investigations of equations of mixed
type, elicited interest in the general study of elliptic equations degenerating on the bound-
ary of the domain. The paper by Keldys [19] played a significant role in the development
of the theory. It was this paper that first brought to light the fact that in the case of ellip-
tic equations degenerating on the boundary, under definite assumptions, a portion of the
boundary may be free from the prescription of boundary conditions. Later, Fichera [20, 21]
and Oleinik [22, 23] developed and perfected the general theory of second order equation
with a nonnegative characteristic form, which in particular contains those degenerating
on the boundary.
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The equation considered by Fichera and Oleinik is linear and the second order deriva-
tives of coeflicients of principal part are bounded. From Fichera-Oleinik theory, for alinear

degenerate elliptic equation,

2y

rs 8
@ (x) 0x, 0

9 -
N b,(x)% re@u=fx), xeScRV (17)

where the pairs of the indices 7, s imply the sum from 1 to N + 1. If one wants to consider
the boundary value problem of (1.7), one needs and only needs to give a partly boundary

condition. In detail, let {r} be the unit inner normal vector of 32 and denote

Yy = {x €dQ:a nmn, =0, (b, —afs)n, < 0},

Y3 = {x cdQ:a"nn, > O}.

Then, to ensure the posedness of equation (1.7), Fichera-Oleinik theory tells us that the

suitable boundary condition is

ulZzUE;; :g(x) (18)

In particular, if the matrix (a’) is positive definite, (1.8) is just the usual Dirichlet boundary
condition.

Now, for equation (1.3), or the general equation
u, = AA(u), (1.9)

with the existence of AL, in other words, equation (1.9) is weakly degenerate, then let
v=Au), u=A"),

Av— (A7), =0. (1.10)

According to Fichera-Oleinik theory, we know that we can give the Dirichlet homoge-
neous boundary condition (1.6). For equation (1.4), if the domain Q ={0<t<7,0<£& <
X,0 < n <1}, then comparing (1.4) with (1.7), according to Fichera-Oleinik theory, the ini-

tial and the boundary value conditions for w have the form
Wleeo =wo(E,m), Wl =0, (vww, —vow +¢(t,8))ly=0 = 0, (1.11)

where v is the viscous coefficient, vy and ¢(t, &) are known functions; one can refer to [1]
for details.
But if equation (1.1) is strongly degenerate, then the inverse matrix A~ = (a;)~! is not

existential, we cannot deal with it as (1.10). Rewrite equation (1.1) as

ou i 9%u o du ou ou
— 40 T (u)— — + b(u)—, i =Qx(0,7), 1.12
o a’(u) 5: 0%, +a’ (u) 92; 0% +bi(u) ™ in Qr x (0,T) (1.12)
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the domain is a cylinder  x (0, T). If we let ¢ = xy,1 and regard the degenerate parabolic
equation (1.12) as the form of a ‘linear’ degenerate elliptic equation as in (1.7), then

- al’ 0
(ars)(N+1)><(N+1) = <0 0) :

Ifa’(0) = 0, which means that equation (1.12) is not only strongly degenerate in the interior
of ©, but also degenerate on the boundary 9€2, then X3 is an empty set, while

bl(u) + a’7/(u)§’—;, l1<s=i<N,

&mw::
-1, s=N+1.

Under this observation, according to Fichera-Oleinik theory, the initial value condition
(1.5) is always needed, but on the lateral boundary 92 x (0, T), by a’(0) = 0, the partly
boundary on which we should give the boundary value is

)ni < O}
x€0Q

= {x € 0Q: b}(0)n; < 0}, (1.13)

¥, = {x €oQ: (b;(O) +ﬂijl(0)3—xi

x€0Q 8x,»

where {#;} is the unit inner normal vector of 9€2.

Though (1.13) seems reasonable and beautiful, whether the term g—,':i|xean has an ex-
plicit definition is unclear, unless equation (1.12) has a classical solution. In fact, due to
the strongly degenerate property of (a”), equation (1.12) generally only has a weak solu-
tion. In our paper, we consider the solution of equation (1.12) in BV sense, and we cannot
define the trace of 5’—; on 02, which means that we also cannot define

ot a Lot 8
Epz{xeaﬂz(b;(0)+a" (0)_u —d’(0) 2 )ni<0}.
8xj x€0Q E)xj x€0Q
Fortunately, only if b;(s) is derivable, then
= {x €9Q:b(0)n; < 0} (1.14)

has a definite sense. Our paper will show that X, defined in (1.14) can be given the bound-
ary condition in some way.

It is well known that the BV functions are the weakest functions which have the traces
in the usual way. At the same time, in order to get the uniqueness, we need to consider the
entropy solution of equation (1.1) instead of the general weak solution.

The existence will be proved by means of the method of parabolic regularization, namely
the solution of our problem will be obtained as a limit point of the family {u.} of solutions
of the regularized problem

u o[ . 8 b,
S_?Za—M<al/(u)a—Z>+£Au+ 8;7), in Qr=Q x (0,T), (1.15)

with compatible initial boundary values (1.4)-(1.5).
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In order to prove the compactness of {u. }, we need some estimates on {u, }. However, in
the present case of strong degeneration, it is difficult to estimate | grad u|;1(q,). In addi-

tion, since for the limit function u of certain subsequence of {u.}, a7 (u) 37” need not have
]
the trace y (a¥ (u)%) on X, we have to make a detour to avoid y(aif(u)%) in defining so-
7 ]

lution, where m is the composite means function of BV function a¥(x), which will be

defined in detail in what follows. By combining this inspiring idea of [24] with that of [9],

we shall give a new entropy solution of equation (1.1). Let us give some preparedness.
For any 1 > 0, Vk € R, let 7 = {n;} be the inner unit normal vector of ¥, and

ik = {x € 2, 8,(0)[6:(0) - bi(k)]n; > 0}, (1.16)

Tonk = {x € 2,8, (k)[6:(0) - bi(k)]n; < 0}. 1.17)
Clearly, ¥ = X,k U ok, and let

o= U Zwe T, = S\ (1.18)
Vn>0,VkeR

Now, if 31 # ), we can give the boundary value condition as
yulz, =0. (1.19)
In fact, by the definition of ¥y,x, we know that
0 < 8,(K)[:(0) = by(k) ] mi(x, 1) = —kS, (k)b )i, 8),
where ¢ € (k,0). If we let n — 0, then
bi(¢)ni(x,8) < 0.
Let kK — 0. We know that
bi(0)n;(x,£) <0,
which is in accordance with (1.14).
Let us consider X; # ¢ firstly. As for the case of ¥; = {J, no boundary value condition is
necessary. In other words, the solution of equation (1.1) is completely controlled by the

initial value condition. We shall discuss the problem in this case at the end of the paper.

Let S,(s) = f(f hy,(t)dr for small n > 0, where /1, (s) = %(1 - %)Jr. Obviously, /1, (s) € C(R),

and
hy(s) > 0, |sh,7(s)’ <1, |S,,(s)| <1 liH(l) S, (s) = sgns, liH})SS;](S) =0.
n— n—>

Definition 1.1 If X; #, a function u is said to be the entropy solution of equation (1.1)-
(1.5)-(1.19), if
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1. u € BV(Qr) N L®(Qr), and there exist the functions g' € L*(Qr), i = 1,2,...,N, such
that

i _ =ij ou
‘//QTg (x, D)p(x, t) dx dt = //QT Y (u)p(x, t) 7% dx dt, (1.20)

where ¢(x,t) € L2(Qr), (yY) is the square root of (a”), and
ve 1 .
Y (u) = f v/ (sut + A -s)u”)ds.
0

2. For any ¢1,¢2 € C2(Qr), ¢1 = 0, Vouls = 0, ¢ilsaxio,r) = ¢2laax(o,r], and supp s,
suppg; C Q x (0, T), for any k € R, for any small 1 > 0, u satisfies

, g0 N
/ / 1 (= )prs — B (1, sy + AN, ) S22 50— 1) S|P | ded
Qr 3965 3.961‘ i1

. 0@y 0
+ 8, (k) / fQ ) [u% — (bi(u) - :(0))as, +A‘f(u)8i;ai;] dxdt

T
+8,(k) / / [(6i(0) — bi(k) |nipr dt do > 0. (1.21)
0 Sk

3. The boundary value is satisfied in the sense of the trace

Y]z, =0. (1.22)
4. The initial value is satisfied in the sense of the following equality:

}il‘[(l)/ |u(x, t) — uo(x)| dx=0, aexeQ, (1.23)

—Y%Ja

where the pairs of equal indices imply a summation from 1 up to N, and

u u-k
BZ(u, k)= / bi(s)S,(s — k) ds, L(u-k) = / S, (s) ds,
k 0
AZ(u, k)= / aij(s)S,7 (s—k)ds, Al(u) = / a’(s) ds.
k 0
Clearly, let n — 0 in (1.21). We can see that if u is the entropy solution in Definition 1.1,
then it is an entropy solution defined in [2, 3, 7] etc.

We shall prove the following theorems.

Theorem 1.2 Suppose that A¥(s) is C3, bi(s) is C?, and uy(x) € L>°(Q)NC?(Q), and suppose
that

a’(0) = 0.

Then equation (1.1) with initial boundary value conditions (1.5), (1.19) has an entropy so-
lution in the sense of Definition 1.1.
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Theorem 1.3 Suppose that A¥(s) and b;(s) are C'. Let u, v be solutions of equation (1.1)
with different initial values uy(x), vo(x) € L*(R2), respectively. Suppose that

yu(x,t) = f(x, t), yv=g(x1t), xt)eX x(0,T), (1.24)
and in particular

yu=yv=0, x¢€, (1.25)
suppose that the distance function d(x) = dist(x, X) < A satisfies

|| < (1.26)

where X is a small enough constant, and Q; = {x € Q,d(x,9Q2) < A}. Then

/ ‘u(x, t) — vix, t)’ dx < / lg — voldx + esssup V(x, t)—g(x,1t)|, (1.27)
Q Q

(x,t)eZo x(0,7)

where (x,t) € RN*L, esssupq, e, o) [f (%, 1) — g(x,t)| is in the sense of N-dimensional
Hausdorff measure.

2 The proof of the existence
Without loss of generality, one may assume that ¥ € BV(Qr) is an almost everywhere
continuous function on Q7.

Let '), be the set of all jump points of u € BV(Qr), let v = (v, vo,...,Vn, Vny1) be the
normal of ', at X = (x,¢), u*(X), and let u~(X) be the approximate limits of # at X € T,
with respect to (v, Y — X) > 0 and (v, Y — X) < 0, respectively. For a continuous function
p(u,x,t) and u € BV(Qr), define

1
plu,x,t) = / p(ru* +(1-17)u,x, t) dr, (2.1)
0

which is called the composite mean value of p. For a given ¢, we denote I', HY, (v4,..., V%)
and #_ as all jump points of u(-, £), Hausdor{f measure of I';, the unit normal vector of T',
and the asymptotic limit of u(-, £), respectively. Moreover, if f (s) € C}(R), u € BV(Qr), then
f(u) € BV(Qr) and

af (u

~ 0
W):f/(u)a_‘:’, i:1;2w-~,N' (2'2)

Lemma 2.1 [25] Assume that Q@ C RN is an open bounded set, and let fi,f € L1(RQ), as
k — o0, fr = f weakly in L1(2),1 < g < c0. Then

Hminf [[fel fagy > 1 Ia(e)-
—00

Lemma 2.2 [24] Let u, be a solution of equation (1.15) with initial boundary value (1.5),
(1.6). If the assumptions of Theorem 1.2 are true, then
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ou,
on

8u8
ot

)

with constants c¢;, i = 1,2, independent of €.

do <q +cz<|Vu8|L1 @+

o)

Under the assumptions of A, b; and u( in Theorem 1.2, it is well known that there is a
classical solution u, of the initial boundary value problem (1.15)-(1.5)-(1.6), e.g., one can
refer to Chapter 8 of [26].

We need to make some estimates for u, of (1.15). Firstly, since uo(x) € L*°(£2) is suitably

smooth, by the maximum principle, we have
ltee| < lluollroe < M. (2.3)
Secondly, let us make the BV estimates on .

Theorem 2.3 Let u. be a solution of (1.15) with initial boundary value conditions (1.5),
(1.6). If the assumptions of Theorem 1.2 are true, then

| grad |11 0) < ¢,

where | gradu|? = Zl 1 | |2 | “|2, ¢ is independent of €.

Proof Differentiate (1.15) with respect to x5, s =1,2,...,N,N + 1, xn41 = £, and sum up for s
Sn(|gradug\)

after multiplying the resulting relation by #,,, arad ]

.In what follows, we simply denote
u, by u. Integrating over €2 yields

Ous, Sy gradul) Igradu\
“5 " gradul v)dr dx
o 0t | grad u| .y

dt/ o (| grad u|) dx, (2.4)

[ o | S, d
f O (i 2], Sitleradud)
q 0xg | Ox; 0x; | grad u|
9 Sy(| grad ul)
:/ a[ ](u)”x,uxs +a (u)ux,xs]uxswdx
d .y S, (1 gradu))
= — (a7 /ALK
/ 0x; ( u(u)ux/uxs)uxs | grad u|
0, . S, (| grad ul)
(@ )it Y, S 25
+/;2 axl (a (u)ux/xb)uxs |gradu| X ( )
and, moreover,
d . S, (| grad u))
) n
/an,( ACLELS | grad 4
N+1
; S, (| grad ul) D
Z/ ]( ) x/ xslgra—duldx+v/Qa,i(M)uxja—inn(lgradul) dx

:/Q—(a (u )ux1)|gradu|5 (Igradul)dx / (u)uxln, (|gradu|)

0x; T
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./Q (|gradu|) 0 ( ) (u)uy;) dx
= [ (s, el (| eradl) - 1 erad ) d

—/ (u)uxln, (|gradu|)do,
)

where {n;}¥, is the inner normal vector of  as before.

9 . S, d
f —(a”(u)ux-xs)uxSde
Q 0x; / | grad u|

d
:/anl(a (u)ux,xs)ag 2 (I gradu|) dx

y d
=—/ a”(u)ux.xsnj—lnﬂgradu|)do
X ' 855

.92, d
_ f al](u)Muxﬂiuxﬁ dx,
Q 3€s3$p

where & = u,,.

S d o1, d
s/ Auxsuxs—,,(lgra M|)dx=—e/ 3Ly (] grad ul) qudc
Q | grad u| 5 0X;

. /‘ 921,(| grad ul)
Q 8558%}7

XsXj uxpxi dx'

At the same time,

S, (| grad u) dx
| grad u|

f \Y (l;’(u)uxs)uxs
Q
N

Z/Q (bj(w))| gradu|S, (| grad ul) dx+Z/ bl(u )|g+d”|)

l

N

Z/Qaa (6;w))[| grad ulS, (| grad ul) — I, (| grad u]) ] dx
—/ bi(w)l, (| grad u|)n; do.
)}

From (2.4)-(2.9), by the assumption 47(0) = 0, we have

d
a/QI,](|gradu|)a'x
:/ (@i [ zrad lS, (| grad ) — I (| grad uf) ] dx

Q 0x;

3%, (| gradu 021, d
— / a’(u) Muxsm Uspoy A% — & / M”’M Uy, A%
Q E0E, o 0505,

+ Z/ b’(u |gradu|5n(| gradul) —1,7(| gradu|)] dx

Page 9 of 21

(2.6)

(2.7)

(2.8)

(2.9)
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—/ aZ(u)uxind,,(|gradu|)dU—/ b (w)l, (| grad u|)n; do
T T

8/ a1, (] grad u)
b

3xi

n;do. (2.10)
We shall use the fact that on X,

ad 0 |

b:»(u)—un,' =sAu+ — a”(u)—u , u=0, (2.11)
on 0x; oux;

to calculate the surface integrals in (2.10). Formula (2.11) involves the derivatives on the

boundary, let us give some explanation in the concept of local coordinates. Let §o > 0 be
small enough such that

E% = {x e Qdist(x, 2) <8} C U Ve,

=1

where V; is a region, on which one can introduce local coordinates
yk:Ff(x) (k=1,2,...,N), nls =0,

with FX appropriately smooth and FN = F, such that the yy-axis coincides with the nor-
mal vector. Since the domain is bounded, there exists finite V;, T = 1,2,...,n, such that
Ui, v:ox.

Using these local coordinates on V;, v =1,2,...,n, by elementary computations (refer
to [24]), we obtainon ¥ N V;

N N-1
_ N -k § N k m
uxixj - Z uyNkuxL‘ Fxl + M}’N}’kin Fx] + M}’minxj' (212)
k=1 k=1

By this formula, what (2.11) means is clear.

Moreover, by (2.11), the surface integrals in (2.10) can be rewritten as

a1, (| grad ul) .,

idO’
896,'

S = _[/2 b;(u)ln(|gradu|)nida + 8/2

+ / al(w)uy,ml, (] gradu|) da:|
z

:_8/[81ﬂ(|gradu|) Aulﬂﬂgmdm)]da
by

n;—

ox; g—';
; 1 d I d
+/a"(u) 31, grad ) an,»—ux.x.—"('g,ra ul) do
) 8xi e g—z
:_8/[81,,(Igradul)ni_Auln(lg;adul)]da‘
) 8xi ou
an

Since

Usngls =]z =0,
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we have

0
lim S = 8/ sgn(—u>(uxsxin,-ns - Au)do.
n—0 ) on

Noticing that
N NrkpNpN — N-1 m N pN
Zk:luJ’NJ’kFxlFx/Fx/Fx, FkFN u}’minijx]- x;
Uy MM = + E u _
R | grad FN |2 INTk |grad FN|2 ~

in which F¥ = Ff , by the fact that the normal vector is

5 dFN dFN
n=—mr,...,—— :gradFN,
8x1 3.761\[

we have

'N N

m
x,'xi x/ X m
Up o Milli — AU =U ———F" ).
X" IYm |gradFN|2 XiXj

Using Lemma 2.2, we are able to deduce that lim,_,¢ S can be estimated by | grad u|z, ()
Thus, letting n — 0 in (2.10) and noticing that

%ii%[' gradulS, (| gradul) - I, (| gradul)] =

using the fact that lim,_, o S can be estimated by | grad |, (q), we have

d
—/ |gradu|dx§c1+C2/ | grad u| dx.
dt Q Q

By the well-known Gronwall lemma, we have

/ | gradu|dxdt < c. (2.13)
Q

By (2.13), it is easy to show that

// uxlux dxdt <c. (2.14)
Qr

Thus there exist a subsequence {u,,} of u, and a function u € BV(Qr) N L*°(Qr) such
that u,, — u a.e. on Qr; there exist functions g’ € L?(Qr) and a subsequence of {¢} (we
can simply denote this subsequence as {¢} itself) such that when ¢ — 0,

ou,
ij

/\ij

—~g, inL*Qr). 0

Proofof Theorem 1.2 We now prove that u is a generalized solution of (1.1)-(1.5)-(1.19). Let
¢ € C*Qr), ¢1 = 0, suppep C 2 x (0,T), Voi|g = 0 and {n;} be the inner normal vector

Page 11 of 21
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of Q. Multiply (1.15) by ¢1 S,/ (4, — k) and integrate over Qr to obtain

// 38 1S, (ue — k) dx dt
/AT 8x,( 1)‘/’15 (e — k) dx dt

0b;(u,
+8// Au, 1S, (u, — k) dxdt + E // i )g01$ e — k) dxdt.
Qr

l

Let us calculate every term in (2.15) by the part integral method.

dug
// ”¢15( K)dxdt = — // e — k) dx dt,
Qr Qr

S/f Au.1S,(ue — k) dxdt
Qr
T
=—8/ / Vu, - n¢1S, (U, — k) dt do
0o Js

—¢ // Viu, [Sn(us -V + (plS;](u‘E - k)Vug] dxdt
Qr

T
= S,,(k)/ / Vi, -ﬁ(pldtdo—S// VuS,(ue — k)V, dxdt
0 Jx Qr
_3// |Vu8|ZS;](u8 — kg dxdt,
Qr
9 (. du
// — <a”(us)i)<p15,,(ue —k)dxdt
Qr Bxi 3961‘
T
. 0
=5, (k) / / & (1) 228 nygpy dit do
ij

// Ms S (us - )§01x, + QDISW( /)Msx ) dxdt
Qr

) X O u,
= 5,(k) / / a”(ug)lnigoldtda— / / @ (1) 2 8, (1o — K)prs, dx
0x; or 0x;

/f ﬂ}(ua)usxl Uex; ,7( —k)p dx dt,
Qr
and
- ou,
_// a”(us)_sn(ug - k)(/hxi dxdt
Qr Bx/

T
:// AZ(ug,k)q)lxix/. dxdt+/ /V(plxin/AZ(ug,k)dtda,
Qr 0o Jx

// M%Sn(ug —k)dxdt
Qr Bxi

T
—/ / [bi(ug) - b(k)]nigolS,,(ug —k)dtdo
0o Jz
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(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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// ute) b(k)][ S (e = K + 1S e
Qr

/ f gol b;(k) ]n, do dt - // ug,k)(plx dxdt. (2.20)
Qr

From (2.15)-(2.20), we have

// k)1 dx dt + f/ A’ ug,k)(plxlx] dxdt — /f ug,k)galx, dxdt
Qr Qr Qr

—8// Vue - Vi Sy (ue — k) dxdt — 8// | V| 25’ (the — K)oy dx dt
Qr

// (U ) U, U, n( —k)prdxdt + €S, ( / f Vu, - ng, dtdo
Qr

+S,7(k)/ /—(a‘j(ue)ﬁniwldtdcr+S,,(k)/ /golxinjAZ(O,k)dtda
o Jx 0x; 0x; 0o Jx

T
k) /(; /Elnk (bl(O) — b,(k))l’l,wl dtdo

T
+ 8, (k) / /E . (B:(0) - by(k))mipy dt do = 0. (2.21)

]d dt

Taking ¢, € C2(Qr), ¢1laax(o,1] = ¢2laax(0,1], Suppe2 C Q x (0, T),
T B ou T
S,,(k)/ /a”(ug)—snigol dtdo +8Sn(k)/ /Vus -ng, dtdo
0o Jx 396/ 0o Jx
du, D o,
:S,,(k){—e // te 092 dxdt—// @ (1) 2 . dx dt
Qr 8xi 8xi Qr 8x1'
d
- [ [ 5,032 as
Qr Xi
L) T
+ u,— dxdt — [bi(O)—b,»(O)]ni(pzdtdo , (2.22)
or Ot o Jx
. o,
/ f a’(ue) — oy, dx dt
Qr 0%
r N B
—/ /d L dtda—// a”(ug)(pgxixjdxdt
0o Jx 9% Qr

—// a’j(us)ngixj dxdt. (2.23)
Qr

For V|5 = 0 and a%(0) = 0, from (2.21)-(2.23), we have

// I,(ue — k). dxdt + // Az(ug,/()Agal dxdt — // B;(ug,k)golxi dxdt
Qr Qr Qr
due dpo .
k)| —¢ // dxdt + // a’ (Ue ) o, dx dt
Qr 8xi 8xi Qr 4
—// bi(ug)%dxdt+ // ug%dxdt]
Qr Bxi Qr ot
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—& // Vu, - VS, (ue — k) dxdt - // a‘j(us)usxiungS;(ug - k)1 dx dt
Qr Qr

T
+ Sn(k)/ f [(bi(O) - bi(k)]ngpl dtdo > 0. (2.24)
0 Elr}k
By Lemma 2.1,
.. i oue Ou,
! _ Ul
h?l)l(?f//QT S, (e — k)a’ (ue) 9x; 0%, o1 dxdt
N
> / Z|gi|28;(u —k)pidxdt. (2.25)
Qr i=1

Let ¢ — 0in (2.24). By (2.25), we get (1.21). At the same time, (1.22) is naturally concealed
in the limiting process.
The proof of (1.23) is similar to that in [2, 12], we omit the details here. O

3 Proof of Theorem 1.3
Similar as the proof of Lemma 2 in [9], we can prove the following lemma.

Lemma 3.1 Let u be a solution of (1.1). Then

+

u
/ yi(s)ds-vi=0, a.e (x,t)onT"j=1,2,...,N,
-

is true in the sense of Hausdorff measure Hy(I'*).
Proof of Theorem 1.3 Let u, v be two entropy solutions of (1.1) with different initial values
u(x, 0) = uo(x), v(x, 0) = vo(x) (3.1)

and with the same homogeneous boundary value yu(x,t) = yv(x,£) = 0, (x,t) € X;.

BY Definition 11, for any ¢, @2 € C2(@), 1 = 0, ¢)1|39X[0,T] = ‘/’2|8s2><[0,T], supp ¢,
supp@1 C 2 x (0, T), n >0, k,[ € R, we have

N
/ / [In(u —k)e = B (14, K)prs, + AT, K@, — Sy = K) Y "|g'(w) |2(P1:| dxdt
Qr

i=1

T
+8,(00[5:0) - bi(0)] /0 /2 ——

es0 [ fQ (16950 — (bi(u) = 5i(0)) oy + AV W preg | dvdlt > 0, (3:2)

N
/f [In(v ~Dre = B, (v, Dgry, + AL, Dy, = Sy (v =1 D |¢' W) |2¢1} dy dt
Qr

i=1

T
+5,(D[(B:(0) - b)) /0 /E ounid do
1nk

es0 [ /Q [vse — (B:6) = 5i(0)) gy, + AT W)y | dydt > 0. (33)
T
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Especially, if ¢; € C3(Qr), 92 =0, we have
/I [zn(u — K)pre — B (1, i + A 11, ) pr
Qr

N
-8 (u—k) Z|gi(u)|2g01:| dxdt>0,

(3.4)
i=1
\/‘/(A2 |:177 (V - l)(plr - B;(Vr l)(plyi + AZ(Vr l)(plyiy/
T
N .
~Sv=-0>| g‘|2(v)<p1:| dydt > 0. (35)
i=1
Let ¥ (x,t,5,7) = (%, t)ju(x — y,t — 7). Here ¢(x,t) > 0, p(x,t) € C5°(Qr), and
N
ju =y, =) = oyt = 7) [ [ onlxi - ), (3.6)
i=1
1 s
wp(s) = Zw<ﬁ>’ w(s) € Ci°(R), w(s) >0,
. (3.7)
w(s)=0 if|s|> l,f w(s)ds =1.

Then we choose k = v(y,7), [ = u(x,£), o1 = ¥ (x,t,9,7) in (3.4), (3.5), integrate over Qr
respectively, plus them together and get the following inequality

/fe f/Q [t =)+ 9) = (B a0, + By v, )y

+ AZ(M, V)l/’xix/ + AZ(V; u)wyi}’j]

N N
_S;(u -v) (Z‘gi(u)’2 + Z’gi(v)’2>1/fdxdtdydr >0.
i=1

(3.8)
i=1
Clearly,
jn  9j )]
I I o, LI o o1, N
ot ot dx; 3y
oY oY ¢, oy oy 09,
_+—:—]h, —+—:_]h-
Jat ot ot axi 8yl axi
Noticing that

lim B (u,v) = lim B, (v,10) = sgn(u = v) (bi(a0) = b,(v),

as 1 — 0, we have

//QT //QT [B! (4, v)Vrx, + B (v, )y, | dxcdt dydt

— / // sgn(u—v)[b[(u)—bi(v)]qﬁxl.jhdxdtdydt,
Qr J/JQr
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as 1 — 0, we have

/:/QT //(;T sgn(u—v)[b;(u)—bi(v)]¢xijhdxdtdydr
(u—v)|bi(u) — bi(v) | ¢y, dx . (3.9)
—>/‘/;2ngnu v)[bi(u )]y, dx

For the third term and the fourth term on the left-hand side of (3.8), we have

/:/O [AZ(u, V)V, + AZ(V, u)lﬁmj] dxdtdydr
T

/ / / / (1, V) B + 2Py + Ofnasny) + AL (v, 1) Bfiny,, } dxdt dy d
Qr QT

- / /Q T / /Q AL i + A+ AL 06y ey

N R

—/ ()S’ (s—v)ds ¢]hx1}dxdtdydr, (3.10)

where Definition 1.1 and formula (2.2) are used, i.e.,

—

al(u)S,(u—-v) = /1 a7(su +(1- s)u_)S (su’r +(1=-8)u - V) ds,

/ ’/(s)S/ s—v)ds—/ / 0')5,7( —su*—(l—s)u‘)dads.

For the fifth term on the left-hand side of (3.8), we have

I [ stmn(Sler Do )y anararas
- i [[ ] sw=nilgw|- o’y dedsayar
S s v

Now, by the properties of BV function,

/Q/Q / "’(5)f 0)S. (0 - 8)do dsyr dxdt dydr
v [ o
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v 0
X / ”’(G)S ( —su® —(l—s)u_) do dsa—u dxdtdydr
Xi

/ f wax,/ 8)ds - d,, /r"/(a)das;(v—u)dxdtdydr
Qr JQr 0
/ / » y]/ / (0)S,(0 = 8)do dsyy dxdtdydr
Qr JQr v
:/ / 1//8},/./ ri”(su++(1—s)u_)
Qr JQr 0
v d
x/ ”’(G)S( o —su —(l—s)u_)—udads
sut+(1 Bxi
f f qb]hx]/ (su™ +( —s)u)
Qr JQr
d
x/ (o )S;( —su® —(l—s)u_)dads—udxdtdydr,
sut+(1-s) 396,'
we have
ou Vo ou '\
/ / <’/ —V)—+/ a‘l(s)S;(s—u)ds—)]hqu&dxdtdydr
Qr JQr 0%, u d2;
—2/ / S’ (u-v Bx,/ r"(s) ds - Byj/ " (s) dsyr dx dt dy dt
Qr JQr 0 0

/Q /Q {/ (5" + (1= 8)u™)S, (s’ + A= s)u” ~v) ds

+ / / a’j(a)S;] (U —sut —(1- S)u_) do ds

0 Jsut+(1-s)u~
1

14
- 2/ r(sut + (1-s)u") / (o)
0 sut+(1-s)u~

xS%(a—su*—(l—s)u )dods} ]hxgbdxdtdydr

S AL L oo

x 7" (su+ +(1- s)u‘)S;7 (O‘ —sut —(1- s)u‘) do ds

/ f o) (o )S’( —su+—(1—s)u_)dads
sut+(1-s)u~

_ _ ’ nj

2/0 r(sut + (- s)u” )/S‘u++(l_s)ur (0)

xS%(a—su*—(l—s) )dods} }hxqbdxdtdydr

) /QT /QT {/01 /suvuu_s)u {r™(sut + (1= s)u”) (" (su* + A= 8)u”) —1r"(0))
= (o) (" (su” + (L= 9)u”) —r'"(0))}

xS%(o—su*—(l—s)u )dods} ]hxqbdxdtdydt
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Since

/V [ (su* + (L= s)u”) (" (su* + 1 - s)u”) - 1"(0))
sut+(1-s)u™

— (o) (" (su* + (1 -s)u”) = r"(0)) }S) (0 —su* = (1= s)u”) do

is uniformly bounded and leads to 0 as n — 0, we have, when n — 0,

e T 0 Voo 9
) /QT /QT <ﬂ”(u)5n(u B V)a_; B /M a¥(s)S, (s — u) dsa_:i>jhx/¢ dxdtdydr

4

—2/ / S;(u—v)axi/ ri”(s)ds~8yj/ (s)dsy dxdtdydr — 0. (3.12)
Qr JQr 0 0

At the same time, noticing that lim, ¢ Al(u,v) = lim"ﬁoAZ(v, u) = sgn(u — v)(A¥(u) -
A¥(v)), we have

i (A7 04, Vb + A5V, 1)) = O- (3.13)
Combining (3.8)-(3.13), and letting n — 0, & — 0, we get

/Q {1, ) = v, )] + semlas — ) (A7) — AT

—sgn(u —v)(bi(u) - b(v)) ¢y, } dxdt > 0. (3.14)

Let &, be the mollifier as usual. If y = (x1,...,xy), then

1
3(y) = GerPiflyl <1,
0 if |yl > 1,

where

1
A= / eb?-1 dy.
B1(0)

For any given ¢ > 0, 8,(y) is defined as

5.(y) = ELN(S(%)

Especially, we can choose ¢ in (3.14) by
P(x, 1) = w2 (X)),

where () € C3°(0, T), w;(x) is defined as follows. Let w; (x) € C3(S2) be defined as fol-
lows: for any given small enough 0 < 4, 0 < w; <1, ®|sq =0 and

wy(x) =1, ifd(x) =dist(x, ) > A.
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When 0 < d(x) <A,

(d@) -2

w; (d(x)) =1 3

Then

Wy = Wy, * 8.(d),

() = / o (d — 5)6:(5) ds
{Is|<e}N{0<d—s<Ar}

2(d—s— X
- [ 205D ) as,
{|s|<e}N{0<d—s<r} A

/ <
’wxg(d)‘ E )\’1

2
W (d) = o *8.(d) = 2/ 8. (s) ds.
a (Isl<e}N{0<d—s<h}
Now,

¢x,x, =1 t)(wks( )) xi%j
t) (wks (d)dx )
[

n(t) wxg(d)dxldx, + a)xs(d)dxlx]]

- (t)[——dxidx, / 85(s)ds+w’8(d)dxix,]
" 22 / {Is|<e}N{0<d—s<r} * /

using the conditions |d,,.| < ¢, and using the fact that |Vd| = 1, noticing that
g % g g

sgn( = V) (A7) — AV (0))dyy g = 1t~ V1@ )byl > 0,

where ¢ € (v,u). Then by (1.26), from (3.14), we have

T
/ |u(x,t)—v(x,t)|¢tdxdt+c/ / n(t)!wgg(d)||u—v|dxdt20,
Qr 0 JO\Q,

where Q; = {x € Q:d(x,0R) < A}.
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(3.15)

(3.16)

(3.17)

According to the definition of trace (3.3), let A — 0 in (3.17). By (3.15)-(3.16), we have

cesssup |f(x,£) — g(x, t)| + / |u(x, £) = v(x, 8)|n, dxdt > 0.

22 %x(0,T)

Let0<s<1t<T,and

s—t
n(t):/ ag(o)do, &<min{t,T —s}.

-t

Here a,(t) is the kernel of the mollifier with «,(£) = 0 for ¢ ¢ (-¢,¢). Then

T
cesssupV(x,t) gx,t)| /0[as(t—s)—ag(t—r)]lu—vm(g)dtz().

o x(0,T)

(3.18)



Zhan Boundary Value Problems (2015) 2015:22 Page 20 of 21

Let ¢ — 0. Then
|u(x, 7)—v(x,T) |L1(Q) < |u(x, s) —v(x, ) ’LI(Q) + c esssup V(x, ) —glx, t)|
29 %(0,T)

and the desired result follows by letting s — 0. O

4 Thecaseof X1 =0
If ¥; = ¢, the solution of equation (1.1) is completely controlled by the initial value condi-
tion. Now, we should give the following definition.

Definition 4.1 A function u is said to be the entropy solution of equation (1.1) with initial
value (1.5) if
1. u satisfies

weBVQNNI®Qn) - fo Jals)ds € L(Qn). (4.)

2. Forany ¢ € C3(Qr), ¢ > 0, for any k € R, for any small > 0, u satisfies

I1, {’"‘“"‘)% - B K,

N
p dp dg 12

3. The initial value is true in the sense of

limf |u(x, t)— uo(x){ dx=0, aexef. (4.3)
Q

t—0

Similarly as in the proofs of Theorems 1.2 and 1.3, we can prove the following theorems,
and we omit the details here.

Theorem 4.2 Suppose that A(s) is C3, b;(s) is C?, ug(x) € L®(2), and suppose that
a’(0) = 0. (4.4)

Then equation (1.1) with initial value condition (1.5) has an entropy solution in the sense
of Definition 4.1.

Theorem 4.3 Suppose that A¥(s), b;(s) is C'. Let u, v be solutions of equation (1.1) with
different initial values uy(x), vo(x) € L>°(2), respectively. Suppose that the distance function
d(x) = dist(x, X) satisfies (2.17), and that

yu(x,t) = f(x, t), yv=g(xt), x1t)eX x(0,T). (4.5)
Then
f |u(x, ) — vix, t)| dx < [ |up—voldx+ esssup V(x, t)—g(x,t) | (4.6)
Q Q (x,t)eX x(0,T)
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