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Abstract
In this paper we study the stationary generalized Navier-Stokes equations when the
viscosity is not only a constant but also a function which depends on the position
and the shear-velocity. For this we establish an improved decomposition of variable
exponent Lebesgue spaces of Clifford-valued functions. Using this decomposition
together with Clifford operator calculus, we obtain the existence, uniqueness and
representation of solutions for the generalized Stokes equations and the generalized
Navier-Stokes equations with variable viscosity in the setting of variable exponent
spaces of Clifford-valued functions. Furthermore, the equivalences of solutions and
weak solutions for the aforementioned equations are justified.
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1 Introduction
In this paper we are concerned with the stationary generalized Navier-Stokes equations:

– div(A∇u) + ρ(u · ∇)u + ∇q = ρf in �, (.)

div u =  in �, (.)

u =  on ∂�, (.)

where the operator A is defined by Au = au with a(x, u) : � ×R
n → R

+ and a ∈ C∞(� ×
R

n) and � ⊂ R
n (n ≥ ) is a bounded domain with sufficiently smooth boundary ∂�, u is

the velocity, q the hydrostatic pressure, ρ the density, f the vector of the external forces.
Notice that (.) may be written

–

ρ

div
(
A(x, u)Du

)
+ (u · ∇)u + ∇π = f in �, (.)

where π := q/ρ . If the relation A(x, u) := μ(α + |Du|)
p–

 with μ,α > , where μ is the shear
viscosity, Du := (/)(∇u + (∇u)�) is the symmetric gradient, then the fluid is called non-
Newtonian fluid with p-structure; see, for example, Acerbi and Mingione [] for related
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discussions in this direction. Clearly, the fluid in the case p =  is a Newtonian fluid, and
then (.) becomes

–ν�u + (u · ∇)u + ∇π = f in �, (.)

where ν := μ/ρ is the kinematic viscosity. Here (.) is the famous Navier-Stokes equation,
for the detailed account about the Navier-Stokes equations we refer to [, ]. In this paper
we will consider the Navier-Stokes equations in a Clifford language under the assumption
that the viscosity depends on the position and velocity, i.e., ν = ν(x, u) ∈ R

+. It is easy to
see that the viscous term –ν�u can be replaced by the Clifford expression DνDu, where
D =

∑n
j= ej∂j denotes the Dirac operator of a massless field, u is a Clifford-valued function;

for the details as regards the Clifford algebra we refer to the next section.
In order to study the time-dependent motion of a viscous, incompressible fluid we need

velocity fields u of the particles of the fluid along with their first spatial derivatives to be
summable to the p(k)th power (p– ≥ , k ∈ N) at each time and each position. Addition-
ally, u has to be solenoidal and vanishes at the boundary of the domain where the motion
happens. Thus this gives rise to the introduction of spaces of divergence free functions in a
generalized sense. Furthermore, the models of electrorheological fluids, which were intro-
duced by Rajagopal and Růžička [, ], can be described by the boundary value problems
for the generalized Navier-Stokes equations. This leads naturally to the establishment of
function spaces with variable exponents. On the other hand, Clifford algebras have impor-
tant applications in a variety of fields including geometry, theoretical physics and digital
image processing. They are named after the English geometer William Kingdon Clifford.
We have a generalization of the complex numbers, the quaternions, and the exterior alge-
bras; see []. As an active branch of mathematics over the past  years, Clifford analysis
usually studies the solutions of the Dirac equation for functions defined on domains in Eu-
clidean space and taking value in Clifford algebras; see, for example, []. In [] the authors
gave an overview of applications of Clifford analysis in mathematical physics. Hence, it
makes sense to study the stationary Navier-Stokes equations in the setting of Clifford al-
gebras.

It is worth pointing out that our attempt is to give a unified approach to deal with physi-
cal problems modeled by the generalized Navier-Stokes equations, which is quite different
from the approaches of some authors, for example, we refer the reader to the monograph
[]. Based on the above consideration, we should study the generalized Navier-Stokes
equations in variable exponent spaces of Clifford-valued functions. Of course, the study
of variable exponent spaces has been driven by various problems in elastic mechanics,
calculus of variations and differential equations with variable growth; see [–] and the
references therein.

Evidently, we should primarily be concerned with the study of the first term DA(Du)
in (.). In [, ], Nolder first introduced the general nonlinear A-Dirac equations
DA(x, Du) =  which arise in the study of many phenomena in the physical sciences. In
particular, he developed some tools for the study of weak solutions to nonlinear A-Dirac
equations in the space W ,p

 (�, C	n). Inspired by his works, Fu and Zhang in [, ] were
interested in the existence of weak solutions for the general nonlinear A-Dirac equations
with variable growth. For this purpose, the authors established a theory of variable ex-
ponent spaces of Clifford-valued functions with applications to homogeneous and non-
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homogeneous A-Dirac equations; see also [, ]. Very recently, Fu et al. in [, ] es-
tablished a Hodge-type decomposition of variable exponent Lebesgue spaces of Clifford-
valued functions with applications to the Stokes equations, the Navier-Stokes equations
and the A-Dirac equations DA(Du) = . By using the Hodge-type decomposition and vari-
ational methods, Molica Bisci et al. in [] studied the properties of weak solutions to
the homogeneous and nonhomogeneous A-Dirac equations with variable growth. For an
overview for the nonlinear A-Dirac equations with variable growth, we refer the reader
to [].

It is worth mentioning that Diening et al. in [] studied the following model introduced
in [, ] to describe the motions of electrorheological fluids:

⎧
⎪⎪⎨

⎪⎪⎩

– divM(Du) + (u · ∇)u + ∇π = f , x ∈ �,

div u = , x ∈ �,

u = , x ∈ ∂�,

(.)

where f ∈ (W ,p(x)
 (�))∗ = W –,p′(x)(�), n/(n + ) < p– ≤ p+ < ∞ and the operator A sat-

isfies certain natural variable growth conditions. The authors obtained the existence of
weak solutions in (W ,p(x)

 (�))n × Ls
(�), here s := min{(p+)′, np–/(n – p–)} if p– < n and

s := (p+)′ otherwise, Ls
(�) := {π ∈ Ls(�) :

∫
�

π dx = }. From a practical point of view, we
have to investigate the representation of solutions to system (.) besides existence and
uniqueness. Based on the method developed by Sprößig in [], it is possible to obtain the
desired results if we consider system (.) as M(Du) = a(x, u)Du under the assumption
f ∈ W –,p(x)(�,Rn), here a(x, u) is a positive function.

Motivated by their works, our goal in this article is to give a generalization of related re-
sults in Sprößig [] to the variable exponent setting. More precisely, we investigate prop-
erties of solutions for the following Navier-Stokes equations in variable exponent spaces
of Clifford-valued functions:

⎧
⎪⎪⎨

⎪⎪⎩

DADu + [uD]u + Dπ = f , x ∈ �,

[Du] = , x ∈ �,

u = , x ∈ ∂�.

(.)

Throughout the paper, the operator A is defined by Au = au with a(x, u) : �×R
n →R

+ and
a ∈ C∞(� ×R

n). The outline for this study is to first establish a modified decomposition
of variable exponent Lebesgue spaces. Then the classic results about the Stokes equations
and the Navier-Stokes equations obtained by Gürlebeck and Sprößig [, ] are extended
to the variable exponent setting. In particular, we would like to point out the equivalences
of solutions and weak solutions for the above-mentioned equations, which has not been
clearly stated by the previous works in [].

This paper is organized as follows. In Section , we start with a brief summary of Clifford
algebra and variable exponent spaces of Clifford-valued functions. In Section , we es-
tablish a modified decomposition of variable exponent Lebesgue spaces, and then dis-
cuss its some applications, which will be needed later. In Section , we obtain the ex-
istence and uniqueness of the generalized Stokes equations in the context of variable
exponent spaces. Moreover, the equivalence of solutions and weak solutions for the above-
mentioned equations are showed. In Section , using similar methods to [], we prove
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the existence and uniqueness of solutions to the generalized Navier-Stokes equations in
W ,p(x)

 (�, C	n) × Lp(x)(�,R) under certain hypotheses. Moreover, the equivalence of so-
lutions and weak solutions for the above-mentioned equations are presented.

2 Preliminaries
First we recall some related definitions and results concerning Clifford algebra and variable
exponent spaces of Clifford-valued functions. For a detailed account we refer to [, , ].

Let C	n be the real universal Clifford algebra over Rn. Denote C	n by

C	n = span{e, e, e, . . . , en, ee, . . . , en–en, . . . , ee · · · en},

where e =  (the identity element in R
n), {e, e, . . . , en} is an orthonormal basis of Rn

with the relation eiej + ejei = –δije. Thus the dimension of C	n is n. For I = {i, . . . , ir} ⊂
{, . . . , n} with  ≤ i < i < · · · < in ≤ n, put eI = ei ei · · · eir , while for I = ∅, e∅ = e. For
 ≤ r ≤ n fixed, the space C	r

n is defined by

C	r
n = span

{
eI : |I| = r

}
,

where |I| denotes cardinal number of the set I . The Clifford algebra C	n is a graded algebra
as

C	n =
⊕

r
C	r

n.

Any element a ∈ C	n may thus be written in a unique way as

a = [a] + [a] + · · · + [a]n,

where [ ]r : C	n → C	r
n denotes the projection of C	n onto C	r

n. In particular, by C	
n = H

we denote the algebra of real quaternions. It is customary to identify R with C	
n and iden-

tify R
n with C	

n, respectively. This means that each element x of Rn may be represented
by

x =
n∑

i=

xiei.

For u ∈ C	n, we denote by [u] the scalar part of u, that is, the coefficient of the element e.
We define the Clifford conjugation as follows:

ei ei · · · eir = (–)
r(r+)

 ei ei · · · eir .

We denote

(A, B) = [AB].

Then an inner product is thus obtained, giving rise to the norm | · | on C	n given by

|A| = [AA].
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A Clifford-valued function u : � → C	n can be written as u =
∑

I uIeI , where the coeffi-
cients uI : � →R are real-valued functions.

The Dirac operator on Euclidean space used here is introduced by

D =
n∑

j=

ej∂j.

This is a special case of the Atiyah-Singer-Dirac operator acting on sections of a spinor
bundle. Note that the most famous Dirac operator describes the propagation of a free
fermion in three dimensions.

If u is a real-valued function defined on a domain � in R
n, then Du = ∇u = (∂u, ∂u,

. . . , ∂nu). Moreover, D = DD = –�, where � is the Laplace operator which operates only
on coefficients. A function is left monogenic if it satisfies the equation Du(x) =  for each
x ∈ �. A similar definition can be given for right monogenic function. An important ex-
ample of a left monogenic function is the generalized Cauchy kernel

G(x) =

ωn

x
|x|n ,

where ωn denotes the surface area of the unit ball in R
n. This function is a fundamental

solution of the Dirac operator.
Next we recall some basic properties of variable exponent spaces of Clifford-valued

functions. Note that in what follows, we use the short notation Lp(x)(�), W ,p(x)(�), etc.,
instead of Lp(x)(�,R), W ,p(x)(�,R), etc. Throughout this paper we always assume (unless
declare specially)

p ∈P log(�) and  < p– := inf
x∈�

p(x) ≤ p(x) ≤ sup
x∈�

p(x) =: p+ < ∞, (.)

where P log(�) is the set of exponent p satisfying the so-called log-Hölder continuity, i.e.,

∣∣p(x) – p(y)
∣∣ ≤ C

log(e + |x – y|–)

holds for all x, y ∈ �; see []. Let P(�) be the set of all Lebesgue measurable functions
p : � → (,∞). Given p ∈P(�) we define the conjugate function p′(x) ∈P(�) by

p′(x) =
p(x)

p(x) – 
, ∀x ∈ �.

The variable exponent Lebesgue space Lp(x)(�) is defined by

Lp(x)(�) =
{

u ∈P(�) :
∫

�

∣∣u(x)
∣∣p(x) dx < ∞

}
,

with the norm

‖u‖Lp(x)(�) = inf
{

t >  :
∫

�

∣∣
∣∣
u(x)

t

∣∣
∣∣

p(x)

dx ≤ 
}

.
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The variable exponent Sobolev space W ,p(x)(�) is defined by

W ,p(x)(�) =
{

u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)
}

,

with the norm

‖u‖W ,p(x)(�) = ‖∇u‖Lp(x)(�) + ‖u‖Lp(x)(�). (.)

Denote W ,p(x)
 (�) by the completion of C∞

 (�) in W ,p(x)(�) with respect to the norm
(.). The space W –,p(x)(�) is defined as the dual of the space W ,p′(x)

 (�). For more details
we refer to [] and references therein.

In what follows, we say that u ∈ Lp(x)(�, C	n) can be understood coordinate wisely.
For example, u ∈ Lp(x)(�, C	n) means that {uI} ⊂ Lp(x)(�) for u =

∑
I uIeI ∈ C	n with the

norm ‖u‖Lp(x)(�,C	n) =
∑

I ‖uI‖Lp(x)(�). In this way, spaces W ,p(x)(�, C	n), W ,p(x)
 (�, C	n),

C∞
 (�, C	n), etc. can be understood similarly. In particular, the space L(�, C	n) can be

converted into a right Hilbert C	n-module by defining the following Clifford-valued inner
product (see [, Definition .]):

(f , g)C	n =
∫

�

f (x)g(x) dx. (.)

Remark . A simple calculation leads to the claim that the norm ‖u‖Lp(x)(�,C	n) is equiv-
alent to the norm ‖|u|‖Lp(x)(�). Furthermore, ‖Du‖Lp(x)(�,C	n) is an equivalent norm of
‖u‖W ,p(x)

 (�,C	n) for every u ∈ W ,p(x)
 (�, C	n); for the details we refer to [, ].

Lemma . (see [, ]) If p(x) ∈P(�), then Lp(x)(�, C	n) and W ,p(x)(�, C	n) are reflex-
ive Banach spaces.

Definition . (see []) Let u ∈ C(�, C	n). The Teodorescu operator is defined by

Tu(x) =
∫

�

G(x – y)u(y) dy,

where G(x) is the generalized Cauchy kernel mentioned above.

Lemma . (see []) The following operators are bounded linear operators:
(i) T : Lp(x)(�, C	n) → W ,p(x)(�, C	n).

(ii) T̃ : W –,p(x)(�, C	n) → Lp(x)(�, C	n), where the operator T̃ can be considered as a
unique bounded linear extension of the Teodorescu operator.

Lemma . (see []) The following operators are bounded linear operators:
(i) D : W ,p(x)(�, C	n) → Lp(x)(�, C	n).

(ii) D̃ : Lp(x)(�, C	n) → W –,p(x)(�, C	n), where the operator D̃ can be considered as a
unique bounded linear extension of the Dirac operator.

Lemma . (see []) Let p(x) ∈P(�).
(i) If u ∈ W ,p(x)

 (�, C	n), then the equation TDu(x) = u(x) holds for all x ∈ �.
(ii) If u ∈ Lp(x)(�, C	n), then the equation DTu(x) = u(x) holds for all x ∈ �.
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Lemma . (see []) Let p(x) satisfies (.).
(i) If u ∈ Lp(x)(�, C	n), then the equation T̃D̃u(x) = u(x) holds for all x ∈ �.

(ii) If u ∈ W –,p(x)(�, C	n), then the equation D̃T̃u(x) = u(x) holds for all x ∈ �.

3 A modified decomposition of spaces
Gürlebeck and Sprößig [, ] showed that the orthogonal decomposition of the space
L(�) holds in the hyper-complex function theory:

L(�, C	n) =
(
ker D ∩ L(�, C	n)

) ⊕ DW ,
 (�, C	n) (.)

with respect to the Clifford-valued product (.). Kähler [] extended the orthogonal de-
composition (.) to the spaces Lp(�, C	n) in form of a direct decomposition in a bounded
domain. In [], Cerejeiras and Kähler investigated a direct decomposition of Lp(�, C	n) in
an unbounded domain. In [], Zhang et al. generalized (.) to the setting of Lp(x)(�, C	n)
in a bounded domain.

In [], Diening et al. showed that the Dirichlet problem of the Poisson equation with
homogeneous boundary data

⎧
⎨

⎩
–�u = f in �,

u =  on ∂�,
(.)

has a unique weak solution u ∈ W ,p(x)(�) for each f ∈ W –,p(x)(�). Moreover, the following
estimate holds:

‖u‖W ,p(x)(�) ≤ C(n, p,�)‖f ‖W –,p(x)(�).

Here u is called a weak solution of problem (.) provided that

〈f ,ϕ〉 =
∫

�

∇u · ∇ϕ dx, ∀ϕ ∈ W ,p′(x)
 (�).

Then it is easy to see that for all f ∈ W –,p(x)(�, C	n) the problem (.) still has a unique
weak solution u ∈ W ,p(x)(�, C	n). We denote by �–

 the solution operator.
Now we are in a position to prove a decomposition of the variable exponent Lebesgue

spaces equipped with the modified inner product.

Theorem . The space Lp(x)(�, C	n) allows the Hodge-type decomposition

Lp(x)(�, C	n) =
(
B ker D̃ ∩ Lp(x)(�, C	n)

) ⊕ DW ,p(x)
 (�, C	n) (.)

with respect to the inner product

(f , g)A =
∫

�

Af (x)Ag(x) dx,

where AB = BA = I and Bu := b(x, u)u with ab = .
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Proof Similar to the proof of Theorem  in [], we first show the intersection of spaces
B ker D̃ ∩ Lp(x)(�, C	n) and spaces DW ,p(x)

 (�, C	n) contains one and only one zero el-
ement. Indeed, suppose f ∈ (B ker D̃ ∩ Lp(x)(�, C	n)) ∩ DW ,p(x)

 (�, C	n), then D̃Af = .
Moreover, f ∈ Lp(x)(�, C	n) shows that there exists a function w = TAf ∈ W ,p(x)(�, C	n)
because of Lemma .; then f = BDw ∈ DW ,p(x)

 (�, C	n) due to Lemma .. It follows that
w ∈ W ,p(x)

 (�, C	n). Therefore, we have D̃Dw =  in � and w =  on ∂�. From the unique-
ness of �–

 we obtain w = . Consequently, f = . Therefore, the sum of the two subspaces
is a direct one.

Now let u ∈ Lp(x)(�, C	n). If we take u = BD�–
 D̃Au, then using the same argu-

ments as the first part, we deduce that u ∈ DW ,p(x)
 (�, C	n). Let u = u – u. Then u ∈

Lp(x)(�, C	n). Furthermore, we take uk ∈ W ,p(x)
 (�, C	n) such that uk → u in Lp(x)(�, C	n),

then by the density of W ,p(x)
 (�, C	n) in Lp(x)(�, C	n) and Lemma ., we have for any

ϕ ∈ W ,p′(x)
 (�, C	n),

(u, BDϕ)A =
∫

�

A(u – u)Dϕ dx = lim
k→∞

∫

�

(
DAuk – DABD�–

 DAuk
)
ϕ dx = .

Thus, we obtain u ∈ B ker D̃. Since u ∈ Lp(x)(�, C	n) is arbitrary, the desired result fol-
lows. �

From this decomposition we can get the following projections:

Pa : Lp(x)(�, C	n) → B ker D̃ ∩ Lp(x)(�, C	n),

Qa : Lp(x)(�, C	n) → DW ,p(x)
 (�, C	n).

Moreover, we have

Qa = BD�–
 D̃A, Pa = I – Qa. (.)

Corollary . Let f ∈ Lp(x)(�, C	n). Then the following equations with homogeneous
boundary data:

⎧
⎨

⎩
DADu = f in �,

u =  on ∂�
(.)

has a unique solution u ∈ W ,p(x)
 (�, C	n) which may be represented by the formula u =

TQaBTf .

Proof For existence of solution, Theorem . implies that there exists a function u ∈
W ,p(x)

 (�, C	n) such that QaBTf = Du. Lemma . gives Tf ∈ W ,p(x)(�, C	n) and QaBTf ∈
W ,p(x)

 (�, C	n). Then from Lemma . it follows that TQaBTf = TDu = u. Hence u ∈
W ,p(x)

 (�, C	n). Further, we have

DADu = DAQaBTf = DABTf – DAPaBf = f ,

which implies DADu = f .
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For the uniqueness of solution, consider the boundary value problems: DADu =  in
� and u =  on ∂�. It is easy to see that Du ∈ im Pa ∩ im Qa = {}. Then Du = . Hence
u = TDu =  because of Lemma .. �

Remark . Gürlebeck and Sprößig [] pointed out that the equations of linear elastic-
ity and time-independent Maxwell equations over a three-dimensional domain with zero
boundary condition could be transformed into problem (.) in a quaternionic language;
see Section . and Section . in [] for more details.

Corollary . The space Lp(x)(�, C	n) ∩ im Qa is a closed subspace of Lp(x)(�, C	n).

Proof The proof follows that of Lemma  in [] almost word by word, we thus omit the
details. �

Corollary . (Lp(x)(�, C	n) ∩ im Qa)∗ = Lp′(x)(�, C	n) ∩ im Qa. In other words, the linear
operator


 : DW ,p′(x)
 (�, C	n) → (

DW ,p(x)
 (�, C	n)

)∗

given by


(Du)(Dϕ) = [Dϕ, Du]A :=
∫

�

[ADϕADu] dx

is a Banach space isomorphism.

Proof Similar to the proof of Lemma . in [], for the reader’s convenience, we will
give a detailed treatment of the proof. In view of Corollary ., DW ,p(x)

 (�, C	n) and
DW ,p′(x)

 (�, C	n) are reflexive Banach spaces since they are closed in Lp(x)(�, C	n) and
Lp′(x)(�, C	n), respectively. Linearity of 
 is clear. For injectivity, suppose


(Du)(Dϕ) = [Dϕ, Du]A =  (.)

for all ϕ ∈ W ,p(x)
 (�, C	n) and some u ∈ W ,p′(x)

 (�, C	n). For any ω ∈ Lp(x)(�, C	n), ac-
cording to (.), we may write ω = α + β with α ∈ B ker D̃ ∩ Lp(x)(�, C	n) and β ∈
DW ,p(x)

 (�, C	n). Thus we obtain

[ω, Du]A = [α + β , Du]A = [α, Du]A + [β , Du]A.

Taking a similar argument to the first part of the proof in Theorem ., we may write α = Bζ

with ζ ∈ ker D̃ ∩ Lp(x)(�, C	n) and Du = BDη with η ∈ W ,p(x)
 (�, C	n), then it is easy to see

that (α, Du)Sc = . This together with (.) gives (ω, Du)Sc = . This leads to Du = . It fol-
lows that 
 is injective. To get surjectivity, let f ∈ (DW ,p(x)

 (�, C	n))∗. By the Hahn-Banach
theorem, there is F ∈ (Lp(x)(�, C	n))∗ with ‖F‖ = ‖f ‖ and F|DW ,p(x)

 (�,C	n) = f . Moreover,
there exists ϕ ∈ Lp′(x)(�, C	n) such that F(u) = (u,ϕ)Sc for any u ∈ Lp(x)(�, C	n). According
to (.), we can write ϕ = ξ +Dα, where ξ ∈ B ker D̃∩Lp′(x)(�, C	n), Dα ∈ DW ,p′(x)

 (�, C	n).
For any Du ∈ DW ,p(x)

 (�, C	n), we have

f (Du) = [Du,ϕ]A = [Du, ξ ]A + [Du, Dα]A = [Du, Dα]A = 
(Dα)(Du).
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Consequently, 
(Dα) = f . It follows that 
 is surjective. By Theorem . in [] we have

∣
∣
(Du)(Dϕ)

∣
∣ =

∣
∣[Dϕ, Du]A

∣
∣ ≤ C‖Dϕ‖Lp(x)(�,C	n)‖Du‖Lp′(x)(�,C	n).

This means that 
 is continuous. Furthermore, it is immediate that 
– is continuous
from the inverse function theorem. The proof of Corollary . is thus finished. �

4 Stokes equations with variable viscosity
In the study of the stationary Navier-Stokes equations, the corresponding Stokes equa-
tions play an important role. It can be said that any open question about the Navier-Stokes
equations, such as global existence of strong solutions, uniqueness and regularity of weak
solutions, and asymptotic behavior, is closely related with the qualitative and quantitative
properties of the solutions of Stokes equations; see, for example, [] for related discus-
sions. To be precise, it is crucial to investigate the properties of solutions (u,π ) to the
following Stokes system:

–ν�u + ∇π = f in �, (.)

div u = f in �, (.)

u = v on ∂�. (.)

With
∫
�

f dx =
∫
∂�

n · v dx, the necessary condition for the solvability is given. The
scalar function f is a measure of the compressibility of fluid. The boundary condition (.)
describes the adhesion at the boundary of the domain � for v = . This system describes
the stationary flow of a homogeneous viscous fluid for small Reynold’s numbers. For more
details we refer to [, ].

For f =
∑n

i= fiei and u =
∑n

i= uiei, let us consider the following Stokes system in the
hyper-complex formulation:

D̃ADu + Dπ = f in �, (.)

[Du] =  in �, (.)

u =  on ∂�. (.)

Definition . We say that (u,π ) ∈ W ,p(x)
 (�, C	n)×Lp(x)(�) a solution of (.)-(.) pro-

vided that it satisfies the system (.)-(.) for every f ∈ W –,p(x)(�, C	n).

Definition . The operator ∇̃ : Lp(x)(�) → (W –,p(x)(�))n is defined by

〈∇̃f ,ϕ〉 = –〈f , divϕ〉 := –
∫

�

f divϕ dx

for all f ∈ Lp(x)(�) and ϕ ∈ (C∞
 (�))n.

Lemma . (see []) Let � be a bounded Lipschitz domain of Rn. Let f ∈ (W –,p(x)(�))n

satisfy

〈f ,ϕ〉 =
∫

�

f · ϕ dx = 
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for any ϕ ∈ M (�) := {v ∈ (W ,p′(x)
 (�))n : div v = }. Then there exists q ∈ Lp(x)(�) such that

f = ∇̃q.

Theorem . Let f ∈ W –,p(x)(�, C	n). Then the Stokes system (.)-(.) has a unique
solution (u,π ) ∈ W ,p(x)

 (�, C	n) × Lp(x)(�) in the form

u + TQaBπ = TQaBT̃f ,

with respect to the estimate

‖Du‖Lp(x)(�,C	n) + ‖QaBπ‖Lp(x)(�) ≤ C‖QaBT̃f ‖Lp(x)(�,C	n).

Here, C ≥  is a constant and the hydrostatic pressure π is unique up to a constant.

Proof We first show that the following representation is valid for each f ∈ W –,p(x)(�, C	n):

TQaBT̃f = u + TQaBπ .

Indeed, let ϕn ∈ W ,p(x)
 (�, C	n) with ϕn → ϕ in Lp(x)(�, C	n). By Lemma ., we have

TQBT(Dϕn) = TQaBϕn.

Since W ,p(x)
 (�, C	n) is dense in Lp(x)(�, C	n), it follows that TQaBT̃D̃ϕ = TQaBϕ. Thus,

for u ∈ W ,p(x)
 (�, C	n) and π ∈ Lp(x)(�), Lemma . yields

TQaBT̃f = TQaBT̃(D̃ADu + D̃π ) = u + TQaBπ .

This implies that our system (.)-(.) is equivalent to the system

u + TQaBπ = TQaBT̃f , (.)

[QaBπ ] = [QaBT̃f ]. (.)

Clearly, the equality (.) is equivalent to the following equality:

Du + QaBπ = QaBT̃f . (.)

Now we need to show that for each f ∈ W –,p(x)(�, C	
n), the function QaBTf can

be decomposed into two functions Du and QaBπ . Suppose Du + QaBπ =  for u ∈
W ,p(x)

 (�, C	
n) ∩ ker div and π ∈ Lp(x)(�). Then (.) gives [QaBπ ] = . Thus, QaBπ = .

Hence, Du = QaBπ = . This means that Du + QaBπ is a direct sum, which is a subset of
im Qa.

Next we have to consider the existence of a functional F ∈ (Lp(x)(�, C	
n) ∩ im Qa)∗ with

F (Du) =  and F (QaBπ ) =  but F (QaBT̃f ) �= . This is equivalent to asking if there exists
g ∈ W –,p′(x)(�, C	

n), such that for all u ∈ W ,p(x)
 (�, C	

n) ∩ ker div and π ∈ Lp(x)(�),

[Du, QaBT̃g]A = , (.)
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[QaBπ , QaBT̃g]A = , (.)

but [QaBT̃f , QaBT̃g]A �= . Here, Corollary . is applied.
Thus, let us consider the system (.) and (.) with g ∈ W –,p′(x)(�, C	

n). Taking the
arguments as the first part of the proof in Theorem ., we may write Du = BDw with
w ∈ W ,p(x)

 (�, C	
n). Then div u = div w =  because of b(x) > . According to Lemma .,

(.) yields

 = [Du, QaBT̃g]A =
∫

�

ADuAQaBT̃g dx

=
∫

�

wD̃AQaBT̃g dx =
∫

�

wg dx –
∫

�

wD̃APaBT̃g dx =
∫

�

wg dx,

which implies g = ∇̃h = D̃h with h ∈ Lp′(x)(�) because of Lemma .. Thus we obtain from
(.) and Lemma .

[QaBπ , QaBT̃g]A = [QaBπ , QaBT̃D̃h]A = [QaBπ , QaBh]A = 

holds for each π ∈ Lp(x)(�). Hence, QaBπ = |QaBh|p′(x)–QaBh gives QaBh = . Then we
obtain

g = D̃h = D̃AQaBh + D̃APaBh = .

Furthermore, we get

[QaBT̃f , QaBT̃g]A = , ∀f ∈ W –,p(x)(�, C	
n
)
.

Finally, (.) yields

‖Du‖Lp(x)(�,C	n) + ‖QaBπ‖Lp(x)(�) ≥ ‖QaBT̃f ‖Lp(x)(�,C	n).

By the norm equivalence theorem, we obtain

‖Du‖Lp(x)(�,C	n) + ‖QaBπ‖Lp(x)(�) ≤ C‖QaBT̃f ‖Lp(x)(�,C	n).

By Remark ., Lemma ., and the boundedness of the operator Qa, we get

‖u‖W ,p(x)
 (�,C	n) + ‖QaBπ‖Lp(x)(�) ≤ C‖f ‖W –,p(x)(�,C	n). (.)

From (.) the uniqueness of the solution follows. Note that QaB(π – π) =  implies
B(π – π) ∈ B ker D̃. Then π = π + c with c ∈R. Therefore, π is unique up to a constant.
The proof of Theorem . is now complete. �

In [], the authors did not point out the relation of solutions and weak solutions for the
Stokes equations. Next we should prove that solutions and weak solutions for the Stokes
equations are equivalent.
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Definition . The Clifford-valued function u is called a weak solution of the system
(.)-(.), if for each v ∈ W ,p′(x)

 (�, C	
n) ∩ ker div, the equality

(ADu, Dv)Sc = (f , v)Sc

holds, where (u, v)Sc denotes the classical scalar product (u, v)Sc =
∫
�

[uv] dx =
∫
�

∑n
i=ui ×

vi dx.

Theorem . Let u ∈ W ,p(x)
 (�, C	

n) and π ∈ Lp(x)(�) be a solution of system (.)-(.).
Then u is a weak solution of system (.)-(.). If u is a weak solution of the system (.)-
(.), then there exists a function π ∈ Lp(x)(�) such that the pair (u,π ) solves the system
(.)-(.).

Proof We follow the idea of Theorem .. in []. First we need to show that for all func-
tions v ∈ W ,p′(x)

 (�, C	
n) ∩ ker div, the following equality holds:

n∑

i=

(A∇ui,∇vi)Sc = (f , v)Sc. (.)

For this purpose, from (.) it follows that

(ADu, Dv)Sc = (ADTQaBT̃f , Dv)Sc – (ADTQaBπ , Dv)Sc (.)

for each v ∈ W ,p′(x)
 (�, C	

n) ∩ ker div. The first term of the right side in (.) yields

(ADTQaBT̃f , Dv)Sc = (D̃ADTQaBT̃f , v)Sc = (f , v)Sc, (.)

thanks to Lemma ., Lemma . and (.). For the second term of the right side in (.),
we choose a sequence {πk}∞k= ⊂ W ,p(x)

 (�) with πk → π in Lp(x)(�), then

n∑

i=

(
(ADTQaBπ )i, Dvi

)
Sc = lim

k→∞

n∑

i=

(
(ADTQaBπk)i, Dvi

)
Sc

= lim
k→∞

(DADTQaBπk , v)Sc = lim
k→∞

(Dπk , v)Sc = , (.)

because (∇πk , v)Sc = –(πk , div v)Sc =  for all v ∈ W ,p′(x)
 (�, C	

n) ∩ ker div. Then (.), to-
gether with (.) and (.), gives (.).

Conversely, let u ∈ W ,p(x)
 (�, C	

n)∩ker div be a weak solution for the system (.)-(.).
That means that (.) holds. It easily follows from Lemma . and Theorem . that

(ADu, Dv)Sc – (ADTQaBT̃f , Dv)Sc + (ADTQaBq, Dv)Sc = 

for all q ∈ Lp(x)(�) and v ∈ W ,p′(x)
 (�, C	

n) ∩ ker div. Then we have

n∑

i=

(∇(u – TQaBT̃f + TQaBq)i, A∇vi
)

Sc = . (.)
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On one hand, we have shown in Theorem ., which is independent of the above con-
siderations, that the system

ψ + TQaBπ = TQaBT̃f ,

[QaBπ ] = [QaBT̃f ]

has a solution (ψ ,π ) ∈ W ,p(x)
 (�, C	

n) × Lp(x)(�). Then substituting q in (.) by π , we
obtain

[Du – QaBT̃f + QaBπ ] = ,

which implies

u – TQaBT̃f + TQaBπ ∈ W ,p(x)


(
�, C	

n
) ∩ ker div .

On the other hand, it follows from (.) that

(
DAD(u – TQaBT̃f + TQaBπ ), v

)
Sc =  (.)

for all v ∈ W ,p′(x)
 (�, C	

n)∩ker div. Obviously, W ,p′(x)
 (�, C	

n)∩ker div is a closed subspace
in W ,p′(x)

 (�, C	
n), and hence W ,p′(x)

 (�, C	
n) ∩ ker div is a reflexive Banach space due to

Lemma .. Then (.) yields

DAD(u – TQaBT̃f + TQaBπ ) = .

Finally, by using the density argument and Corollary . we obtain

u – TQaBT̃f + TQaBπ = .

This ends the proof of Theorem .. �

Remark . Actually, the last part of the proof in Theorem . is quite different from
that of Theorem .. in []. The reason lies in the difference of W ,

 (�, C	n) and
W ,p(x)

 (�, C	n).

5 Navier-Stokes equations with variable viscosity
Our aim in this section is to investigate the existence of solution of the time-independent
generalized Navier-Stokes equations (.). Evidently, the main difference from the above-
mentioned Stokes equations is the appearance of the nonlinear convection term (u · ∇)u.
In , Oseen showed that one can get relatively good results if the convection term
(u · ∇)u is replaced by (v · ∇)u, where v is a solution of the corresponding Stokes equa-
tions. In , Finn [] proved the existence of solutions for small external forces with
a spatial decreasing to infinity of order |x|– for the case of n =  and used the Banach
fixed-pointed theorem. Gürlebeck and Sprößig [, ] solved this system by a reduction
to a sequence of Stokes problems provided the external force f belongs to Lp(�,H) for a
bounded domain � and / < p < /. Cerejeiras and Kähler [] obtained similar results
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provided the external force f belongs to W –,p(�, C	n) for an unbounded domain � and
n/ ≤ p < ∞. Zhang et al. [] investigated similar results provided that the external force
f belongs to W –,p(x)(�, C	n) for a bounded domain � and n/ ≤ p < ∞. Our intention in
this section is to extend these results to the more general case in variable exponent spaces.

For f =
∑n

i= fiei, u =
∑n

i= uiei, let us consider the following steady generalized Navier-
Stokes equations in the hyper-complex notation:

D̃ADu + Dπ = F(u) in �, (.)

[Du] =  in �, (.)

u =  on ∂�, (.)

with the nonlinear part F(u) = f – [uD]u, where the operator A is mentioned above.

Lemma . (see []) Let p(x) satisfies (.) and n/ ≤ p– ≤ p(x) ≤ p+ < ∞. Then the op-
erator F : W ,p(x)

 (�, C	
n) → W –,p(x)(�, C	

n) is a continuous operator and we have

∥
∥[uD]u

∥
∥

W –,p(x)(�,C	n) ≤ C‖u‖
W ,p(x)

 (�,C	n)
,

where C = C(n, p,�) is a positive constant.

Using Lemma ., which is crucial to the convergence of the iteration method, we are
able to give the main result as follows.

Theorem . Let p(x) satisfy (.) and n/ ≤ p– ≤ p(x) ≤ p+ < ∞. Then the system (.)-
(.) has a unique solution (u,π ) ∈ W ,p(x)

 (�, C	n) × Lp(x)(�,R) (π is unique up to a real
constant) if the right-hand side f satisfies the condition

‖f ‖W –,p(x)(�,C	n) <
ν

CC


, (.)

with ν = μ/ρ , C = C( + C), where C ≥  indicated in (.) and

C = ‖T‖[Lp(x)∩im Q,W ,p(x)
 ]‖QB‖[Lp(x),Lp(x)∩im Q]‖T̃‖[W –,p(x),Lp(x)∩im Q].

For any function u ∈ W ,p(x)
 (�, C	n) with

‖u‖W ,p(x)
 (�,C	n) ≤ ν

CC
– F , (.)

here F =
√

ν

C
 C


– 

C
‖f ‖W –,p(x)(�,C	n), the iteration procedure

uk + TQBk–πk = TQBk–T̃F(uk–), k = , , . . . , (.)

[QBk–πk] =
[
QBk–T̃F(uk–)

]
, (.)

converges in W ,p(x)
 (�, C	n) × Lp(x)(�), where Bkh := b(x, uk)h.
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Proof The proof is similar to that of Theorem .. in []. For the reader’s convenience,
we will give the key details of the proof. Replacing f by F(uk–) in the proof of Theorem .,
we obtain the unique solvability of the Stokes equations (.)-(.) which we have to solve
in each step. Moreover, we have the following estimate:

‖Duk‖Lp(x)(�,C	n) + ‖QBπk‖Lp(x)(�) ≤ C
∥
∥QBT̃F(uk–)

∥
∥

Lp(x)(�,C	n), (.)

where C ≥  is a constant. In the following, using the Banach fixed point theorem, we
could finish the remaining proof by following the proof of Theorem . in [] word by
word; we thus omit the details. �

Definition . The Clifford-valued function u is called a weak solution of the system
(.)-(.), if for all v ∈ W ,p(x)

 (�, C	
n) ∩ ker div, the following equality holds:

(ADu, Dv)Sc =
(
F(u), v

)
Sc,

that is to say, the following equality is valid:

n∑

i=

(A∇ui,∇vi)Sc +
n∑

i=

(ui∂iu, v)Sc = (f , v)Sc

for every v ∈ W ,p(x)
 (�, C	

n) ∩ ker div.

In the following we would like to point out the equivalence of solutions and weak solu-
tions for the generalized Navier-Stokes equations; this point is similar to the case of the
Stokes equations.

Theorem . Let u ∈ W ,p(x)
 (�, C	

n) and π ∈ Lp(x)(�) be a solution of system (.)-(.).
Then u is a weak solution of system (.)-(.). If u is a weak solution of the system (.)-
(.), then there exists a function π ∈ Lp(x)(�) such that the pair (u,π ) solves the system
(.)-(.).

Proof The proof is quite similar to the proof of Theorem ., so we omit it. We also refer
the reader to a similar proof of Theorem .. in [] by replacing Q with QaB. �
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