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Abstract
In this work an improved numerical solution of the singular boundary integral
equation of the 2D compressible fluid flow around obstacles is obtained by a
boundary element method based on modified shape functions and cubic boundary
elements. The singular boundary integral equation with sources distribution is
considered in this paper, and for its discretization cubic boundary elements are used.
The integrals of singular kernels are evaluated using modified shape functions which
are deduced by using series expansions for the basis functions we choose for the
local approximation models. A computer code is made using Mathcad programming
language and, based on it, some particular cases are solved. In order to validate the
proposed method, comparisons between numerical solutions and exact ones are
performed for the considered test problems. The advantage of using modified shape
functions for evaluating the singularities is pointed out through a comparison study
between the numerical solution obtained by the method proposed in this paper and
the one obtained by using a truncation method for evaluating the singularities.
MSC: 65N38; 76M15; 76G25; 35Q35

Keywords: discretization; boundary element method; cubic boundary element;
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1 Introduction
When solving problems of real life described by partial differential equations or systems
of partial differential equations with boundary conditions, seldom this can be done an-
alytically, and so, in order to find an approximate solution, numerical techniques, such
as: the finite difference method, the finite element method, the finite volume method, the
boundary element method, and others, have to be applied.

Among these methods the literature highlights the boundary element method because
of its advantages over the other, especially when dealing with fluid flows around obsta-
cles, in fact with problems with infinite domains. The reduction by one of the problem’s
dimension, less nodal values need to be found, a reduced computational effort is needed,
obtaining an exact boundary formulation of the problem, are only some of these advan-
tages, presented in many books dedicated to this method (as, for example, [–]). These
advantages recommend the boundary element method as a powerful and efficient numer-
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ical technique, suitable for a wide class of problems arising in different domains. The com-
plex boundary element method can also be successfully used to solve different problems,
especially problems of fluid flow (see, for example, []).

In this paper, the boundary element method is applied in order to find an improved
numerical solution for a boundary value problem with a nonlinear boundary condition,
namely the two-dimensional problem of the compressible fluid flow around obstacles. Our
goal is to solve, by discretization, a singular boundary integral equation associated to the
problem, and to obtain the numerical solution of the problem with a computer code made
in Mathcad, based on this approach.

Different methods have been applied to solve this problem and many equivalent integral
formulations were deduced for it (see [–]). Some similar problems were solved in [–
]. We have considered in this approach the singular boundary integral equation with
source distribution, for its simplicity, and because it is formulated in velocity terms, the
primary variables of interest, a fact that offers many advantages.

The singular boundary integral equation we refer to in the present work is solved in
[] by using a collocation method. Different kinds of boundary elements as linear, or
quadratic, are used in [, ]. In [] a brief description of the problem is made, a solution
that uses cubic boundary elements is obtained, and the advantages of using a boundary
element method to solve the mentioned problem are also presented. The treatment of sin-
gularities represents a great source of errors when applying this method, but using suitable
methods to overpass this difficulty, numerical solutions of great accuracy can be obtained.
In the mentioned paper a truncation method is used to evaluate the integrals with singular
kernels and very good numerical results are obtained. The present study is made in order
to improve the numerical solution by applying another method to deal with the singular-
ities. So, in the present paper the singular boundary integral equation is solved by using
cubic boundary elements, and, for evaluating the singularities, modified shape functions,
deduced on Taylor series expansions, are used.

For better understanding the meanings of the functions that appear in the boundary in-
tegral formulation we briefly present the problem to solve: we want to find the perturba-
tion produced in a subsonic uniform compressible fluid flow by the presence of an obstacle
and the fluid’s action on it.

The mathematical model of the problem consists in a system of partial differential equa-
tions with a nonlinear boundary condition and the condition that the perturbation van-
ishes at great distances. In dimensionless variables it can be written as (see []):

{
∂u
∂x + ∂v

∂y = ,
∂v
∂x – ∂u

∂y = ,
(β + u)nx + βvny =  on C, lim (u, v)

∞
= ,

where C (named ‘obstacle boundary’), assumed to be smooth and closed, is the curve ob-
tained from the real obstacle boundary with the transformation: x = X, y = βY (X, Y being
the dimensionless spatial variables), u

β
and v are the components of the perturbation ve-

locity, nx, ny denote the components, in the new system of coordinates, of the normal unit
vector outward the fluid, β =

√
 – M (for subsonic flow, M = Mach number).

The singular boundary integral equation is deduced, in the same paper, by assimilating
the boundary with a continuous distribution of sources, of intensity f , assumed to sat-
isfy a Hölder condition on C. The singular boundary integral equation, in dimensionless
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variables, is

(
n

x
 + βn

y
)f (x̄) +


π

′∫
C

f (x̄)
(x – x)n

x + β(y – y)n
y

‖x̄ – x̄‖ ds = βn
x , ()

where the same notations as before are used, n
x , n

y being the components of the normal
unit vector outward the fluid in the point x̄ ∈ C and f the intensity of sources. The symbol
‘′’ denotes the Cauchy Principal Value of the integral.

2 The discretization procedure
For solving the singular boundary integral equation (), we consider N one-dimensional,
isoparametric cubic boundary elements, noted Lj, j = , N , each of them with four nodes:
two extremes and two interior ones. For each pair of adjacent elements there is a common
extreme node, so we need only N nodes for the boundary discretization. Replacing C =⋃N

j= Lj, and considering that () is satisfied in every node x̄i, we get the discretized form
of ():

Aif (x̄i) +

π

N∑
j=

∫
Lj

f (x̄)
(x – xi)ni

x + β(y – yi)ni
y

‖x̄ – x̄i‖ ds = βni
x, i = , N , ()

where Ai = ni
x

 +βni
y

. In fact () represents the linear system (of N equations) the prob-
lem is reduced to.

For simplifying the writing we do not use the notation referring to the Cauchy principal
value of an integral, but when x̄i ∈ Lj the integrals in () have singular kernels, and they
are understood in this way.

The same set of basic functions (see [, ]), noted N, N, N, N, is used for locally de-
scribing the geometry and the unknown function on a boundary element. The expressions
of these functions, in the homogeneous variable ξ , are

N(ξ ) = –
(ξ – )(ξ + 

 )(ξ – 
 )


, N(ξ ) = 

(ξ + )(ξ – )(ξ – 
 )


,

N(ξ ) = –
(ξ + )(ξ – )(ξ + 

 )


, N(ξ ) = 
(ξ + 

 )(ξ – 
 )(ξ + )


, ξ ∈ [–, ].

()

As in [] two systems of numbering are used: a global one, in which fj, j = , N rep-
resents the nodal value of the intensity at node number j, and a local one in which f j

l ,
l = , , j = , N represents the nodal value of the lth node of element number j. Denoting
by [N] = (N N N N) a line matrix, by {xj}, {yj}, {f j} the column matrices made with the
coordinates of Lj nodes and the nodal values of the unknown function corresponding to
the same boundary element, for Lj, the following approximation models stand:

x = [N]
{

xj}, y = [N]
{

yj}, f = [N]
{

f j}. ()

Introducing () in () we obtain

Aif (x̄i) +

π

N∑
j=

∫ 

–

([N]{xj} – xi)ni
x + βni

y([N]{yj} – yi)
‖[N]{x̄j} – x̄i‖ [N]

{
f j}J j(ξ ) dξ = βni

x, ()

where J j(ξ ) is the coordinate transformation Jacobian.
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Denoting by

al
ij =

∫ 

–
Nl

([N]{xj} – xi)ni
x + βni

y([N]{yj} – yi)
‖[N]{x̄j} – x̄i‖ J j(ξ ) dξ ,

i = , N , j = , N , l = , , ()

we can write () as

Aifi +

π

N∑
j=

( ∑
l=

al
ijf

j
l

)
= βni

x. ()

Using only the global system of numbering, we obtain the following linear algebraic sys-
tem:

A{f} = {B}, A ∈ MN (R), {f}, {B} ∈ RN , Bi = πβni
x. ()

3 Modified shape functions for singular coefficients evaluation
In order to build the computer code necessary for obtaining the numerical solution we
need to compute the coefficients of A. The expressions of coefficients arising from nonsin-
gular integrals are given in [] and can be evaluated by using any mathematical software
when knowing the geometry of the obstacle, in fact the nodes coordinates, because they
depend only on these. The integrals of singular kernels are evaluated in the mentioned
paper with the simplest method, namely the truncation method. The goal of the present
paper is to use another numerical procedure to treat the singularities in order to get a more
accurate numerical solution. Such a technique is to use modified shape function to evalu-
ate the integrals of singular kernels (see []). It is used in [], the paper in which quadratic
boundary elements were used to solve the same singular boundary integral equation, and
it had offered numerical results of high accuracy.

Referring to the boundary element noted Lj, j = , N , singular kernels appear when x̄i is
one of its nodes, so when i ∈ {j – , j – , j, j + }, j = , N , considering that N +  = ,
the boundary being closed.

Denoting by η the value of ξ corresponding to x̄i, and using the properties of the set of
basis function we can write

[N]
{

xj} – xi =
∑

l=

Nl(ξ )xj
l – xi =

∑
l=

Nl(ξ )xj
l –

∑
l=

Nl(η)xj
l =

∑
l=

(
Nl(ξ ) – Nl(η)

)
xj

l. ()

Based on a Taylor expansion of Nl(ξ ) at η we have

Nl(ξ ) = Nl(η) +

!

N ′
l (η)(ξ – η) +


!

N ′′(η)(ξ – η) +

!

N ′′′(η)(ξ – η). ()

Denoting by

N̂l(ξ ,η) = N ′
l (η) +




N ′′
l (η)(ξ – η) +




N ′′′
l (η)(ξ – η) ()
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we can write () as

[N]
{

xj} – xi = (ξ – η)
∑

l=

N̂l(ξ ,η)xj
l. ()

Similarly we get

[N]
{

yj} – yi =
∑

l=

N̂l(ξ ,η)yj
l(ξ – η). ()

The functions N̂l(ξ ,η), l = , , from () are named modified shape functions and they
are used for evaluating the coefficients arising from integrals with singular kernels.

In the case of isoparametric cubic boundary elements their expressions, in the homoge-
neous variables, are

N̂(ξ ,η) = –



(
ξ  + η + ξη – ξ – η –




)
,

N̂(ξ ,η) =



(
ξ  + η + ξη –



ξ –



η – 

)
,

N̂(ξ ,η) = –



(
ξ  + η + ξη +



ξ +



η – 

)
,

N̂(ξ ,η) =



(
ξ  + η + ξη + ξ + η –




)
.

()

Doing the same for the denominator of the integrand in () we obtain

∥∥[N]
{

x̄j} – x̄i
∥∥ = (ξ – η)N̂ij(ξ ,η),

where

N̂ij(ξ ,η) =

( ∑
l=

N̂l(ξ ,η)xj
l

)

+

( ∑
l=

N̂l(ξ ,η)yj
l

)

. ()

Denoting

Fij(ξ ,η) =

( ∑
l=

N̂l(ξ ,η)xj
l

)
ni

x + β

( ∑
l=

N̂l(ξ ,η)yj
l

)
ni

y, ()

equation () becomes

al
ij =

∫ 

–
Nl(η)

Fij(ξ ,η)
(ξ – η)N̂ij(ξ ,η)

J j(ξ ) dξ +
∫ 

–
N̂l(ξ ,η)

Fij(ξ ,η)
N̂ij(ξ ,η)

J j(ξ ) dξ . ()

As one can see in the case of integrals with singular kernels, only the first integral in ()
still presents a singularity. Its evaluation is made numerically, according to the definition
of the Cauchy Principal Value of an integral, by using a small parameter ε to isolate the
singularity.
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The properties of the basis functions Nl , l = , , corresponding to boundary element
nodes, can be summarized as follows:

Nl(–) =

{
 if l = ,
 otherwise,

Nl

(
–


)
=

{
 if l = ,
 otherwise,

Nl

(



)
=

{
 if l = ,
 otherwise,

Nl() =

{
 if l = ,
 otherwise.

()

First we consider the case when the node x̄i coincide with the first node of element Lj,
so when i = j – . For this case η = –. Introducing relations () in () we obtain the
following expressions of the coefficients:

a
ij =

∫ 

–+ε

Fij(ξ , –)
(ξ + )N̂ij(ξ , –)

J j(ξ ) dξ +
∫ 

–
N̂(ξ , –)

Fij(ξ , –)
N̂ij(ξ , –)

J j(ξ ) dξ ,

ak
ij =

∫ 

–
N̂k(ξ , –)

Fij(ξ , –)
N̂ij(ξ , –)

J j(ξ ) dξ , k = , , .
()

If the node x̄i coincides with the second node of element Lj, so when i = j – , we have
η = –

 , and the following expression for the coefficients:

ak
ij =

∫ 

–
N̂k

(
ξ ,

–


) Fij(ξ , –
 )

N̂ij(ξ , –
 )

J j(ξ ) dξ , k = , , ,

a
ij =

∫ – 
 –ε

–

Fij(ξ , –
 )

(ξ + 
 )N̂ij(ξ , –

 )
J j(ξ ) dξ +

∫ 

– 
 +ε

Fij(ξ , –
 )

(ξ + 
 )N̂ij(ξ , –

 )
J j(ξ ) dξ ()

+
∫ 

–
N̂

(
ξ ,

–


) Fij(ξ , –
 )

N̂ij(ξ , –
 )

J j(ξ ) dξ .

For the third node of Lj, so when i = j, for which η = 
 , similar expressions are found:

ak
ij =

∫ 

–
N̂k

(
ξ ,




) Fij(ξ , 
 )

N̂ij(ξ , 
 )

J j(ξ ) dξ , k = , , ,

a
ij =

∫ 
 –ε

–

Fij(ξ , 
 )

(ξ – 
 )N̂ij(ξ , 

 )
J j(ξ ) dξ +

∫ 
 +ε


 –ε

Fij(ξ , 
 )

(ξ – 
 )N̂ij(ξ , 

 )
J j(ξ ) dξ ()

+
∫ 

–
N̂

(
ξ ,




) Fij(ξ , 
 )

N̂ij(ξ , 
 )

J j(ξ ) dξ .

For i = j + , η = , and the coefficients are given by the relations

ak
ij =

∫ 

–
N̂k(ξ , )

Fij(ξ , )
N̂ij(ξ , )

J j(ξ ) dξ , k = , , ,

a
ij =

∫ –ε

–

Fij(ξ , )
(ξ – )N̂ij(ξ , )

J j(ξ ) dξ +
∫ 

–
N̂(ξ , )

Fij(ξ , )
N̂ij(ξ , )

J j(ξ ) dξ .
()
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Finally, the expressions of all the elements of matrix A from () are evaluated. Denoting
by AAik , i, k = , N , the elements of A, we have

AAik =

{
Aik , i �= k,
πAi + Aii, i = k,

where Aik =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
i k+


+ a

i k–


if k ≡ (mod ), k = , N ,

a
i + a

iN if k = ,
a

i k+


if k ≡ (mod ), k = , N ,

a
 k


if k ≡ (mod ), k = , N .

()

The solutions of system (), namely the nodal values of sources intensity, f, f, . . . , fN are
used to evaluate the perturbation velocity components.

4 The velocity field and the local pressure coefficient
The components of the perturbation velocity on the boundary, u

β
, v, can be evaluated in

the same manner as in the case of solving the singular boundary integral equation (),
using the following relations (see []), x̄ ∈ C:

u(x̄) = –



f (x̄)n
x –


π

′∮
C

f (x̄)
x – x

‖x̄ – x̄‖ ds,

v(x̄) = –



f (x̄)n
y –


π

′∮
C

f (x̄)
y – y

‖x̄ – x̄‖ ds.
()

After introducing the approximation models () into the above relations we get the fol-
lowing expressions:

u(x̄i) = –



f (x̄i)ni
x –


π

N∑
j=

∫ 

–

[N]{xj} – xi

‖[N]{x̄j} – x̄i‖ [N]
{

f j}J j(ξ ) dξ ,

u(x̄i) = –



fini
x –




N∑
j=

( ∑
l=

bl
ijf

j
l

)
,

v(x̄i) = –



f (x̄i)ni
y –


π

N∑
j=

∫ 

–

[N]{yj} – yi

‖[N]{x̄j} – x̄i‖ [N]
{

f j}J j(ξ ) dξ ,

v(x̄i) = –



fini
y –




N∑
j=

( ∑
l=

cl
ijf

j
l

)
,

bl
ij =

∫ 

–
Nl(ξ )

[N]{xj} – xi

‖[N]{x̄j} – x̄i‖ J j(ξ ) dξ ,

cl
ij =

∫ 

–
Nl(ξ )

[N]{xj} – xi

‖[N]{x̄j} – x̄i‖ J j(ξ ) dξ , l = , , i = , N , j = , N .

()

The coefficients resulted from nonsingular integrals have same expressions as in [],
and they can easily be evaluated with a computer code, because they depend only on the
nodes coordinates. For the singular ones we deduce their expressions using modified shape
functions as in the case of elements of matrix A.
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We get the following relations:

bl
ij =

∫ 

–
Nl(η)

∑
l= N̂l(ξ ,η)xj

l

(ξ – η)N̂ij(ξ ,η)
J j(ξ ) dξ +

∫ 

–
N̂l(ξ ,η)

∑
l= N̂l(ξ ,η)xj

l

N̂ij(ξ ,η)
J j(ξ ) dξ , ()

cl
ij =

∫ 

–
Nl(η)

∑
l= N̂l(ξ ,η)yj

l

(ξ – η)N̂ij(ξ ,η)
J j(ξ ) dξ +

∫ 

–
N̂l(ξ ,η)

∑
l= N̂l(ξ ,η)yj

l

N̂ij(ξ ,η)
J j(ξ ) dξ . ()

So, for evaluating the singular coefficients we use the following expressions: for i = j – ,

bk
ij =

∫ 
– N̂k(ξ , –)

∑
l= N̂l(ξ ,–)xj

l
N̂ij(ξ ,–)

J j(ξ ) dξ , k = , , ,

b
ij =

∫ 

–+ε

∑
l= N̂l(ξ , –)xj

l

(ξ + )N̂ij(ξ , –)
J j(ξ ) dξ

+
∫ 

–
N̂(ξ , –)

∑
l= N̂l(ξ , –)xj

l

N̂ij(ξ , –)
J j(ξ ) dξ , ()

for i = j – , bk
ij =

∫ 
– N̂k(ξ , – 

 )
∑

l= N̂l(ξ ,– 
 )xj

l
N̂ij(ξ ,– 

 )
J j(ξ ) dξ , k = , , ,

b
ij =

∫ – 
 –ε

–

∑
l= N̂l(ξ , – 

 )xj
l

(ξ + 
 )N̂ij(ξ , – 

 )
J j(ξ ) dξ +

∫ 

– 
 +ε

∑
l= N̂l(ξ , – 

 )xj
l

(ξ + 
 )N̂ij(ξ , – 

 )
J j(ξ ) dξ

+
∫ 

–
N̂

(
ξ , –




)∑
l= N̂l(ξ , – 

 )xj
l

N̂ij(ξ , – 
 )

J j(ξ ) dξ , ()

for i = j, bk
ij =

∫ 
– N̂k(ξ , 

 )
∑

l= N̂l(ξ , 
 )xj

l
N̂ij(ξ , 

 )
J j(ξ ) dξ , k = , , ,

b
ij =

∫ 
 –ε

–

∑
l= N̂l(ξ , 

 )xj
l

(ξ – 
 )N̂ij(ξ , 

 )
J j(ξ ) dξ +

∫ 


 +ε

∑
l= N̂l(ξ , 

 )xj
l

(ξ – 
 )N̂ij(ξ , 

 )
J j(ξ ) dξ

+
∫ 

–
N̂

(
ξ ,




)∑
l= N̂l(ξ , 

 )xj
l

N̂ij(ξ , 
 )

J j(ξ ) dξ , ()

for i = j + , bk
ij =

∫ 
– N̂k(ξ , )

∑
l= N̂l(ξ ,)xj

l
N̂ij(ξ ,)

J j(ξ ) dξ , k = , , ,

b
ij =

∫ –ε

–

∑
l= N̂l(ξ , )xj

l

(ξ – )N̂ij(ξ , )
J j(ξ ) dξ +

∫ 

–
N̂(ξ , )

∑
l= N̂l(ξ , )xj

l

N̂ij(ξ , )
J j(ξ ) dξ . ()

We find similar expressions for coefficients from (), namely for i = j – , ck
ij =∫ 

– N̂k(ξ , –)
∑

l= N̂l(ξ ,–)yj
l

N̂ij(ξ ,–)
J j(ξ ) dξ , k = , , ,

c
ij =

∫ 

–+ε

∑
l= N̂l(ξ , –)yj

l

(ξ + )N̂ij(ξ , –)
J j(ξ ) dξ +

∫ 

–
N̂(ξ , –)

∑
l= N̂l(ξ , –)yj

l

N̂ij(ξ , –)
J j(ξ ) dξ , ()
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for i = j – , ck
ij =

∫ 
– N̂k(ξ , – 

 )
∑

l= N̂l(ξ ,– 
 )yj

l
N̂ij(ξ ,– 

 )
J j(ξ ) dξ , k = , , ,

c
ij =

∫ – 
 –ε

–

∑
l= N̂l(ξ , – 

 )yj
l

(ξ + 
 )N̂ij(ξ , – 

 )
J j(ξ ) dξ +

∫ 

– 
 +ε

∑
l= N̂l(ξ , – 

 )yj
l

(ξ + 
 )N̂ij(ξ , – 

 )
J j(ξ ) dξ

+
∫ 

–
N̂

(
ξ , –




)∑
l= N̂l(ξ , – 

 )yj
l

N̂ij(ξ , – 
 )

J j(ξ ) dξ , ()

for i = j, ck
ij =

∫ 
– N̂k(ξ , 

 )
∑

l= N̂l(ξ , 
 )yj

l
N̂ij(ξ , 

 )
J j(ξ ) dξ , k = , , ,

c
ij =

∫ 
 –ε

–

∑
l= N̂l(ξ , 

 )j
l

(ξ – 
 )N̂ij(ξ , 

 )
J j(ξ ) dξ +

∫ 


 +ε

∑
l= N̂l(ξ , 

 )yj
l

(ξ – 
 )N̂ij(ξ , 

 )
J j(ξ ) dξ

+
∫ 

–
N̂

(
ξ ,




)∑
l= N̂l(ξ , 

 )yj
l

N̂ij(ξ , 
 )

J j(ξ ) dξ , ()

for i = j + , ck
ij =

∫ 
– N̂k(ξ , )

∑
l= N̂l(ξ ,)yj

l
N̂ij(ξ ,)

J j(ξ ) dξ , k = , , ,

c
ij =

∫ –ε

–

∑
l= N̂l(ξ , )yj

l

(ξ – )N̂ij(ξ , )
J j(ξ ) dξ +

∫ 

–
N̂(ξ , )

∑
l= N̂l(ξ , )yj

l

N̂ij(ξ , )
J j(ξ ) dξ . ()

For u and v on the boundary the following relations hold:

u(x̄i) =
N∑
k=

uikfk , v(x̄i) =
N∑
k=

vikfk , ()

where uik = – 
 nxiδi

k – 
π

bbik , vik = – 
 nyiδi

k – 
π

ccik ;

bbik =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b
i k+


+ b

i k–


if k ≡ (mod ), k = , N ,

b
i + b

iN if k = ,
b

i k+


if k ≡ (mod ),

b
i k


if k ≡ (mod ),

ccik =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c
i k+


+ c

i k–


if k ≡ (mod ), k = , N ,

c
i + c

iN if k = ,
c

i k+


if k ≡ (mod ),

c
i k


if k ≡ (mod ).

()

The nodal values of the velocity components are used to evaluate the pressure coefficient
with relation:

cp =


γ M

{[
 +

M(γ – )


(
 – v –

(
 +

u
β

))] γ
γ –

– 
}

, M �= , ()

where γ is a fluid constant, the ratio between the specific heat at constant volume and the
specific heat at constant pressure. For the incompressible case, so for M → , we get the
following relation: cp =  – v – ( + u).
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5 Numerical results and conclusions
Based on the above approach we have made a computer code in order to obtain the nu-
merical solution of the problem. We have used Mathcad  programming tools to do this.
Because the best way to validate the computer code is by making an analytical checking,
we have considered some particular situations with exact solutions. Comparisons based
on graphical representations are made between numerical and exact solutions.

For the incompressible case and a circular obstacle, the solution of the problem can
be found in []. There we can find the analytical expressions of the components of the
dimensionless velocity (u, v) on the boundary, and of the local pressure coefficient, cp.

For this case the computer code outputs the numerical and the exact nodal values of the
velocity components and of the local pressure coefficient, based on the following input
data: the number of nodes used for the boundary discretization and ε value.

In Figure  the comparison between the numerical and the exact nodal values of the
velocity component along the Ox axis is made in case of considering  nodes on the
boundary (a), respectively  nodes (b), and ε = ..

In Figures  and  the comparisons between the nodal values of the component along
the Oy axis, and between the nodal values of the local pressure coefficient are performed,
for the same values of the mentioned parameters.

Good agreement between the exact and the numerical solutions can be observed, even
if we have considered ε = ., and only , respectively , boundary elements for the
boundary discretization.

Figure 1 The nodal values of the perturbation velocity component along Ox axis - exact (vx) and
numerical (Ux) solution. (a) 30 nodes; (b) 45 nodes.

Figure 2 The nodal values of the perturbation velocity component along Oy axis - exact (vy) and
numerical (Uy) solution. (a) 30 nodes; (b) 45 nodes.
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Figure 3 The nodal values of the local pressure coefficient - exact (cp) and numerical (Cp) solution.
(a) 30 nodes; (b) 45 nodes.

Figure 4 The errors between the numerical and the exact nodal values of the perturbation velocity
component along Ox axis - modified shape functions (Err X), truncation method (Ert X). (a) 30 nodes;
(b) 45 nodes.

The improvement of the numerical solutions obtained with the method developed in
this paper is shown through a comparison between them and those obtained in [], where
cubic boundary elements were also used for the boundary discretization, but the coeffi-
cients arising from integrals with singular kernels were evaluated using the truncation
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Figure 5 The errors between the numerical and the exact nodal values of the perturbation velocity
component along Oy axis - modified shape functions (Err Y), truncation method (Ert Y). (a) 30 nodes;
(b) 45 nodes.

method. Because the numerical values are very close to the exact one in both cases the
comparison is made through the absolute errors that appear.

Err X, Err Y denote the absolute errors between the numerical and the exact values of
the velocity components along Ox, respectively Oy, when the numerical ones are got with
the developed method, so using modified shape functions, and analogous notations, Ert X,
Ert Y , are used when the numerical solutions are obtained using the truncation method.

In Figure  comparisons between Err X and Ert X are made for the case of  nodes on
the boundary (a), respectively for  nodes (b), and ε = ..

In Figure  similar comparisons are made for Err Y and Ert Y .
From these graphics we can see that using modified shape functions for the treatment

of singularities leads to better numerical results, the errors being much lower in this case.
The coefficients arising from integrals with singular kernels greatly influence the well

behavior of the system the problem is reduced at, and that is why it is very important to
choose a suitable technique to evaluate them with great accuracy.

The numerical solution is compared in the present paper with the exact one, in order to
show the accuracy of the first one, and then, in order to prove the fact that using modified
shape functions for evaluating singular coefficients we obtain a better approximation for
the solution, we have compared the numerical results with those obtained when trunca-
tion method was used to evaluate the singularities. The comparisons have shown that we
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get a good accuracy for the numerical solution in both situations but, when using modi-
fied shape functions, the numerical solution was improved, even for the small numbers of
boundary elements , respectively , and for ε = ..

Implementing an efficient method to evaluate the integrals of singular kernels can lead
to numerical solutions of great accuracy, and this paper recommends the techniques based
on modified shape functions as useful tools to succeed in this.

Competing interests
The author declares that she has no competing interests.

Acknowledgements
The author is very grateful to the reviewers for their valuable suggestions and useful comments, and thus for their help in
the improvement of the original manuscript.

Received: 2 November 2014 Accepted: 23 January 2015

References
1. Banerjee, PK, Mukherjee, S: Developments in Boundary Element Methods, vol. 3. Elsevier, London (1984)
2. Banerjee, PK, Watson, JO: Developments in Boundary Element Methods, vol. 4. Elsevier, London (1986)
3. Bonne, M: Boundary Integral Equation Methods for Solids and Fluids. Wiley, New York (1995)
4. Brebbia, CA, Telles, JCF, Wobel, LC: Boundary Element Theory and Application in Engineering. Springer, Berlin (1984)
5. Brebbia, CA, Walker, S: Boundary Element Techniques in Engineering. Butterworth, London (1980)
6. Carabineanu, A: The study of the potential flow past a submerged hydrofoil by the complex boundary element

method. Eng. Anal. Bound. Elem. 39, 23-35 (2014)
7. Ferziger, JH, Peric, M: Computational Methods for Fluid Dynamics, 2nd rev. edn. Springer, Berlin (1999)
8. Carabineanu, A: A boundary element approach to the 2D potential flow problem around airfoils with cusped trailing

edge. Comput. Methods Appl. Mech. Eng. 129, 213-219 (1996)
9. Carabineanu, A: A boundary integral equations approach for the study of the subsonic compressible flow past a

cusped airfoil. Nonlinear Anal. 30(6), 3449-3454 (1997)
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