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Abstract

By using the continuous theorem of Ge and Ren and constructing suitable Banach
spaces and operators, we investigate the existence of solutions for an impulsive
p-Laplacian boundary value problem with integral boundary condition at resonance
on the half-line. An example is given to illustrate our main results.
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1 Introduction

Boundary value problems on the half-line arise in various applications such as in the study
of the unsteady flow of a gas through semi-infinite porous medium, in analyzing the heat
transfer in radial flow between circular disks, in the study of plasma physics, in an analysis
of the mass transfer on a rotating disk in a non-Newtonian fluid, etc. [1]

Many dynamical systems have an impulsive dynamical behavior due to abrupt changes
at certain instants during the evolution process. The mathematical description of these
phenomena leads to impulsive differential equations. For some general and recent works
on the theory of impulsive differential equations we refer the reader to [2—4]. Impulsive
differential equations occur in biology, medicine, mechanics, engineering, chaos theory,
etc. [5-9]. Impulsive boundary value problems have been studied by many papers; see
[10-15]. For example, in [14], the authors studied the existence of solutions for the problem

@)u'(8)) =ft,u(t), te0,00\{t,t,...,0n}
A () = L(u(ty), k=1,2,...,n,

au(0) — Blimy_, o+ p(t)u'(t) = 0,

y limy_, oo u(t) + 8 lim;_, o, p(£)u'(¢) = 0.

In [15], the impulsive boundary value problem on the half-line

ﬁ(lﬂ(t)x/(t))’ =f&x), te(0,00\{t1,t2,..., 1},
Ax (tr) = I(wy ), k=1,2,...,m,

Ax(0) = Blimyo+ p(£)x'(£) = a,

yx(00) + 8 lim;_, o p(£)x'(£) = b

was studied.
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A boundary value problem is said to be a resonance one if the corresponding homoge-
neous boundary value problem has a non-trivial solution. The boundary value problems
at resonance have been studied by many papers; see [16—22]. In [22], the author gave the

existence of solutions for the p-Laplacian boundary value problem at resonance on the

half-line
(pp(u)) () = Y @)f (£, u(t), 4/ (), te€[0,+00),
u'(+00) = 0, u(0) = 0+°Oh(t)u(t)dt,

where ¢,(s) = |s|P~%s, p > 1.

As far as we know, the impulsive p-Laplacian boundary value problems at resonance
on the half-line have not been investigated. In this paper, we will discuss the existence of
solutions for the problem

(0@ (2)) + f (£, u(t), ' ()) =0, £ €[0,00)\{t1,82,..., 8k},
App( (t) = Li(u(t), w' (), i=1,2,...,k 1.1)
u(©0)=0, @y (+00)) = [~ h(t)wp u'(t)) dt,

where 0 <t <ty <+ <t < +00, A, (/' (£)) = @, (1 (t; + 0)) — (1 (t; — 0)).
In this paper, we will always suppose that the following conditions hold.

(H) h(t) >0, t € [0,+00), [; " h(t)dt =1, f:[0,+00) x R? > R, and I; : R* > R, i =
1,2,...,k are continuous.

(Hz) For any constant r > 0, there exist a function %, € L[0, +o0) and a constant M, > 0,
such that |[f(¢,(1 + u,v)| < h(2), t € [0,+00), |u| <r, |v| <r, |L(n,V)] < M,, i =
L2,... .k |ul<r(l+t),|v|<r.

2 Preliminaries

For convenience, we introduce some notations and a theorem. For more details see [23].

Definition 2.1 [23] Let X and Y be two Banach spaces with norms || - ||x, || - ||y, respec-
tively. A continuous operator M : X NdomM — Y is said to be quasi-linear if

(i) ImM := M(X NdomM) is a closed subset of Y,

(i) KerM :={x € X NdomM : Mx = 0} is linearly homeomorphic to R”, n < oo,
where dom M denote the domain of the operator M.

Let X; = Ker M and X, be the complement space of X; in X, then X = X; & X,. On the
other hand, suppose Y; is a subspace of Y and that Y; is the complement of Y7 in Y, i.e.
Y=Y1®Y,.Let P: X - X; and Q: Y — Y] be two projectors and 2 C X an open and
bounded set with the origin 6 € Q.

Definition 2.2 [23] Suppose that N; : Q@ — Y, A € [0,1] is a continuous operator. Denote
N by N.Let X, ={x € Q: Mx = Nyx}. N, is said to be M-compact in Q if there exist a
vector subspace Y; of Y satisfying dim Y; = dim X; and an operator R : Q x [0,1] — X,
being continuous and compact such that for A € [0,1],

(2) [-QN,(Q) CImM C (I -Q)Y,

(b) QN;x=0,1€(0,1) & QNx =6,
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(c) R(-,0) is the zero operator and R(-,A)|x, = (I = P)|x,,
(d) M[P +R(;,1)] = (I - Q)N;.

Theorem 2.1 [23] Let X and Y be two Banach spaces with the norms | - || x, || - ||y, respec-
tively, and Q2 C X an open and bounded nonempty set. Suppose that

M:XNdomM — Y
is a quasi-linear operator and N, : @ — Y, A € [0,1] is M-compact. In addition, if the

following conditions hold:

(C1) Mx #Nyx,Vx € 92NdomM, A € (0,1),
(Cy) deg{JON,Q2NKerM,0} #0,

then the abstract equation Mx = Nx has at least one solution in dom M N Q, where N = Ny,

J:Im Q — Ker M is a homeomorphism with J(0) = 0.

3 Main results
In the following, we will always suppose that g satisfies 1/p + 1/q = 1.
Let R* = [0,+00), ] = R*"\{t1,ts,..., &}, ¥ = L(R*) with norm [ly[l; = [ |y(®)| dt,
PCt (R*) = {u cue Ch (]/),u/(ti —0),4(t; + 0) exist and

W(t;i—0)=u'(t;),i=1,2,...,k},

t
X = {u :u(0) = 0,u € C(R*) N PC'(R"), sup ()] <400, lim u/(¢) exists}
teR+ 1+¢ t—+00

with norm [|u|| = max{|| %; llec, 1|l }, Where |||l = SUp,cp- [u(2)].
Let Z = Y x RK, withnorm [|(y, c1, ¢2, ..., c) | = max{[[yll1, le1ls |cals ..., lex|}. Then (G || - 1)
and (Z, | - ||) are Banach spaces.

Define the operators M : X NdomM — Z, N, : X — Z as follows:

(@)Y (t) —Af (8, u(t), u/' (1)
Mg = Ay (u'(tr)) ’ Ny = M (u(ty), u'(t)) ,
A, (u' () M (u(ty), u'(t))

where domM = {u € X : (¢,(«)) € Y, (1 (+00)) = fowc h(t)pp(u'(2)) dt}.

It is clear that u € dom M is a solution of the problem (1.1) if it satisfies Mu = Nu, where
N = Nj. For convenience, let (a,b)” := [Z], denote Jo = [0,t1], Ji = (ti, tin), i =1,2,...,k =1,
Jk = (tk, +00).

Lemma 3.1 M is a quasi-linear operator.

Proof It is easy to get Ker M = {at | a € R} := X].
For u € X NdomM, if Mu = (y,cy,ca,...,c)T, then

(00 () (@) = y(2), Agp(U (&) =cin  i=1,2,...,k.
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For t € Jy, we get

AAGIE /0 y(s)ds + a.

For ¢ € J, considering Ag, (/' (t1)) = c1, we get

op(u' (1)) = /0 y(s)ds +a +cy.

Forte];, i=2,3,...,k, considering Ag,(u/(t;)) = c;, we get

0 (4 (1)) = /0 y(s)ds +a + Zci.

By ¢, (/' (+00)) = fom h(t)p,(u'(2)) dt and f(;oo h(t)dt =1, we find that (y, ¢y, s, ..., c) 7 sat-
isfies

/o T ho /t T ye)ds /0 chih(t)dt:O. (3.1)

>t

On the other hand, if (y,c1, s, ..., cx)7 satisfies (3.1), take

u(t) :/0 gaq(/osy(r)dr+ Zc,-) ds.

ti<s
By a simple calculation, we get # € X NdomM and Mu = (y,c1,¢a,. .., ce)T. Thus
ImM = {(y,Cl,Cz,...,Ck)T lyeY,c,cy,...,c satisfies (3.1)}.
Obviously, InM C Z is closed. So, M is quasi-linear. The proof is completed. O
Take projectors P: X — Xj and Q: Z — Z; as follows:

(Pu)(t) = u' (+o0)t,

o) [ ys)dsdt + [FY, - cih(t) dt N 0) T

T _
QW,c1,¢25...5¢k)" = ( f0+00 h(t)et dt

where Z; = {(ce%,0,...,0)T | ce R}. Obviously, QZ = Z; and dim Z; = dim Xj.
Define an operator R: X x [0,1] — X, as

R(u, M)(t) = /0 ®q (/ A |:f(r, u(r), u'(r))

S 1) £ f s, 1), w8 ds e — [% Y, Tiast), (6 (o) e } )
7 h(t)et dt “1

+@p (1 (+00)) — A le(u(tj), u’(tj))) ds—u/(+o0)t, te],i=0,1,...,k,

tj >s

where X; & X, = X.
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By [1, 24], we get the following lemma.

Lemma 3.2 Assume that V C X is bounded. V is compact if{% cueVyand{u'(t):ue
V'} are both equicontinuous on J;, i = 0,1,...,k = 1, and Jr = (t, T), for any given T > i,
respectively, and equiconvergent at infinity.

Lemma 3.3 R: Q x [0,1] — X, is continuous and compact, where Q@ C X is an open
bounded set.

Proof By (H,), (Hy), the continuity of ¢, and Lebesgue’s dominated convergence theorem,
we find that R is continuous and {R(u, 1) | u € &, A € [0,1]} is bounded. We will prove that
R(Q x [0,1]) is compact.

Since © C X is bounded, there exists a constant r > 0 such that ||u| < r, u € Q. It fol-
lows from (H,) that there exist a function %, € L(R*) and a constant M, > 0 such that
[f (& u(t),u' (t)] < h(t), I;(ut), ' (t))| < M,, i=1,2,....k t € R*, u € Q. For any given
T > ty, x1,% € J;,i=0,1,..., k=1, T, x1 < xp, we have

‘R(u, M) R, 2)(x1)
1+x9 1+x

<

1 x2 +00 ,
S v /0 (pq(/; A[f(x,u(x),u (x))

IO o ls)w ) dsde - [t Y Tilwte) w DO dr ] B
I3 h()et dt

+ (1 (+00)) =1 D Li(u(t), u’(rj))) ds

t/'zs

1 X1 +00 ,
14 x1 /0 Pq </s )nlif(x, u(x),u (x))

f+oo h(t) f;oof(s’ u(s), u'(s)) ds dt — f Zt o Li(u(t), u' ))h(t)dt =y
B I h(t)e dt ] ¥

+ gy (1 (+00)) AZI (u(t)), u(t)))ds + 1+x m | (+00)|
t/>S
1 1 +00 o hy(t) dt Lu(t;
5‘ - T€0q</ [hr(x)+f A(Ddt + i (), me"‘]dx
1+x, 14+x 0 fo h(t)etdt
+@u(r) + kM,)
_ +00 Y (e) dt + 5 (), (¢
42 xl‘/’q(/ |:hr(x)+ s © :o-oZH' (lfe) ))|e"‘:| dx
1+x 0 Jo h(t)etdt
x x
+@,(r) + kM,) + 1 +2x2 -1 +1x1
< || - e o o (I e+ k
B T T ] LA A T P T

X2 X1
+

r.

1+x, 1+4+x
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Since ¢, 1+ ;7> and 7 are equicontinuous on J;, i = 1,2,...,k =1, T, we find that {w, ue
Q, 1 €[0,1]} are equlcontmuous on/,i=12,...,k—1,T. We have

|R(u, 1) (x1) — R(u, 1) (x2)

= |oq (/ A[J‘(S,M(S), u'(s))

i JIn@) [ f (s, uls), u/(s)) dsdt — [ Do L), u/ (4:))(2) dt S] 5
I3 h(t)et dt

+ @y (/ (+00)) = A Z 5(u(), u'(tj)))

ti=x1

—%(/ A[f(s, u(s), u'(s))

. IR [ f (s uls), () dsdt — [)F 37, Tiu(t:), w (6)h(e) dt S]d
I h(t)e dt S

+ @p(u/ (+00)) =1 Y Ii(u(ty), u’(tj))) ’

tj=x

For u € @, 1 € [0,1], define

F(u,\)(¢t) = / A |:f(s, u(s), u/(s))

ST [ f sl (5) dsdt = [ 3, (e 1 (6)h(e) e ] “
I3 h(t)et dt

+ (1 (+00)) = 1 > L(u(t), u' (1))

tjzt
Obviously,

7,111 + kM,
Jo T h()etdt

|, 1) (1) = F (4, 1) (3x2) |
/xz A |:f(s, u(s), u'(s))

f+oo ®) ft+°°f(s, ,u'(s)) dsdt - Zt o Li(u(ty), u' (6)h(t) dt
e |ds
e WO dt ]

|[F(, O] < 1yl + op(r) + kM, =K, ueQ,1e(0,1],teR",

Iyl + kM, _
/ hy(6) dt + ” Wb+ KM, ), e ne 0,11,
o ®h(t)et dt

It follows from the absolute continuity of integral and the equicontinuity of e that
{F(u,A)(t),u € Q, 1 € [0,1]} are equicontinuous on J;, i = 1,2,...,k — 1, T. By the uniform
continuity of ¢, (¢) in [-K, K], we find that {R(z, 1) (t), u € Q, 1 € [0,1]} are equicontinuous
on/,i=12,...,k-1,T.
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Forany u € @, A € [0,1], since

/+00 by [f(s, u(s), u'(s))

) [ ) ) e = [ 5 1), () ) e
o ne)etde

+oo h, kM,
< / h,(s) + HWOHL{S ds—> 0 (t— 00)
P Jo = h(t)etdt

and ¢,(u) is uniform continuous on [-K — ¢,(7), K + ¢,(r)], for any & > 0, there exists a

constant 77 > & such that

¢ ( / m/\[f(n u(r), (1)

f0+oo @) f:oof(s u(s), u'(s)) ds dt - f Zt >t Li(u(ty), v/ (t; ))h(t)dt |4
(et dt ] "

s>T,ue,xrel0,1].

N

+@p (u’(+oo))) - u/(+oo)‘ <
Obviously, there exists a constant T > T such that, forany ¢ > T,

1 g
1—+t(<pq(K) + r)T1 < 7

Thus, for any x;,%; > T, we have

R(u, \)(x1) — R(u, 1)(x2)
1+x 1+x)

: +1x1 {/0 1 @q (/ k|:f(r,u(r),u’(r))

fo+°o ) [ f(s,uls), u'(s)) dsdt - f Yoo Liults), ' (8:))h(t) de
=, = e":| dr
Jo o h(t)etdt

+¢pu(+oo AZ[ ), u t))ds—u’(+oo)x1}

ti>s

-1 +1x2 {/0 ’ goq(/ k[f(r,u(r),u’(r))

~ Jon@) [ f (s, uls), u'(s)) dsdt — [ Do L), w' (8:)h(e) dt _,] 4
Jo = h(t)et dt e

+<ppu(+oo AZ[ ), u t))ds—u’(+oo)x2}

tj>s

T1 +00
< 1+1x1{ fo <pq<f A[f(nu(rm’(r))

<
fo+oo t) f;oof(s M(S) u (S )ds dt — f Ztl>t1(u(t) u (t ))h(t) dt r] dr
Jo = h(t)et dt
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+ (1 (+00)) = 1> " Li(us), u/(tj))) ds - u’(+oo)T1}

t/'zs

1 X1 +00 ,
+ 1+x1{/ goq(/s A[f(r,u(r),u(r))

“h() f;oo (s, u(s),u'(s)) dsdt — f Zt 2 Liu(t), ' @)h(t)dt p
7 h(e)et dt ] '

+¢p (u/(+oo))) ds — u/(+00)(x; — Tl)} ’

1 1 +00 ,
+ 1+x2{_/ goq(/s )Ll:f(r,u(r),u(r))

> hE) [} o ), w9 dsdi = [} 5 e W )0 ]
7 h(e)et dt ] '

+ (1 (+00)) = 1> " Li(u(s), u/(tj))) ds - u’(+oo)T1}

t/'zs

1 X2 +00 ,
T+x {/ (pq(/s A[f(r,u(r),u (r))

h(e) 7 f (s, uls), u/(s)) dsdt - f D L), u (G)h(@) dt p
- 7 h(e)et dt } :

+

+ gop(u/(+oo))) ds — u/(+00) (%, — Tl)} ‘

Tl 1 xg—Tlé‘
< K +rT+ +
“1l+x ((pq( )+n)Ty 1+x1 4 1+xy

|R(u, 1) (1) — R(u, 1) (x2)|

<l¢g (/ A [f(s, u(s), u'(s))

f0+°° h(t) f:oof(s, u(s), ' (s) )dsdt f Zt = Li(u(ty), u' (8:))h(t) dt S] 5
© h(t)et dt

+@p (u/(+oo))) - +|@q (/wo k[f(s, u(s), u'(s))

S he) [T f (s, uls),u/(s)) dsdt - f > L), w' (6)h() dt
_ = = e’ |ds
Jo h()etdt ]

e ¢
<—+-—-<e.
4 4

+@p (u’(+oo))) —u/(+00)

By Lemma 3.2, we find that {R(x, 1) | u € @, € [0,1]} is compact. The proof is com-
pleted. d

Lemma 3.4 Assume that Q C X is an open bounded set. Then N, is M-compact in Q2.

Proof By (H;), we get N : Q@ — Y, A € [0,1] is continuous. It is clear that Im P = Ker M,
QN x=60,1 €(0,1) & QNx = 0, i.e. Definition 2.2(b) holds.
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For u € Q, it follows from Q(I — Q)N, u = 0 that (I - Q)N u satisfies (3.1). So, (I - Q)N,u €
ImM, i.e. (I-Q)N; () C Im M. Furthermore, by ImM = Ker Qand z = Qz+ (I - Q)z we find
that z € ImM implies z= (I - Q)z € (I - Q)Z, i.e. InM C (I - Q)Z. Thus, (I - Q)N,(Q) C
ImM C (I - Q)Z, i.e. Definition 2.2(a) holds.

Obviously, R(-,0) = 0. For u € ¥, = {u € Q NdomM : Mu = Ny u}, we get QN u = 6 and

@p (u/(t)) = /t‘ Af(s, u(s), u’(s)) ds + @ (u’(+oo)) —A Z[i(u(t,-), u/(ti)).

ti>t

So, we have

R(u, ) = /0 (pq(gop(u/(s))) ds —u'(+00)t = (I - P)u,

i.e. Definition 2.2(c) holds.
ForueQ,1€[0,1],t€J;,i=0,1,2,...,k we have

(0p(Pu+ R(u, 1)) (£)

= =M (¢, u(t), u/(t))

fowc h(t) f;oo —Af (s, u(s), u/(s)) dsdt + A fot" Yoo lilults), u' (8:))h(t) dt B
17 h(e)et dt ¢

and
<pp((Pu + R(u, A))/(t))

= / A |:f(r, u(r), u'(r))

Jane) [ f s, uls), w'(s)) dsdt — [y 3, Li(u(t:), u (6)h(e) dte,] 5
[7% h(t)et dt

+ @/ (+00)) = 1 > L(u(ty), ' (1).

t/'zt
By a simple calculation, we can get
M[Pu +R(u,1)] = (I - QNyu.

So, Definition 2.2(d) holds. These, together with Lemma 3.3, mean that N, is M-compact
in Q. The proof is completed. g

Theorem 3.1 Assume that (H,), (Hy), and the following conditions hold:

(Hs) There exist nonnegative functions a(t), b(t), c(t), and nonnegative constants d;, g, e;,
i=1,2,...,kwith 1+ t)?a(t),b(t),c(t) € Y, and ||a(t)(1+ )P, + ||b]: + Zle [d;1+
)Pt + g] <1 such that
[f(t,x,y)| < a(t)|<pp(x)| + b(t)|g0p(y)| +c(t), ae tel0,+00),x,y€R,

|Ii(x,y)| < di|<pp(x)| +g,-|<pp(y)| +e, i=12,...,kx,yeR.
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(Ha) There exists a constant eq > 0 such that if inficr+ |1/ ()| > eo, then one of the following
inequalities holds:

@ 4@ /0 h(t) (/ f(s, u(s), u’(s)) ds — Z[i(u(ti), u’(ti))) dt > 0;

ti>t

@) () /0 h(t)( / f(s,uls),w(9))ds -y Ii(ulty), u’(ti))) dt <0,

ti>t
where t € [0, +00). Then boundary value problem (1.1) has at least one solution.
In order to prove Theorem 3.1, we show two lemmas.
Lemma 3.5 Suppose that (H,)-(Hy) hold. Then the set
Q= {u e domM | Mu = Ny u, A € (0,1)}
is bounded in X.

Proof For u € Q1, we have QN u =0, i.e.

/(; h(t) ft S (s, u(s),u/(s)) dsdt - /(; Zli(u(t,»), U (t;))h(e) dt

ti>t

= /0~+00 h(t) [/+Oof(s, u(s), u/(s)) ds — Zli(u(ti), u’(ti)):| dt=0.

ti>t

By (H,), there exists a constant ¢, € R* such that |u/(¢)| < eg. Assume ¢y € J,,, m =
0,1,...,k. It follows from Mu = N, u that

S A (s uls), w (5)) s + 9p (' (t0)) = 2 07, Ti(ualy), ' (),
tel,i=0,1,...,m-1,
0 (1 (1)) = 4 [0 Af (s, u(s), u/(s)) s + @, (1t (ko
tto A (s, u(s), u/'(s)) ds + @, (' (to
telyi=m+1l,m+2,...,k

) tE€Tm (3.2)
)+ A Y Hut), W (1),

)
)
Since u(t) = fot u'(s)ds,

u(t)| -
1+t —

|||, tel0,+00). (3.3)

By (3.2), (H3), and (3.3), we obtain

|¢Jp (u/(t))\ < /0 [a(t)|g0p (u(t))| + b(t)|<pp (u/(t))| + c(t)] dt + gp(eo)

k
+ 2 (@l ()| + &l (' @) + )
i=1
1 - 1 "
< (”a(t)(l + 1)y ||1 + ;di(l +4) )‘/’p( ‘1—+t L)
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k k
+ (||b||1 + Zgi>¢p(||u/||oo) + llells + @pleo) + Y e
i=1

i=1

k
< (Hu(t)(l + P+ 1ol + Y [dilL+ 2 +gi]>¢p(Hu’ )

i=1

k
+ liells + @pleo) + Y e

i=1

Thus

“M/”Oo S(Pq( ||c||1+<pp(eo)+§lee,- )
1= (la@® @+ )7y + 1Bl + )iy [di(1 + £)P71 + gi])

This, together with (3.3), means that €, is bounded in X. O

Lemma 3.6 Assume that (H;), (Hy), and (Hy) hold. Then
Q, ={u € KerM | QNu = 0}
is bounded in X, where N = Nj.

Proof For u € Q2;, we have u = at, a € R, and Q(Nu) =0, i.e.

/0+00 h(t)/t+oof(s,as,a)dsdt— /Otk Zli(ati,a)h(t)dt

ti>t

/ [/ fls,as,a)ds-) I atl,u]dt 0.

ti>t
By (Ha), we get ||ul| = |a| = |u/(t)| < eo. So, Q3 is bounded. The proof is completed. O

Proof of Theorem 3.1 Let Q = {u € X | |u|| < r}, where r > e is large enough such that
QOQUQ,.

By Lemmas 3.5 and 3.6, we have Mu # N u, u € domM N 32, and QNu # 0, u € KerM N
0.

Let H(u,8) = pu + (1 — 8)JQNu, 8 € [0,1], u € Ker M N Q, where J : ImQ — KerM is a
-1, if (Hg)(@) holds,

. . -t T _ _
homeomorphism with J(ae™%,0,...,0)" =at, p = {1. if (H) holds,

For u € Ker M N 9K2, we have u = at # 0. Thus

f+°°h(t)ft+°°f(s,as, Ydsdt — f Zt>tl(at,,a)h(t)dt

H(u,8) = pdat — (1-16) f”oh(t)e‘tdt

If6 =1, H(u,1) = pat #0.1f § = 0, by QNu # 0, we get H(u,0) = JQN(at) #0. For 0 < § <1,
we now prove that H(u, 8) # 0. Otherwise, if H(x,§) = 0, then

+00

B pSa _t
/ / f(s,as,a)dsdt / Z[ at;,a)h =13 h(t)e " dt.

ti>=t
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Thus

+00 +00 ~ ,05612 +00 o
a/o h(t) |:/t f(s,as,a)ds — Zli(ati,a)] dt = 1—3 /(; h(t)e " dt.

ti>t

Since |#/(t)| = |a| = ||u|| = r > e, this is a contradiction with (H,) and the definition of p.
So, H(u,8) #0,u € KerM N 32, § € [0,1].
By the homotopy of degree, we get

deg(]QN, QN KerM, 0) = deg(H(-, 0), 2 NKerM, O)
- deg (H(-, 1),Q N KerM, o)

= deg(,o], QN KerM, O) #0.

By Theorem 2.1, we can find that Mu = Nu has at least one solution in Q. The proof is
completed. O

4 Example
Let us consider the following impulsive p-Laplacian boundary value problems at reso-
nance on the half-line

(' (1)) +f (&, u(®), ' () =0, te[0,00)\{t1,t2s..., Lk},
Awp(u/(ti)) =¢, i=1, 2.,k (41)
w0)=0, @, (+00)) = [ e, (u (1)) dit,

where 0 <ty <fp <-+ <fx <+00,p = %,f(t,x,y) = 37“1 sinx +e 43 5+ e,
1+£)3
Corresponding to the problem (1.1), we have h(t) = e™, I;(u,v) = ¢;, i = 1,2,..., k. Take

_ e—4t

I(8) = (L+8)73 +73 +1)e ™, a(t) = o, b(t) = c(t) =e ¥, d; =g; =0, e = ciyi = 1,2,..., k,
3

(1+t)
eg = 21+ 20 YK | [cil)?, M, = max <<t {|c;l).
By a simple calculation, we find that (H;)-(Hs) and (H4)(1) hold.
By Theorem 3.1, we find that the problem (4.1) has at least one solution.
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