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Abstract

In this paper, we study the initial-boundary-value problem for a generalized sixth
order Cahn-Hilliard type equation, which describes the separation properties of
oil-water mixtures when a substance enforcing the mixing of the phases is added.
The optimal control under boundary condition is given and the existence of optimal
solution is proved.
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1 Introduction
We consider the equation

u, = D? [yD4u - a(u)D*u — @ |Du|? + f (u) + kuy — yzDzut], (1.1)

in Q@ x (0,T), where 2 =(0,1), y >0, k>0, and y, > 0 with the initial and boundary

conditions

ulx,0) =ugy, ing, 1.2)

u(x, t) = D*u(x, t) = Du(x,£) =0, on . (1.3)

The function f(u) stands for the derivative of a potential F(u) with F(u), a(u) approxi-
mated, respectively, by a sixth and a second order polynomial

F(u) = /uf(s) ds = (u+1)*(u® + ho) (u - 1)?, (1.4)
0
a(u) = aru® + ay, (1.5)

where a, > 0.
The free energy functional proposed by Gompper et al. [1-4] has the form

1//(u):/Q¢J(u,Vu,Au)dx,
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with the density given by
1 2 1 2
o(u, Vu, Au) = f(u) + Ea(u)|Vu| + EV(AM) .

Here u is the scalar order parameter, which is proportional to the local difference between
oil and water concentrations. The properties of the amphiphile and its concentration enter
model (1.1) implicitly via (1.4) and (1.5). F(u) has three minimaat u = -1, u=1,and u = 0,
which describe the oil, water and disordered microemulsion phases. In [2—4], the coeffi-
cient a(u) is approximated by the quadratic function (1.5) with constants ag of arbitrary
sign and a, positive.

Like in the classical Cahn-Hilliard the theory the order parameter « is a conserved quan-

tity. Thus it satisfies the conservation law
u;+Vj=0, (L.6)

with the mass flux j given by the constitutive equation

9P v (1.7)
]_8VM_ M, .

and u representing the chemical potential

3¢y &D
v, oP 1.8
where D > 0, the dissipation potential, has the form
1,0, 1 , 1 )
D(u, Vg, Vir) = Ek(ut) + §y2|Vut| + EMWM ) (1.9)

and M is the mobility, k, y, are the viscosity coeflicients corresponding to the rate of the
order parameter and its spatial gradient.

The first variation % is defined by the condition that
Sy
8

i/ Y(u+ A8, Vu+ AV, Au+ AAL) dx|—o ::f Cdx (1.10)
di Q Q ou

most hold for all test functions ¢ € C5°(€2). In the case of free energy this leads to the
following expressions:

8 /

W) -atiau- " wur vy (L1

8D

P kuy — o Auy. (1.12)
11

From the above discussions we know that

w=f(u)—a(u)Au- @Wuﬁ +y A%u + kuy — o Auy. (1.13)
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Combining (1.6)-(1.13) we get the following conserved evolution system:

u—V(MVp) =0,

a(u
w=f(u)—a(u)Au- #|VM|2 +y A%y + kuy — yo Auy,

where Q C R? is a bounded domain with the boundary 92, occupied by the ternary mix-

ture, and (0, T) is the time interval. We endow this system with the initial and boundary

condition (1.2) and (1.3), in this paper we consider the one-dimensional case with M = 1.
Schimperna and Pawtow [5] studied (1.1) when y, = 0 with logarithmic potential

Fir)=Q0-r)logl-r)+ 1 +r)logl+r)— %rz, o>0.

They investigated the behavior of the solutions to the sixth order system as the parameter
y tended to 0, the uniqueness and regularization properties of the solutions have been
discussed.

Pawlow and Zajaczkowski [6] proved that the problem (1.1)-(1.5) with k = y, = 0 under
consideration is well posed in the sense that it admits a unique global smooth solution
which depends continuously on the initial datum.

In past decades, the optimal control of distributed parameter system had received much
attention in the academic field. A wide spectrum of problems in applications can be solved
by methods of optimal control, such as chemical engineering and vehicle dynamics. Mod-
ern optimal control theories and applied models are not only represented by ODEs, but
also by PDEs. Kunisch and Volkwein solved open-loop and closed-loop optimal control
problems for the Burgers equation [7], Armaou and Christofides studied the feedback con-
trol of Kuramto-Sivashing equation [8].

Recently, many authors studied the optimal control problem for the pseudo-parabolic
equation, such as Tian et al. [9-11], Zhao and Liu [12].

In this paper, we consider the optimal control problem for the following equation:

(u—kD*u + y,D*u), - Y p2 (u - kD*u + y,D*u) + Y pry
V2 V2
k /
+D? ((a(u) — y—)Dzu + az_;u) |Du|2> = D*f(u) + B*w, (1.14)
V2

with (1.2)-(1.5).
When y = u — kD?u + y,D*u, we take the distributed optimal control problem

min J (y,@) = 5[ Cy —z||2 + %H@H;(O,T;QO),
s.t.y, — %Dzy + %D%L
+D*((a(u) - J%()Dzu + @ |Du|?) - D*f (u) = B*w, (1.15)
¥(x,0) = yo = ug — kD*u(x, 0) + y»D*u(x,0),
u(x, t) = D?u(x, t) = D*u(x,t) = 0.

For fixed T > 0, we set 2 =(0,1) and Q = 2 x (0, T). Let Qp C Q be an open set with

positive measure.
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Let V = H}(0,1), H = L*(0,1); V* = H™1(0,1), and H* = L?*(0,1) are dual spaces, respec-

tively, and we have
Ve H=H"< V*
The extension operator B* € L(L%(0, T; Qo), L*(0, T; V*)) is given by

) e b
S Q (1.16)

07 q € Q/QO
The space W(0, T’; V) is defined by
W(0,T;V) = {y,y € L*(0, T; V),y, € L*(0, T; V*)},
which is a Hilbert space endowed with the common inner product.
The plan of the paper is as follows. In Section 2, we prove the existence of the weak
solution in a special space. The optimal control is discussed in Section 3, and the existence

of an optimal solution is proved.

2 Existence of weak solution
Consider the following the sixth order Cahn-Hilliard type equation:

(u—kD*u + y,D*u), - Y pe (u—kD*u + y,D*u) + Y pPu
Y2 Y2
k /
+D? ((a(u) - V—)Dzu + “—é”) |Du|2> - D*f(u) + B, @.1)
V2

under the initial value
u(x, 0) = ug,
and boundary condition
u(x, t) = D*u(x, t) = D u(x, t) = 0,

where B*@ € L*(0, T; V*) and the control item @ € L*(0, T; Qy).

Let y = u — kD?u + y,D*u; the above problem is rewritten as

v - LD + LD + D((a(u) - L)D?u + “2|Duf?) - D*f (u) = BB,
¥(x,0) = yo = uo — kD?uo + y2D*u, (2.2)
u(x,t) = D*u(x, t) = D*u(x, t) = 0,

with (1.3)-(1.5).
Now, we give the definition of the weak solution to the problem (2.2) in the space
W(0,T;V).
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Definition 2.1 A function y(x,£) € W(0, T; V) is called a weak solution to problem (2.2),
if

d
Z09)+ Y (Dy,Dg) - L (Du, Dg)
Y2 Y2

_ (D(a(u) - ’;—f)Dzu + @wmz,w) + (Df (u), Dg) = (B*_,¢)V*,V,

forall¢ € V,a.e. t €[0,T] and yy € H are valid.

Theorem 2.1 The problem (2.2) admits a weak solution y(x,t) € W(0, T; V) in the interval
[0,T), if Bw € L*(0, T; V*) and yo € H.

Proof Employ the standard Galerkin method.
The differential operator A = —9? is a linear unbounded self-adjoint operator in H with
D(A) dense in H, where H is a Hilbert space with a scalar product (:,-) and norm || - ||.
There exists an orthogonal basis {1;} of H. Let {1;}°, be the eigenfunctions of the op-

erator A = —92 with
AI,[/jZ)\.jl//j, 0<)\.1§)\.2§~~',asj—>00.
For n € N, we define the discrete ansatz space by

Vi = span{yri, ¥a, ..., ¥} C V.

Set y,,(£) = yu(x,£) = X1y ¥7 (£)¥i(x) and require y,(0,-) — yo in H holds true.
To prove the existence of a unique weak solution to the problem (2.2), we are going to
analyze the limiting behavior of sequences of smooth functions {y,} and {u,}.

Performing the Galerkin procedure for the problem (2.2), we have

Vs — %Dzyn + %DZM,,
+ D((a(uy) — Z)Duy + 42 | Du, [?) - D*f (u,) = B*®, 03)
Vu(®,0) = Y0 = Uy — kD*u,(x,0) + y,D*u,(x,0),

Uy, t) = D?u,(x, t) = D*u,(x, t) = 0.

According to ODE theory, there is a unique solution to (2.3) in the interval [0, ¢,]. We
should show that the solution is uniformly bounded when ¢, — T.

As a first step, multiplying the first equation of (2.3) by

a'(uy,)
2

wn = yD*u, — a(u,)D*u, — |Dut|* + f () + Kitp — 2D thy s,

and integrating with respect to x, we obtain

d _
EE(MH) + 1Dl + Kl I* + y2l| Dt |1* = (B*@, ) (2.4)

VeV
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where
1
E(u,) = /0 (ngunf + @wunﬁ + F(un)> dx 2.5)
and
Fluty) = (8 + (o — 2)uu + (1~ 2ho)ed? + o). 2.6)

Applying a simple calculation, we have
F(uy) > Ciub - Co, 2.7)

where C; >0 and Cy > 0.
Since B*w € L*(0, T; V*) is a control item, we assume

|B@]

e <M. (2.8)

Taking into account (2.4), (2.7), (2.8), (1.4), and integrating (2.4) with respect to time
from O to ¢, we know

Yy 2 12, % 9 2 6
f <—|D un| + —u,|Du,|” + Clun) dx
o \ 2 2

t t t
. f 1Dyl dt + k / Vel i + 2 / | Dt |t
0 0 0

1 ¢
|aol _
5[ - |Du,, |* dx + E(u,,0) + Co + |(B*w,un)v*'v‘dt
0 0
1

a
< |aol
o 2

1
|D2uy,|2 dx + C(el)/(; ufl dx

t
+E(un,o)+Co+/ |B® ol tnllv dt
0
! laol| o |2 ! 6
581f T|D u,,| dx+C(81)82/ u, dx + C(g3)
0 0
t 9 t 9
+ E(uno) + Co + C(e) / E e / |D% | dt
0 0

1 1
=g / |612—0| !Dzu,,|2 dx + C(g1)&, / uf, dx + C(g7)
0 0

t t
+ E(u,0) + Co + C(s)/ ||B*E| ?/* dt + sf |24 || dt.
0 0

Choosing €1, €2, and ¢ sufficiently small, from the above inequality and the Poincaré in-
equality, we have

1
/ ’Dzu,,|2 dx < C, (2.9)
0

1
/ |Du, | dx < C, (2.10)
0
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1
f ubdx<C, (2.11)
0

/ / |t |* dxdt < C. (2.12)
Qr

From (2.11), we know
1
/ u’dx < C. (2.13)
0

By virtue of (2.9), (2.10), and (2.13), we obtain

lnllp2 < C. (2.14)
By Sobolev’s imbedding theorem it follows from (2.14) that

lutnlle < C, |Duy|| e < C. (2.15)

As a second step, multiplying (1.1) by D?u,, and integrating with respect to x, we obtain

1d 1 1 ) 1 ) 1 )
Ed_(,/ |Du,,|2dx+k/ |D2un| dx+y2/ |D3u,,| dx) +y/ |D4un| dx
t\Jo 0 0 0

1 1
= —/ D*f(u,)D*u, dx + / a(u,)D*u,D*u, dx
0 0

Y (u) 2 $— 12
+/0 5 |Du,|”D*u,, dx — (B w, D u”)v*,\/‘ (2.16)
From a simple calculation, we have
a'(u,) = 2asuy, (2.17)
D*f () = f"(n) D*thy + f" (10,)(Dus)?, (2.18)
where
S/(un) = (30uy; +12(ho — 2)u + 2(1 - 2hg)) > -C,  C >0, (2.19)
f (1) = 12003 + 24(ho — 2)u,. (2.20)

Thus it follows from (2.14), (2.18), and (2.19) that

1 1 1 1
L ([ ouracek [ 1uPas s [ 10pa) oy [ 1oas
1
< —/ (f' () Dy + " (1) Dty |*) D* 1y dc
0

1
+ / (azui + ao)DzunD4u,, dx
0

la’(u ) _
+ /0 D, D w4 |BG . | D],
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1 1
2
=G f |D?u,|” dx + Cllunll oo + 116l 10 ) [ Dty ]| oo f Du,D*u,, dx
0 0

1 1
+|a2|||un||§oo/ DzunD4u,,dx+|ao|/ D*u,D*u, dx
0 0

1 1
+ |a2|/ | Du, |*D*u,, dx + C(s)||B*E| %/* +8/ |D4u,,|2dx
0 0
Y ! 2
< —/ |D*u,|" dx + C, (2.21)
2 Jo

where ¢ is sufficiently small.
By the Gronwall inequality, (2.21) implies

f |D*u,|* dxdt < C, (2.22)
Qr

D3u, *dx < C. (2.23)
‘ |
Q

As a third step, multiplying (1.1) by D*x,, and integrating with respect to x, we obtain
d (1 5 2 32 4 12 52
—\| = |D u,,| dx+6 !D u,,| dx + v, |D un| dx ) +y !D u,,| dx
dt\ 2 Q Q Q Q
= —/f/(un)DunDsun dx
Q
- / Dz(a(un) ’Dzun ’)D‘*u,, dx — / D? (M |Du,,|2)D4u,, dx
Q Q 2
= —/f’(u,,)Du,,D5u,, dx
Q
2 5 a'(un) 2\ 5
+ D(a(un)|D un|)D u,dx+ | D — |Du,|* \D’u,, dx
Q Q
:11 +12 +13. (224)
On account of (2.15) and (2.10), we know
L<GC (C(83)/ |Du,|* dx + 83/ |D5un|2dx>.
Q Q
On the other hand, by the Nirenberg inequality, we have
5
| D, < | D%t ® 1Dun 5. (2.25)
Hence, by the Holder and Young inequalities, we obtain

| =

/ D(azufl + ao) (Dzu,,)Dsu,, dx
Q

o\ o
szazuunnmnDunnm( / (D) dx) ( / D%, dx)
Q Q
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3 , \?
+C||D3u||oo||un||oo</. uﬁdx) (/ |Du,| dx)
Q Q

< C(eg)C/|D5un|2dx.
Q

Similarly,

!
| = ‘/ D(M|Dun|2)D5undx
o 2
1 1
2 2 2
gaanunngo(/ |Du,,|2dx) (f |D°u,| dx)
Q Q
1 1
2 2 : 5 12 2
+2a2||un||oo||Dun||oo( / (D°u,) dx) ( / N a'x)
Q Q

< C(sg,)c/ |D°u,|* dx + C,
Q

the &3 is sufficiently small.
Therefore, by the Gronwall inequality, we have

sup f(D4un)2dx <C, (2.26)

0<t<T JQ

/ |D°u,|* dxdt < C. (227)
Qr

From a simple calculation, we have

lyally = |1t = kD*us + 2D 5,

< C(llu,,|| + || Du,, || + HDZM,, H + ||D3u,, || + ”D4u,, || + HDSM,, H)
From (2.14), (2.15), (2.26), and (2.27), we obtain

lynll20,1;v) < C. (2.28)

As a fourth step, from (2.2), (2.14), (2.15), and the Sobolev embedding theorem, we have

D((a(u,,) - J/—k)Dzun + M|Du,q|2) ‘
12 2

nellve < |B*@| . + | Dl +

+ [ Df ()|

< |B*@|| . + |D’un| + Cllunll | D1t || + Cllta |l | D* 1y I

5
+Cllun o 1Dy || + C

< C|D°u,| +C.
Then

el 20,70+ < C.



Shi et al. Boundary Value Problems (2015) 2015:58 Page 10 of 16

Thus, we have:
(i) For every ¢t € [0, T, the sequence {y,},en is bounded in L2(0, T; H) as well as in
L*(0, T; V), which is independent of the dimension of the ansatz space #.
(ii) For every ¢ € [0, T], the sequence {y,}xcn is bounded in L2(0, T; V*), which is
independent of the dimension of the ansatz space n.
Hence, we get {y,:}neny € W(0,T;V), and {y,:}nen weak in W(0, T; V), weak star in
L*(0, T; H) and strong in L%(0, T; H) to a function y(x,£) € W(0, T; V). Obviously, the
uniqueness of the solution is easy to obtain [13]. We omit it here. O

To ensure that the norm of weak solution in the space W(0, T; V) can be controlled by

the initial value and the control item, we need the following theorem.

Theorem 2.2 IfB*w € L*(0, T; V*) and yo € H, then there exist constants C3 > 0 and C4 >
0, such that

Iy 0,0y < C3(I90llF + @172 7,,)) + Ca- (2.29)
Proof Similar to the proof of Theorem 2.1, we obtain
lul<C,  IDul<C,  lulv<C,  |Du] <C. (2:30)

Multiplying the equation by y and integrating the equation with respect to x, we obtain

1d s ¥ 2
-2 2D
2dt||y”H+y2 1Dyl

1 1 k /
_ Y DyDudx+/ D((ﬂ(u) - y—)Dzu + MlDuF)Dydx
72 Jo 0 12 2

1
_ / DyDf (u) dx + (B“®,y) . - (2.31)
o ,
From the Holder and Young inequalities, we have

1
Y | DyDudsx < C(e)||Dul? + £ Dy|>. (2.32)

Y2 Jo

From (2.30), we have

1 /
/ D((a(u) - y—k>D2u + M|Du|2)Dydx
0 1) 2

< (I« + C)IDyI | DPu|| + CllulZos Do [ D*u o I DY

+ |Dul®| Dyl < ||Dy|* + C
and

1 1
- f DyDf (u)dx < C / Dydx < C||Dy|| + C < C. (2.33)
0 0
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Note that

(B®3)yy < |B®]

sellyly. (2.34)

From (2.31)-(2.34), we have

1d

7 b+ C. (2.35)

Y _
lylIZ, + - IDyl% < ellDyll%; + C|B*®|
2

Integrating the above inequality with respect to ¢ yields
|2
Iyll7; < llyollz; + CIB'@ 20 7,4 + C- (2.36)
By (2.36), (2.2), and (2.30), we deduce that

Iyell3- < | B*®|

2 14 2 14
«t —Iylly + —I1Dull
v V2 v V2

D(a(u)Dzu + @wﬁ)

+

+[[pre]

< |B®|;. + Clyl3 + C

< lyoll3y + C|B® 12 1,y * C. (2.37)

From (2.36) and (2.37), we have

Iyllwo,m;vy = IYll20,15v) + 1Yell 20,754

< Gs(IyollF + @172 7,,)) + Ca-
The proof is completed. O

3 Optimal problem
In this section, we will study the distributed optimal control and the existence of the op-
timal solution is obtained based on Lions’ theory.

We study the following problem when @ € L2(0, T; Qo),

minJ (5, @) = 5[ Cy — 2|} + %H@Hiz(o,ﬂ%),
s.t.y, — %Dzy + %D%t +D*((a(u) - ’;—S)Dzu + # |Du|?) — D*f(u) = B*w,
¥(x,0) = yo = ug — kD*u(x,0) + y,D*u,
u(x, t) = D*u(x, t) = D*u(x, t) = 0,
where y = u — kD*u + y,D*u.
As we know that there exists a weak solution y to (2.2), due to u = (1 — k92 + 1,02)7y,
we know that there exists a weak solution u to (2.1). Let there be given an observation

operator C € L(W (0, T; V), S), in which S is a real Hilbert space and C is continuous.
We choose a performance index of tracking type

1 5
T0.@) = 10 =2l + 518132070, (31)

where z € S is a desired state and § > 0 is fixed.
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The optimal control problem as regards the further generalized sixth order Cahn-
Hilliard equation is

min J (y, @), 3.2)
where (y, @) satisfies the problem (2.2).

Let X = W(0,T;V) x L?(0, T; Qo) and Y = L*(0, T; V) x H.
We define an operator e = e(e;, €3) : X — Y by

e(y’ a) = e(el(y: 5)) 320/: 6))y
where

@0,@) = (D)0 = £, Dy + £ Du
+ D*(a(u) - L)D*u + “{|Dul*) - D*f (w) - B'®),
€y = )’(x, O) —Yo,

and D? is an operator from H'(0,1) to H1(0,1).
Then (3.2) is rewritten as

min 7 (y,w) subjecttoe=e(y,®)=0.
Now, we have the following theorem.
Theorem 3.1 There exists an optimal control solution to the problem.
Proof Let (y,) € X satisfy the equation e = e(y,®) = 0. In view of (3.1), we have
6
J,w) > 3 ol z2(0,7:00)-
From Theorem 2.2, we have
Iyl wo,r;v) — 0o yields  [[@ll12(0,7;00) — O©-
Hence
J @y, ®) - +o0o, when |y, 0| x — oc. (3.3)
As the norm is weakly lowered semi-continuous [14], we find that J is weakly lowered
semi-continuous.
Since J (y,w) > 0 for all (y,®) € X holds, there exists
n = inf{J (y,®)|(y,®) € X such that e(y,®) = 0},
which means that there exists a minimizing sequence {(y,,, ®")},cx in X such that

n=lim J(y,®") and e=e(y,®")=0, VneN.

n—00
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From (3.3), there exists an element (y*,®") € X such that

=y yeWI(,T;V),
o' —~w*, ®el*0,T;Q),
when n — oo.
From (3.4), we have

T
lim [ (yu(t) - y*(0),9()) ., dt =0, V¢ €L*(0,T;V).
A :

n—00

Page 13 0of 16

Since W(0, T; V) is compactly embedded into L2(0, T; L*°) and continuously embedded
into C(0, T; H), we derive that y, — y* strongly in L2(0, T; L) and y, — y* strongly in
C(0,T;H), as n — 0o. Then we also derive that u, — u*, Du, — Du*, D*u,, — D*u*,

D3u,, — D3u*, D*u,, — D*u* strongly in C(0, T; H), as n — oc.

As the sequence {y,},en converges weakly, ||y, |lwo,r;v) is bounded. Also, we see that

191l 12(0,7:10) is bounded based on the embedding theorem.

Since y, — y* strongly in L2(0, T; L), we derive that Iy 20,5000y, N1e6* 11 12¢0,7,220)5

1 D%u* || 120, 7,100y and [[D*s* || 120, 7,100y are bounded.
Notice that

/OT/OI(DZf(”n) - D*f (u*)) ¥ dxdt‘
/OT /olD(f(”") ~f(u*))Dy dxdt‘

T p1
/ / ((un)4Dun + (u,)*Du,, + Du,
o Jo

<C

_ (u*)4Du* _ (M*)2DL£* —DM*)DI// dxdt‘
T
< /0 itull e | Dity - Dut* |, DY N it

T 4

[Nt = ) o | D i
T

+ fo | )| o | DUt = Dut* ||, | DY 111
r 2

e [l = Dk i

T
+ /0 |Du,, — Du* |, | DY || 11

4
< llun ”C((),T;LDO) ”Dun - Du* ||L2(0,T;H) Dy ||L2(0,T;H)

+ (||“n||36(0,T;L°°) + H“* ” 3C(o,T;Loo)) ”D”‘* HC(O,T;LOC) H”" —u HLZ(O,T;H)
X 1DV 20,1500 + ”un”zc(o,T;LOO) | Dy — Du* ||L2(0,T;H) DY 1l 2(0,7:0)

+ (2l co, 70y + ””* ”C(O,T;LOO)) ””" —u* ||L2(O,T;H) ”D”* ||C(0,T;L°°)
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x |Dyr ||L2(0,T;H) + ”Dun - Du* ||C(0,T;H) ||D1/f||L2(o,T;H)

—0, Yy el?0,T;V). (3.6)

As we know

<D2<a(u,,)D2un A Cl )|D nl )
_D2<a(u*)D2u* AC )|D *| ))wdxdt’

T 1l
f D*(a(un)D*uy — a(u*)D*u*)y dxdt

//D2<ﬂ(un)|D 2 a'( ’D ’)wdxdt'

= |11 +12|.

Note that

\L| =

D2<< n) — y_k> Uy — (a(u*) yk>D2 *)wdxdt’
V2
D<(a2(un)2 +ay — y—k>D2un
V2

_ (az(u”‘)2 +ag— ];—k>D2u*)D1p dxdt‘
p

D(ﬂz ()’ Dy, — an (u*)zDzu*)Dw dxdt

g O O A

= ‘Ill +112’.

For I}, we have

|111| (2a2u,,DunD2u,, —2a,u* Du*D*u* + ay(u,)*Du,

—ay (u*)2D3 u*) Dy dx dt‘

A

1DV || dt

I

T
2la) f itgllz 1Dt | Dty — D
0
T
+2|as| ]0 4w = ||, | Datnll oo | D*s* | o | DY || At
T
+2aa] [ | 1w = D [ Dl
0

T
+ Iazlf (Netnlloe + || oo ) [ Dt | o | = 26|, VDY N1
0
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T
v las| /0 [ | | Dt — D20, LDV N e

< 2as|ltnllco,7:2) 1Dl 0,755 | Dt = D** || g sy IDV 120,750
+ 20an) [ = u* | 20 iy 1Pttll cio,75220) | D || g 00 1PV 200,780
+ 21as || g, 7,100 [D1n = D[ 2,750 | D" | 0,710 1PV 20,700
+lasltallco,r220) [ D | 20, 7igoey 140 = 4 | o 7a 1DV 20,7580
0 o, ooy 1Pt 20, g |10 = | 80 1PV 20,70
+laal |4 [ ey [ D% = D6 | 2 1y ID¥ 120,80

— 0, Yy elL*0,T;V).
Also we have
/ / (( ao — _)Dzun (ﬂo - y—k)Dzu*>D1ﬁ dxdt
Y2
/0 ( aop — —)H( Uy — D*u*) ||, I DY || dt

k
(ao - );—2) |(D*un = D) | (o, 74y 1PV 20,7300

— 0, Yy elL*0,T;V).

I

IA

IA

Further, similar to (3.6), we have
L —0, Yy elL*0,T;V).
From (3.5), we have

1
(B*®" - B*w*)y dxdt| —> 0, Yy € L*(0,T; V).

In view of the above discussion, we can conclude that
e(y,@)=0, VmeN.

Since y* € W(0, T; V), we have y*(0) € H. From y, — y* in W(0, T; V), we can infer that
¥,(0) = y*(0). Thus we obtain

(74(0) = »*(0), %) = 0, V¥ €H,

which means that e;(y*,@*) =0, Vn € N.

Hence, we can derive that e(y*,®*) =0, Vu € N.

In conclusion, there exists an optimal solution (y*, w*) to the problem. We can infer that
there exists an optimal solution (y*, w*) to the viscous generalized Cahn-Hilliard equation

due to u = (1 — k32 + 1,05)y. O
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