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Abstract

In this paper, we study the initial-boundary value problem for one-dimensional
compressible magnetohydrodynamics (MHD) flows. Using the local estimates of
strong solutions to three-dimensional compressible MHD (obtained by Fan and Yu in
Nonlinear Anal. 69(10):3637-3660, 2008) and Sobolev's inequalities, we get the unique
global classical solution (p,u,b), where p € C'([0, T];H' ([0, 11)), u € H'([0, TJ; H'([0, 11)),
and b e C'([0, T1; H'([0, 1])) for any T > 0. Here, we emphasize that the initial density oo
is permitted to contain vacuum states and the initial velocity ug and the magnetic
field by can be arbitrarily large. Also, both the viscosity coefficient i and the resistivity
coefficient v depend on the density p.

Keywords: global classical solutions; compressible magnetohydrodynamics flows;
vacuum states

1 Introduction

The mathematical model of magnetohydrodynamics (MHD) is used to simulate the mo-
tion of a conducting fluid under the effect of the electromagnetic field and has a very wide
range of applications in astrophysics, plasma, and so on. The governing equations of MHD
can be stated as follows (cf. [1, 2]):

pe+ (pu)x =0,
(pu); + (pu®), + Py(p) + %(bz)x = (u(p)thx)z, 1)
bt + (bu)x = (V(p)bx)x,

associated with the initial and boundary conditions:

(p;u, b)(O:x) = (pOr Uuop, bO)(x), forx e [0) 1]7 (2)
Uly=01 = bly=01 =0, fort>0.

The unknown functions p, u, P(p), and b denote the fluid density, velocity, pressure, and

magnetic field, respectively. The assumptions on the viscosity coefficient ©(p) and the

resistivity coefficient v(p) depend on the density p, which is mainly due to the physical

meaning (cf [3]). For simplicity, we only consider the polytropic gas, i.e., P = P(p) = ap?

with a > 0 and y > 1 being constants.
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In this paper, we will focus on the existence of the global classical solutions to the initial-
boundary value problem (1)-(2). Before we present our main result, we first recall some of
the previous results concerning the compressible MHD. Lots of work has been done on
the global existence and the regularity of the solutions, we begin with the one-dimensional
case. The existence and uniqueness of local smooth solutions were proved firstly in [4],
while the existence of global smooth solutions with small smooth initial data was shown
in [5]. The exponential stability of small smooth solutions was obtained in [6, 7]. Recently,
Fan et al. [8, 9] obtained the existence, the uniqueness and the Lipschitz continuous de-
pendence on the initial data of global weak solutions of compressible MHD when the ini-
tial data lie in the Lebesgue spaces. In addition, Fan et al. [10] obtained the global strong
solutions to the planar compressible MHD with large initial data and vacuum.

For the multi-dimensional compressible MHD equations, there are also lots of mathe-
matical results. Volpert and Hudjaev [4] first obtained the local smooth solutions to the
compressible MHD equations as mentioned before. Li et al. [11] obtained the existence and
uniqueness of local strong solutions in time ith large initial data when the initial density
has a positive lower bound. Fan and Yu [12] obtained the strong solutions to the com-
pressible MHD equations with vacuum. Kawashima [13] obtained the smooth solutions
for two-dimensional compressible MHD equations when the initial data is a small pertur-
bation of a given constant state. Umeda et al. [14] obtained the decay of solutions to the
linearized MHD equations. Li and Yu [15] obtained the optimal decay rate of small smooth
solutions. In [16, 17], Hu and Wang obtained the global existence of weak solutions to the
isentropic compressible MHD equations and variational solutions to the full compress-
ible MHD equations; see also [18—20] for related results. Suen and Hoff [21] obtained the
global low-energy weak solutions of the isentropic compressible MHD equations. Later,
Liu et al. [22] obtained the global weak solution with discontinuous initial data when the
initial energy is small enough. Under the assumption that the initial energy is sufficiently
small, Li et al. [23] obtained the large time existence of classical solutions to the com-
pressible MHD which may have large oscillations and vacuum. At the same time, they

Lr) = 07

also obtained the large time behavior as follows:

L+ [ VG0

tim (o0l + [ 21t ds o |9t
for r € [2,6) and

’ ) ‘f~:07
e{(y 00), i p

The large time behavior was recently improved by Lv et al. in [24], precisely speaking,

VB < Ct71+ 6P, for p € [2,6],
IVu(-, )l < CeYP,  forp e [2,6],
P, 0l < Clr)e V7, forr e (1,00),

where C(r) and C both depend on || pg|l1g3) as ¥ > 3/2.
Here we point out that although there are many progress on compressible MHD equa-
tions, it is still an open question to obtain the global strong or smooth solutions to the
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full compressible MHD equations with large initial data and possible vacuum even in the
one-dimensional case; see [17].

To proceed, we first introduce the notions and conventions used throughout the paper.
We denote

/fdx - /Ifdx,

where I = (0,1) is the space interval. For p > 1, L” = L#(I) denotes the L? space with the
norm || - ||z». For k > 1and p > 1, W*? = W*P(I) denotes the Sobolev space, whose norm
is denoted | - || yyxp, and H* = W*2, For k > 0 and 0 < & < 1, let Ck** denote the Schauder
function space on I, whose kth order derivative is Holder continuous with the exponent
o and with the norm || - || ck+e-

Our main result is stated as follows.

Theorem 1.1 Assume that py > 0, po € H?, py € H?, (uo,bo) € H®> N H}, and the initial
data satisfy the following compatibility conditions:

[14(po)mox ], (%) = [P(po)], (%) = po(x)g(x), € [0,1], (3)

for a given function g € Hy. Furthermore, assume that the viscosity and the resistivity coef-

ficient satisfy

we C?0,00), 0<M <pu(p) §M2(1+,0”), forany p >0, (4)
and

veC?0,00), 0<N<v(p), foranyp=>0, (5)

where My, My, and N are some positive constants.
Then for any T > 0 there exists a unique global classical solution (p,u, b) to the initial-
boundary value problem (1)-(2) satisfying

(0,0") € C([0, TLH?),  (pu(0"):) € C([0, T HY),
pu € C([0, TI;L?), p >0, (p”),, €L>([0,T};L?),
(puw) € C([0, THY),  (u,b) € C([0, T; H> N Hy),
u; € L([0, T); Hy) N L*([0, T1; H?),

b, e C([0,TLHY), by e C([0,TT;L?).

Remark 1.1 For the assumption (3) on the initial data, which we called compatibility con-
dition, was first introduced in [25] to study the viscous compressible fluid. After that, Kim
et al. studied the local well-posedness of compressible fluid in a series papers (cf. [26—28]).
Roughly speaking, the compatibility condition (3) is equivalent to the L2-integrability of
«/Pu; at t = 0, which is natural and plays a crucial role in deducing the regularity of the
time derivatives of u.
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Remark 1.2 For mathematical technique, we assume that the viscosity u(p) and the re-
sistivity coefficient v(p) satisfy (4) and (5), respectively. Precisely, the lower bound of 1(p)
and v(p) will be used to improve the regularity of the velocity # and the magnetic fields b,
respectively. The upper bound of 1(p) will be used to deduce the upper bound of the den-
sity p, which plays a crucial role in the analysis of the classical solution of the compressible
MHD.

Remark 1.3 In Theorem 1.1, because py € H? cannot imply p € H* with y € (1,2), we
assume that p € H? as well as py € H>.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.1 by
giving the initial density with a lower bound § > 0, getting a sequence of approximate
solutions to (1)-(2) and taking § — 0* after making some uniform estimates for § on the

approximate solutions.

2 Proof of Theorem 1.1

This section we devote to proving Theorem 1.1. Since the proof of local existence and
uniqueness of strong solutions to the approximate problem is now standard in [12], thus
we only focus on a priori estimates of the solutions to the initial-boundary value problem
(1)-(2). For any given T € (0, 00), let (p, u, b) be the classical solution to (1)-(2). Then we

have the following basic energy estimate.

Lemma 2.1 Forany 0 <t < T, one obtains that

T
sup /(pu2+b2+p”)dx+/ [(u§+b,2€)dxdt§C, (6)
0

0<t<T

where C is some generic constant depending on the initial data, the viscosity and electrical

resistivity, and may change line by line.

Proof Multiplying the second and third equations in (1) by u and b, integrating the re-
sulting equations over / and summing them together, then using integration by parts and
from the conditions (4) and (5), we can show that (6) holds. This completes the proof.

(I
Lemma 2.2 For any (s,y) € Qr, we have
0 < p(s,y) < C. @)
Proof Denote
t 1 X
)= [ |won—pi =7 = S ey ds [ o) ay ®)
0 0

Differentiating (8) with respect to x and using the second equation in (1), we have

Wy = IOM)
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which together with (6) and Holder’s inequality yields
/ |wyldx < C.

From (4), (6), and (8), we conclude
/ lw|dx < C.

Due to W! < L*, one obtains

Iwll ooy < C. 9)

For any (s,7) € Qr, let x(¢, y) satisfy

% = M(t;x(t,y)), 0 <t<s, (10)
x(s,5) = y.
Denote
p(tx)
F(t,x):exp{f %d$+w(t,x)}.
1
It is easy to verify
dF(t,x(t,y)) OF oF
— = — tu—
dt at 0x
F(uw) m(p) 2)
= Dr + Wy + Pxlh + pU
o o
1
=—(p" + =b*|F,
(p 2 )
which together with the definition of F(t,x) yields
dF(t,x(t,y)) <o, 1)

dt

Integrating (11) with respect to ¢ over (0, s) and using (4), one obtains
F(s,y) <F(0,%(0,y)) < C.

By the above inequality and (9), we obtain

(s:9)
exp{/lp y %dé} <exp{-w(s,y)} < C,

which together with (4) and (6) yields

p(s,y) < C.
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From (4), (9), and (11), it is easy to obtain

p(s,y) > 0.
Therefore, we complete the proof of Lemma 2.2. O
Lemma 2.3 plays a key role in the proof of Theorem 1.1.

Lemma 2.3 Forany 0 <t < T, one obtains

T
sup /(ufc +b2) dx + / /(,ouf +b})dxdt < C. 12)
0

0<t<T

Proof Using the first equation in (1), we rewrite the second equation in (1) as

pue + putty + (7)), + %(bz)x = (1)), (13)

Multiplying (13) by u,, integrating the resulting equation over / with respect to x, using
integration by parts and from Cauchy’s inequality, we conclude

1d
/pufdx+ YT u(p)uidx

1d
= o7 Uy dx + 2 bzuxdx—/bbtuxdx—y/py’lptuxdx

1
+ E/M/(p)ptuidx—/puuxu;dx

d 1d 1
== plugdx + 27 b2uxdx+1/‘bfdx+C/b2uidx

1 !
+J//py’1(pu)xuxd - ifu(p)(pu)xuidx
1
+ ifpufdx+C/pu2uﬁdx. (14)

Multiplying the third equation in (1) by b;, integrating the resulting equation with respect
to x over I, using integration by parts and from Cauchy’s inequality, we obtain

1d
2 ia 2
/bt dx + 2dt/w(,o)bxdx
1
= Efv’(,o),o,bfcdx—/bxubtdx—/buxbtdx
1 1
< —E/V/(p)(pu)xbfcdx+ E/bf dx + C/(bfcu2 +b2u§) dx. (15)
Combining (14) and (15), we obtain
2 2 d 2 2
/(put +b;)dx + 7 /[,u(p)ux +v(p)b] dx

d d
EZE/pyuxdx-F E/b2uxdx+C/(b2ui+pu2ui+b§u2)dx
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+2)//py‘l(pu)xuxdx—/M/(p)(pu)xui dx—/\f’(p)(pu)xbﬁdx
52%/pyuxdx+dit/b2uxdx
2
+ C[(/ v(p)bi dx) </ ,u(,o)ui dx) + (/ u(p)ui dx) ]

+2y/p”uidx+27//,oy_lpxuuxdx—/M’(p)pxuuidx
- [ W= [ vopabias— [ vpubds
d d
- Y - 2
§2dt/p uxdx+dt/b Uy dx

2

+ C[(/ v(p)bfc dx) </ ,u(,o)ui dx) + (/ u(,o)ui dx) ]

+ ] ( [ wonzas s [ v dx)

+2y / p" " ety dx — / 1 (p) pxuitd dx — / V() psuub?: dx.

We will first estimate the last three terms in the right hand-side of (16). We have

2y / o' pruiny dx

y-1

=2y %pxu[u(p)ux] dx

yl

p2y—l
_ —_nY
=2y )" pxtt[ (o) — p ]dx+27// )

~ pgyl . ( 052;/1 )
2 [ ([ ) ooy [ (5 ) wa
_ & o7
= 2)//(/0 M(g)dé‘)ux[u(p)ux o] dx
ﬂsy—l ) ( ngy—l )
- d e —p7 | dx - d€ |u.d
ZV/(/O i 4 el as 2y [ ([ de Jusa

Oxudx

§C/ (p) udx+C+C dx

1
[l ous + puis, + Ehz

f
§C/ (,o)u dx+C+—/putdx+C(/pL(p)uidx)2.

Similarly,

- / 1 (p) pxuisd dx

= / 2((p)) ulp(p)ux]” dx

2(p) ™

Page 7 of 18

(16)

/M(p) [N«(p)ux—py]zdﬁ/ L pxupZde—zfM/(p)pypxuuxdx

u2(p) u(p)
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LS| 2 P (g >
= =0 dx - d d
S, ) oo [ ([ 5d ) wa
. o W) .
2| (/0 12E) dg) ulptone=pr]dx
P
=—/(/ @df)ux[u(p)ux o ] dx
P
- —d dx — p? =o' d
2/(/0 o) é)u[u(p)u x— p?|[nlp)us - 7], dx
G ) ( o WEE ) e
S ey e e [ ([ 45 Julutons - 571
P (€)E”
d . — 07| d
2 f( [ e lntons o),
< C||u( Ydx+C ddx+C
< Cllulp)us| o | mlp)uzdx+C | pip)udx +
o W) B
+2/</0 2E) d“;‘) <,0utdx+,ouux+ )dx
P b?
_ _— _ oY el
2/(/ (§)d$) [ (0)uy p](put+,ouux+2)dx

< Clutohus] o [ nonas +C [ uioniaxsc

2
+C</ u(p)uidx) +C/v(p)bfcdx.

Similarly,
- [viobias
:_/vip()p;c [v(p)b.] dx
(] ) cont
= / ( /0 ' vz((?) dé)ux[u(p)bx]%n / ( /0 ’ ”2((?) dé)uv(p)bx[v(p)bx]xdx
=f</0p :;(é_)) dé)Mx[V(p)bx]2dx+2/(/op :/((?) d5>uu(p) o[bc + (bu),] dx
sc||u(p)ux}}m/ (p )bzdx+—/bzdx+C</,u(p)uidx> (/v(p)bgdx>
+ C(/ u(p)u;‘;dx>2 + C(/ v(p)bﬁdx>2,

Substituting all the above estimates into (16), we obtain

/(put +b7) dx + —/ (p)uZ +v(p)b2] dx

< C% /(p”ux + bzux) dx + C(/ u(p)uidx) (/ v(,o)bi dx)
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2
' c( [ o dx) Clutohs o [ 0182 + o]

2
+C/u(p)ufcdx+C/v(,o)bidx+C</ v(p)b,zcdx) +C. @17)

Now, we focus on the estimate of ||t(0)u,||z. Due to (7), W' < L*, and Cauchy’s in-
equality, we conclude

(o) o < (o)t = 7 o + €

< C/{Iu(p)ux—pyl +|[[n(o)us = p7] |} dx + C

<c [upuidssc [
§C/u(p)uidx+C/(/pufdx)%dx+C/v(,o)b§dx+C. (18)

By (17), (18), and Cauchy’s inequality, one obtains

1
OUs + PUlLy + Ebbx dx+C

d
/(puf +b7) dx + = /[,u(p)ui +v(p)b] dx

2
< C% /(p”ux + b2ux) dx + C(/[,u(p)ui + v(p)bﬁ] dx) +C. 19)

Integrating (19) with respect to ¢ over (0, T') and using Cauchy’s inequality, we have
T
/ /(puf +b}) dxdt + /[u(p)ui +v(p)b2] dx
0

0

T 2
< C/(,o”ux +bu,) dx+/ (‘/[u(p)ui + v(p)bﬁ]dx) dt+C
2

T
< %/M(p)uidaﬁ %/U(P)bfcdx+/o (/[u(p)ufﬁv(p)bﬁ]dx) dt+C,

where we have used the following interpolation inequality in one dimension:
1 3
15114 < ClIBI 1Bl -
Using Gronwall’s inequality and (6), we complete the proof of Lemma 2.3. d

Next, we focus on the L?-estimates of p; and p,, which are independent on time .

Lemma 2.4 Forany 0 <t < T, one obtains

sup /(pt2 +py)dx < C. (20)

0<t<T

Proof Differentiating the first equation in (1) with respect to x, multiplying the resulting
equation by p,, then integrating this new equation over I with respect to x and using in-
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tegration by parts, one deduces

1d [,

3 PP () k] i (p)pluy
<y [ ot [ PP e [ T g

< C||,u(p)uxHLOO / pﬁ dx — / % |:,out + puly + (,o”)x + %(bz)x:| dx

5Cf,oufdx/pfdx+C/pfdx+C/pu?dx
1 1
2 2
+C||b||po</p§dx> (/bfcdx)
§C</u(p)u§dx+l)(/p§dx>+C,

Page 10 of 18

(21)

where we have used (4), (5), (6), (7), (12), (18), and Cauchy’s inequality. Then (21) together

with Gronwall’s inequality yields

sup /pidx <C.

0<t<T

By the first equation in (1), (12), and (22), one easily obtains

sup fpfdx <C.

0<t<T

Thus, we complete the proof of Lemma 2.4.

(22)

(23)

O

From now on, we start to deduce the higher a priori estimates. First, we consider the

L?-estimates of u,, and b,,.

Lemma 2.5 Forany 0 <t < T, one obtains

T
/ /(uix +b%,)dxdt < C.
0

Proof From the second equation in (1), (7), (12), (18), and (20), we conclude

T
/ /uixdxdt
0
T T 2 T
EC/ /,oufdxdt+C/ </u§dx) dt+C/ /pfdxdt
0 0 0
T 2 T
+c/ </b§dx> a’t+C/ ||M(p)ux||im/pfdxdt
0 0

<C.

(24)

(25)
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Similarly, we obtain

T
/ /bfmdxdt
0
T T
§C/ /bfdxdt+C/ (/bidx)(/uidx)dt
0 0
<C.

(26)
Combining (25) and (26), we obtain (24). This completes the proof. O
Next, we deduce the L?-estimates on u,; and b,;.
Lemma 2.6 Forany 0 <t <T, one obtains
T
OiltlgT/(pu? +b7) dx + /(; /(uit +b2,)dxdt < C. (27)

Proof Differentiating (13) with respect to ¢, multiplying the resulting equation by b,, then
integrating this new equation over I with respect to x and using integration by parts, we

obtain
%%/pufdx+/,u(p)u§tdx
=- /puutuxtdx—/p[uutuxdx—/pufuxdx
+/bbtuxtdx+y/p”‘lptuxtdx—/u'(p)ptuxuxtdx. (28)

Similarly, differentiating the third equation in (1) with respect to £, multiplying the result-
ing equation by b,, then integrating this new equation over I with respect to x and using
integration by parts, we have

1d
27 bfdx+/v(p)bitdx

1

1
:—E/bfuxdx—/bxbtutdx+ E/bxbf dx—/v’(p)ptbxbxtdx. (29)

Combining (28) and (29), one deduces that
1d
2 dt

:—2/puutuxtdx—/p,uutuxdx—/,oufuxdx+y‘/p”_l,otuxtdx

(pup +b}) dx + /[M(p)uit +v(p)biy ] dx

1
_ / (D) pythying d + f bbyasdx - / bPu, dx — / bubyiy dx
1 2 /
v 5 [ babtds— [ V(o)pbibyds

1
= Cllpll oo lullzoo I/ Ouell 2 Ntaell 2 + Cllallzoo llaaell oo Il oell g2 Nl 24 2
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2 -1
+ Cllatellzos /072 + Cll ol Nl oell 2 N2t 1 12
2
+ C|| 1/ (0) | oo llttell oo 1 o2 1 2 okt 1 2 + Clasell oo 1Be 17

+ ClIBll oo el 2 Nataell 2 + Clluaell oo | Dl 22 M1 bell 2
+ Clibxllz< 15172 + Cl[V' ()] oo 1Bl | el 2 1Bl 2

< C(U+ el o + 1Bl o) (I1/PuelI 2 + 1152117)

1 1
+ 5 IVe@mal 2+ 3 [Vo@lbal 2 + €, 30)

where in the last inequality we have used Cauchy’s inequality, Holder’s inequality,
Sobolev’s embedding inequality, (6), (7), (12), and (20).
It follows from (30) that

p” (,ou? + b?) dx + /[M(P)Mit + v(p)byzct] dx

< C(1+ ttax 172 + 11Bael72) (I1/D1e 72 + 16e172) + C,

which together with (24) and Gronwall’s inequality yields (27). This completes the proof.
O

Lemma 2.7 Forany 0 <t < T, one obtains that

sup /(ufm +b%,)dx < C. (31)

0<t<T

Proof Rewrite (12) as

(P)thx = PUg + pUtthy + by + Y p” ™ pr — 1 (0) s

Thus, from (4) and Minkowski’s inequality, we obtain

litasll?s < Clly/Puell?s + Cllol2eo el 2oo el 22 + CllbI o0 1641122
2 2(y-1
+ Cllual 2 | 1/ (0) |3 051125 + Cllo 1% 12112,
< Clly/puel%s + Cllealts + Cllball s + Cllpxl%

+ ClluglFoo [l 22725 (32)
which together with (12), (20), and (27) yields

sup |zl < C, (33)

0<t<T

where

sup |uxllpo = C
0<t<T

can be shown from (12), (18), and (27).
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Similarly, rewrite the third equation in (1) as
V(;O)bxx = bt + bxu + bux - V,(p)pxbx'
From (5) and Minkowski’s inequality, we obtain

2
1Bl < ClBN T2 + Cllbell 2 oo + ClBIZec 181172 + C[V'(0) || oo 162117

< Clbell7s + Cllbal2 el 2 + Cllbell ool oxll22- (34)
By the fact that W! < L*°, Sobolev’s embedding inequality, (5), (6), and (12), we obtain

[v(0)bx] oo
= [(vom + [o1t.],
< C|v(p)|| oo I1Bxllz2 + Cllbell 2 + Clibll 2 N4 2
S C!

which together with (6), (12), (27), and (34) yields

sup |lbxll7> < C. (35)

0<t<T
Combining (33) and (35), one can show that (31) holds. This completes the proof. O

Lemma 2.8 Forany 0 <t < T, one obtains

2 2 T 2
sup [ (o2 22+ |07 107N [ [ [0 1(07), [ axae <. 36)

0<t<T

Proof Differentiating the first equation in (1) twice with respect to x, multiplying the re-
sulting equation by p,,, then integrating this new equation over I with respect to x and

using integration by parts, we conclude

1d

27 pﬁx dx

5
= _5 / pﬁxux dx -3 / Px PxxUxx dx — / PPuxxUxxx dx

2
= C||ux||L°° f pxxdx + C||px||L°° ”pxx”Lz ”uxx”L2

+ Cllpllzee Il oxxll 12 | x|l 12

<c / P2de 4 CL+ [ pslli2) 1 pssllz + Cllitams

<cC f p2dx + Cllitaasl 22 + C, (37)
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where in the first inequality of (37) we have used Holder’s inequality and (6), and in the
second inequality of (37) we have used Sobolev’s inequality, Cauchy’s inequality, (6), and
(31).

From the first equation in (1), one can easily deduce

(07),+ (p7) u+yp"uy =0. (38)

Like (37), one obtains

1d

5%/|(P}’)xx|2dx§ C/‘(,Oy)xx|2dx+C”Mxxx”i2 +C. (39)

Combining (37) and (39), it is easy to obtain

d

p [02, + |(,o”)xx|2] dx < C/[pix + |(’0y)xx|2] dx + C/ u  dx+C. (40)

Differentiating (13) with respect to x, we obtain

(0 Unxx = Oxlhs + PUxs + Pxlilhy + Pui + PUUyy + (p)/)xx

+ bi + hbxx - M”(p)piux - M,(/O):Oxxux - zﬂ/(p)pxuxx’ (4'1)

which together with (4) gives

2
/ Uy, Ax

< ClluelZoo llpxl% + Cll o200 el

+ Cllaal oo 2t l oo Nl 1122 + Cll o1 Foo N2kl Foo 2112

+ Cllol 2o Nt Zoc Nt 22 + | C(07) 17

+ Cllbl oo B2 1122 + ClIBN oo 1B 7

+ CJ| 1 ()| oo Mot 20 1o 1 20 1 221122

+ || ()| oo et 2 Nl 012 + Cl 1" (0) | 300 1220 Nt 122
< Cllttae 221102125 + Cllttae 22 + Cllota |22 2l 2 | 0122

+ Cllth 22 Nt l1% + Cllatl 2 4| %

+C(07) 17> + Cloeal 21152112 + Cllttasl 21l 0122 L 012

+ Cllttse22 11 oxa 22 + Cl o122 2201 2

< Clluxel® + C[[(07) |2 + Cllossl% + C. (42)

Combining (40) and (42), we have

d

o | 1o 1(0),,[ T < CllpualiZa + 1 (07) 2]+ CllaseliFa + C,
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which together with (27) and Gronwall’s inequality yields

e / o+ 1(e7), [ Tdx < C. (43)

0<t<T

Then, from the first equation in (1), (38), (7), (12), (20), (27), (31), and (43), we obtain

sup /[,ofx [(07),,| dx+/ /,ott ]dxdt<C (44)

0<t<T
Combining (43) and (44), we can show that (36) holds. This completes the proof. O

Remark 2.1 It follows from (27), (36), and (41) that

T
/ / W, dxdt < C. (45)
0

Lemma 2.9 Forany 0 <t <T, one obtains

T
sup /(uit +b2,) dx+/ /(pufﬁb?t) dxdt <C. (46)
0

0<t<T

Proof From (41), we have

1
Pl + Prthy + Pyl + PUglhy + PUlhy + (07)  + E(bz)xt = [u(p)ux],,- (47)

Multiplying (47) by uy, integrating the resulting equation over I with respect to x, using
integration by parts, and from (4) and Cauchy’s inequality, one obtains

1d
2dt/‘,ud(,o)u tdx+/puftdx

1

= Efﬂ,(p)ptuitdx_/M/(p)ptuxuxttdx_/ptututtdx

- / Pelhh sy dX — / Ul Uzt AX — / PUlLyUsy AX
(o)t + 5 [ (07)
T \0" ) Ut x+2 (Ut A%
<l @ oiie [ uondsds- 5 [ W@, ds

+ / 1" () pF tcthoy A + / 14 () purthythy A + / 1 (p) po, dx

1d

1 d
— 5% ptu? dx + E/,Ozﬂzi? dx — E/ptuuxuldx

1
+/,0ttuuxu,dx+/ptufuxdx+/,otuuxtutdx+ Z/puftdx

d
+C/,ou2ufctdx+ E/(py)tuxtdx—/(,oy)nuxtdx

1d 1
* 2 dt (bz)tuxt dx - 2 /(bz)ttuxf dx. (48)
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Differentiating the third equation in (1) with respect to ¢, one obtains

bis + (b = (v(0)by) - (49)

Multiplying (49) by by, integrating the resulting equation with respect to x over I, using
integration by parts, and from (5) and Cauchy’s inequality, one deduces

1d
27 v(,o)bfctdx+/ptztdx

- / v (p)pib?, dx - / V(9 prbsbes e — / (byctt + byt + bytty + b)) d
/ 2 d /
< C|v' ()| lloellze | v(p)b}, dx— = | V(0)oibibudx
+ / V" (0)p7bybys dx + / V' () pibabse dx + / V' (p)peb2, dx
1
+ annniz +Cllull7o / v(p)b%, dx + Cllug || oo | bell 2

+ Cllote || Foc 1bell 7> + Cllhllfoo/lt(p)uit dx. (50)
Combining (48) and (50), we obtain

1d 1

3 [l s o) v 5 [ (pud+82)

< _

1d d
< dt/u/(p)ptuxuxtdx— EE/ptu?dx— %/ptuuxutdx
-2 / V' (0)pebybas dx + C / (), dx + C / V(p)b?, dx

1d 1d
+ EE (py)tlxlx[ dx + EE (bz)tl/lxt dx

2 2
+ C(/ pc(,o)uitdx> + C(/ v(,o)bitdx) +C.

Integrating (51) over (0, T') with respect to ¢, we deduce

(51)
1 2 2 1 T 2 2
5 [u(p)uxt + v(,o)bxt] dx + 3 ; (pu” + btt) dx dt
1
=C [ oy 0 dv+ € [ vipn0.0)ds - 5 [ pai s
- / Pelhthtis AX — / V' (0)pibxbay dx + / W' (0) pettxtin: (0, %) dx

1
5 / Pt (0,%) dox + / petitety (0, %) dox + / V() pebxb (0, %) dx

T 2 2
+C‘/0 |:(/ ,u(,o)ufctdx> + </ v(p)bitdx) ]dt+C.

(52)
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From the first and third equations in (1), we obtain

p¢(0,%) = —(poto)x € H',
bt(O:x) = bOxx - (MObO)x € le

which together with (52) yields

T
/ / (o1 + b2) dxdt + f [1(p)ucy, + v(p)b7, ] dx
0

<C+ %/[u(p)uit + v(p)bfct] dx

+ C/OT[(/ pc(p)uit dx>2 + </ v(,o)bfct dx)z] dt,

which follows from Gronwall’s inequality, (4), (5), (7), (12), (20), (27), (31), and (36), show-
ing that (46) holds. This completes the proof of Lemma 2.9. d

Remark 2.2 From the above estimates, we can also deduce that

sup / (ury, + b2yy) dx < C,

0<t<T
T
/ /(uazcxt + byzcxt) dx dt = C’
0

and

sup /[pft +|(07), ) +b]dx < C.

0<t<T

By combining all the estimates obtained above, we get sufficient a priori estimates uni-
formly with 8. Then letting § — 0%, we can extend the local classical solutions to the global
ones. Since the process is standard [13] and [29], we omit the details here. Therefore, the

proof of Theorem 1.1 is completed.
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