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Abstract

In this paper, we investigate the existence and uniqueness of symmetric solutions for
fractional differential equations with multi-order fractional integral boundary
conditions, by means of standard fixed point theorems. Examples which support our
theoretical results are also presented.
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1 Introduction

In this paper, we study the existence and uniqueness of symmetric solutions for the fol-
lowing boundary value problem for nonlinear fractional differential equations with multi-
order fractional integral boundary conditions:

D*x(t) =f(t,x(t), 1<a<2,0<t<T, (L1)

©(t) =T ~1), X alPix(n) =0,
where ‘D% denotes the Caputo fractional derivative of order «, x is symmetric (we re-
call that a function x € C([0, T],R) is said to be symmetric on [0, T] if x(t) = x(T - ¢),
te€[0,T]),f:[0,T] x R — R is a continuous function and symmetric with respect to ¢,
thatis, f(¢,x) = f(T —t,x),n; € (0,T),0,1; € R, foralli =1,2,...,m and I? is the Riemann-
Liouville fractional integral of order g; >0 (i =1,2,...,m) such that

m

il
21: TG " (1.2)

Fractional calculus has become very useful over the last years because of its many appli-
cations in almost all applied sciences. Fractional differential equations have been of great
interest and it is caused both by the intensive development of the theory of fractional cal-
culus itself and by the applications of such constructions in various science such as physics,
mechanics, chemistry, and engineering. For details, and some recent results on the subject
we refer to [1-17] and references cited therein.
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Recently, many authors have focused on the existence of symmetric solutions for or-
dinary differential equation boundary value problems; for example, see [18—21] and the
references therein. To the best of the authors’ knowledge there are no papers dealing with
the existence of symmetric solutions for boundary value problems for fractional differen-
tial equations. The filling of this gap is the main motivation of this paper. Here we study
existence and uniqueness results for symmetric solutions for boundary value problems of
nonlinear fractional differential equations with multi-order fractional integral boundary
conditions.

Note that the singular case can occur when the left side of (1.2) is equal to zero. For
exampleif m=3, 1 =n3=T/2, =T, My =*3=1 % =-1,0=0,and 8;=1,i=1,2,3,

then the fractional integral condition of (1.1) is reduced to

z T
ds = ds, .
/0 x(s) ds /I x(s) ds (1.3)

2

which is equivalent to the symmetric condition x(¢) = (T — ¢). Therefore, the condition
(1.2) provides the other ordinary/fractional integral boundary condition which is different
from the regular symmetric condition. Now, there are two different conditions which are
sufficient to give the existence and uniqueness results for the problem (1.1).

The organization of this paper is as follows: In Section 2 we present some preliminary
notations, definitions and lemmas that we need in the sequel. In Section 3 we present
the main existence and uniqueness results for the problem (1.1). Several new existence
and uniqueness results are proved by using a variety of fixed point theorems (such as Ba-
nach’s contraction principle, nonlinear contractions, Krasnoselskii’s fixed point theorem,
and Leray-Schauder’s nonlinear alternative). Examples illustrating the obtained results are

presented in Section 4.

2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus [1, 2]

and present preliminary results needed in our proofs later.

Definition 2.1 For an at least n-times differentiable function g: [0, 00) — R, the Caputo

derivative of fractional order g is defined as

1 t
‘Dig(t) = 7F(n 2 / (t- s)”_q_lg(”) ()ds, n-l<qg<mn=I[q]+1,
- 0

where [g] denotes the integer part of the real number g.
Definition 2.2 The Riemann-Liouville fractional integral of order g is defined as

qu(t) = L ‘ ﬂ

ds, 0,
T Jo t-sa™ 17

provided the integral exists.
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Lemma 2.1 For g > 0, the general solution of the fractional differential equation *D7u(t) =
0 is given by

ult)=co+crt+--+cpqt"
wherec; €R,i=1,2,...,n-1(n=[q] +1).
In view of Lemma 2.1, it follows that
I1°DAy(t) = u(t) + co + 1t + - + cpr "), (2.1)

forsomec;eR,i=1,2,...,n-1(n=[q] +1).

For convenience we set

i+1 i
m nﬁ+ m Bi

Q= M@=

i=1 T(Bi+2)’ F(ﬂ, +1) (2.2)

Lemma2.2 LetQ; #0,1<a<2,8,>0,n,€(0,T),fori=1,2,...,m,andy € C([0, T],R).
Then the problem

Dx(t) =y(t), te(0,T), (2.3)

) =x(T-1), Y xlfix(n)=0, (2.4)
i=1

has a unique solution given by

Q- 1 "
x(t) = Iy(2) + %ﬂym ‘o (o - 213 xil“”iy(m)). (2.5)

Proof Using Lemma 2.1, (2.3) can be expressed as an equivalent integral equation
x(t) = I"y(t) + at + 2, (2.6)

for arbitrary constants cj, c; € R.
Taking the Riemann-Liouville fractional integral of order p > 0 for (2.6), we have

1
Px(t) =I""Py(t) + ¢ & tp (2.7)
Tp+2)  “TEp+)

From the first condition of (2.4), it follows that

1
a= —?I“y(T).

The second condition of (2.4) and (2.7) with p = §; imply that

ﬁ,+l

Zk[‘“ﬁl y(n;) +CIZ)» F(ﬁz 2)+CZZ ,3l+1)
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Putting a constant ¢;, we have

1 “ Q
= — -§ Al Piy(n;) + =1%9(T) |.
(%) % (U . y(n:) + T B ))

Substituting constants ¢; and ¢, into (2.6), we obtain (2.5) as required. O

Next we outline the fixed point theorems that will be used in the proofs of our existence
and uniqueness results.

Definition 2.3 Let E be a Banach space and let F : E — E be a mapping. F is said to be
a nonlinear contraction if there exists a continuous nondecreasing function ¥ : R* — R*
such that ¥(0) = 0 and W(¢) < ¢ for all ¢ > 0 with the property:

Fx - Fy| < W(llx-yl), Vxy€E.

Lemma 2.3 (Boyd and Wong) [22] Let E be a Banach space and let F : E — E be a non-
linear contraction. Then F has a unique fixed point in E.

Lemma 2.4 (Krasnoselskii’s fixed point theorem) [23] Let M be a closed, bounded, convex,
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax + By €
M whenever x,y € M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z € M such that z = Az + Bz.

Lemma 2.5 (Nonlinear alternative for single valued maps) [24] Let E be a Banach space,
C a closed, convex subset of E, X an open subset of C and 0 € X. Suppose that F : X — C is
a continuous, compact (that is, F(X) is a relatively compact subset of C) map. Then either
(i) F has a fixed point in X, or
(ii) thereis a x € 0X (the boundary of X in C) and , € (0,1) with x = AF(x).

3 Main results

Let C = C([0, T],R) denotes the Banach space of all continuous functions from [0, T'] to
R endowed with the norm defined by ||| = sup,c(o 7 [%(¢)|. Throughout this paper, for
convenience, the expression I*f (s, x(s))(b) means

b
I“f(s,x(s))(b) = ﬁ /0 b —s)“_lf(s,x(s)) ds, tel0,T],

wherea € {o,a + i} and b e {t, T,n;},i=1,2,...,m.
As in Lemma 2.2, we define an operator F :C — C by

(Fa©) = I*f (5, 2(9) 0) + (%)M(&x(s))(ﬂ
+ Qiz (a -3 kila+ﬁi]’(s,x(s))(ni)>. 3.1)
i=1

It should be noticed that the problem (1.1) has solutions if and only if the operator F has
fixed points.
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In the following subsections we prove existence, as well as existence and uniqueness

results, for the boundary value problem (1.1) by using a variety of fixed point theorems.

We set
¢ Q| +[0|T\ T 1 & b
_ . [€21] + [€25] +—Z|)“i|nl7’ (3.2)
T(a+1) [BIT JT(@+1) 2] < "T+pi+1)
and
_ ol (33)
[€2]

3.1 Existence and uniqueness result via Banach'’s fixed point theorem
The first existence and uniqueness result is based on Banach’s contraction mapping prin-
ciple (Banach’s fixed point theorem).

Theorem 3.1 Assume that f : [0, T] x R — R is a symmetric continuous function and

(Hy) there exists a constant L > 0 such that |f(¢,x) — f(t,y)| < L|x — y|, for each ¢t € [0, T]
and x,y € R.

If
LA <1, (3.4)

where A is defined by (3.2), then the boundary value problem (1.1) has a unique symmetric
solution on [0, T].

Proof We transform the problem (1.1) into a fixed point problem, x = Fx, where the oper-
ator F is defined as in (3.1). Observe that the fixed points of the operator F are solutions
of the problem (1.1). Applying Banach’s contraction mapping principle, we shall show that
F has a unique fixed point.

We let sup,o,7) |f(£,0)| = M < 0o and choose

AM+CI>
r —
T 1-LA°

where the constant ® is defined by (3.3).
Now, we show that B, C B,, where B, = {x € C : ||x|| <r}. For any x € B,, we have

Q Q
|(]:x)(t)| < tes{gpﬂ{]“ V(S,x(s))|(t) + <%) [f(s,x(s))|(T)

- S OHﬂz
TRl |Z|x [P f (s, x(S))|(m}
< I*(|f (s,x(s)) —f(5,0)| + |f (5,0)|)(T)
€] +1€2|T
() (7(5509) -£5,0) + 0 7)
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_— _— a+ﬂ,
|Q||a|+|m2|x|1 If (5,%(5)) = £ (5, 0)] + £ (s, 0)[) (m2)
| + T

< (Lr+M)I*(1)(T) + (L”M)( || T

)1“(1)<T>
+ m|a| + (Lr+M)m Z |2 14Pi (1) (n;)

o

< (Lr+M)T7 +(Lr+M)<

1S0] +1€2|T\ T
I'(

e +1) |2, T o +1)
oc+ﬂ,
— (Lr+M i
+|sz|'”'+ o )|s2|2' 'F(a+ﬂ,+1>

=(Lr+M)A+P<r,

which implies that FB, C B,.
Next, we let x,y € C. Then, for ¢ € [0, T], we have

|(F)(0) - (F)(®)]|

< |f (5,2(69)) ~ £ (5.56) () + (%)1 1 (5,5(5)) — £ (5,(5)) |(T)

* o Z 11 f (s,2(5)) = £ (5, 9(5)) | (m2)

< Llx =yl 4 L=y (2L 1SITY T
x— +L|lx—
= M@+ q BT  T(@+1)

a+p;

1 & n.
L=yl Y il
g wg "T@+pi+D

=LA|x-yll,

which implies that || Fx — Fy|| < LA|lx —y||. As LA <1, F is a contraction. Therefore, we
deduce, by Banach’s contraction mapping principle, that F has a fixed point which is the

unique symmetric solution of the problem (1.1). The proof is completed. d

3.2 Existence and uniqueness result via Banach's fixed point theorem and
Holder’s inequality
In this subsection we give another existence and uniqueness theorem for the boundary

value problem (1.1) by using Banach’s fixed point theorem and Holder’s inequality.

Theorem 3.2 Suppose that f : [0, T] x R — R is a symmetric continuous function satisfy-

ing the following assumption:

(Ho) If(&, %) —f(t, ) <8@®)|lx—y|, fort €[0,T],x,y €R,and € Li([O, T],R%), w € (0,1).



Aphithana et al. Boundary Value Problems (2015) 2015:68 Page 7 of 14

Denote ||8]| = (/] 18(s)| ds). If
T (1—w\" (I +|0IT\T*® (1-0\"*
131l +
IMNa)\a-ow |Q2,|T IMNa)\oa-w
1 & gyt ( 1-w )1“”
<1,
IQzI “ Tla+p) \a+pfi-w

then the boundary value problem (1.1) has a unique symmetric solution on [0, T].

Proof For x,y € C([0, T],R) and for each ¢ € [0, T], by Holder’s inequality, we have

|[(F)(®) - (F)(®)]|

<1707 (5509) = (5] 0+ (22 ) (6,509) (500 (D

N |Z|x (1P f (s,2(5)) = f (5,9(5) | (m2)

1 a-1
<@ /0 (- 97 15()|als) - y(5)| ds

Q1T 1 [T
+< |20IT >F(oc)_/o(T_S) 8(s)|x(s) - y(s)| ds

m

1 [Xi ni e .
P Mt CSUR LIS U

1 ! al% ﬁ
5%</( _9) ) ( [ o) ) Iyl
] + || T 1y et
+< 19/ ) (/ ds) (/0((5)
Ly |4l " N )_w(
_ - i — i d
+|92|;F(a+ﬁi></o (e =gy = s /0(5(5)
|:T°‘“" -\ (1] +I0IT\T® (1-0\"™
il () (B )
INa)\a-w |2, T IMNo)\a-w
L Ly Ixilnf’*’g"""< 1-o )1“’ el
9] & T(@+p) \a+fi-o 7

It follows that F is a contraction mapping. Hence Banach’s fixed point theorem implies

E\b‘

) llx =yl
¢ ) llx =yl

w
1

)
)

that 7 has a unique fixed point, which is the unique symmetric solution of the boundary

value problem (1.1). The proof is completed. d

3.3 Existence and uniqueness result via nonlinear contractions

In this subsection we establish an existence and uniqueness result for the boundary value
problem (1.1) by using Boyd and Wong’s fixed point theorem for nonlinear contractions
(Lemma 2.3).
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Theorem 3.3 Let f:[0,T] x R — R be a symmetric continuous function satisfying the

assumption:

(H3) [f(&, %) —f(t, )] < h(t) H"flg‘—yl’ te[0,T), x,y >0, where h: [0, T] — R* is continuous

and a constant H* defined by

[€2] +1€22|T
H* =I°K(T) + (—) |AA 1% Pih(n (3.5)
[2|T IQ Z

Then the boundary value problem (1.1) has a unique symmetric solution on [0, T].

Proof We define the operator F : C — C as in (3.1) and a continuous nondecreasing func-
tion ¥ : R* — R* by

H*e

Y(e) = s
(&) H* +¢

Ve > 0.

Note that the function W satisfies W(0) = 0 and W(¢) < ¢ for all ¢ > 0.
For any x,y € C and for each ¢ € [0, T], we have

|(Fa)(®) = (Fy)(0)|
|1 + 10| T

<I¢ lf(S,x(S)) —f(s5(5)) ‘ () + (W)Iﬂf lf(s,x(S)) —f(s5(5)) ‘ (T)

Z AP |f (5,(5)) —f (5, 9(5)) | (i)
1

. -y ]+ 12T - 9
=1 (h(S)H*+|x—y|>(T)+( 0T )I (h(S)H*+|x—y|>(T)
Ix—yl
a+p; h A A .
N |Z|x I ( (5) |x—y|>(”’)

_ Y=yl Q]+ [T, R U
T (1 W(T) + (7&” )1 h(T)+|QZ|;|AI|1 h(n;)

< W(llx-yl).
This implies that || Fx— Fy| < W(||x—y||). Therefore F is a nonlinear contraction. Hence,

by Lemma 2.3 the operator F has a unique fixed point which is the unique symmetric

solution of the problem (1.1). This completes the proof. O

3.4 Existence result via Krasnoselskii’s fixed point theorem
The next existence theorem is based on Krasnoselskii’s fixed point theorem (Lemma 2.4).

Theorem 3.4 Let f:[0,T] x R — R be a symmetric continuous function satisfying (H;).

In addition we assume that:

(Ha) [f(t, %) <(2), V(t,x) € [0, T] x R, and ¢ € C([0, T],R*).
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Then the boundary value problem (1.1) has at least one symmetric solution on [0, T] pro-
vided

||+ [RITY  T° n
I D = (3.6)
|2 T Fa+1) |S22| 1"(05+,31+1)
Proof Setting sup, (o 1 |¢(£)| = ll¢|l and choosing
o= llelA+P 3.7)

(where A and & are defined by (3.2) and (3.3), respectively), we consider B, = {x €
C([0, T, R) : |lx]| < p}. We define the operators F; and F; on B, by

Fix(t) =1 (s,%(s))(¢), t€][0,T],

5x(t)=(%) f(sx(s))(T)+—< Z““*ﬂfsxS))(m) te(0, 7).

For any x,y € B,, we have

| Fix(e) + Foy(t)|
Q Q
< sup Ialf(s,x(s))l(t)+<w) “|f (5,%($))|(T)
t€[0,T] || T
+|S;| |+m22|)L 1P 1f (s, 5(5)) | (n )}
T |+ |0IT T° “ 0P o]
S”q)”|:l”(0t+1)+( |2, T )Fa+1 21: a+ﬂl+1)]+@
=[lollA+® < p.

This shows that F1x + F,y € B,. It is easy to see using (3.6) that F; is a contraction map-
ping.

Continuity of f implies that the operator F; is continuous. Also, F; is uniformly bounded
on B, as

o

I Fxll < o+l

ol

Now we prove the compactness of the operator ;.
We define sup, ,co,71x8, If (t: %) = f < 00, and consequently we have

/ 1 [(tz B Ry s)“_l]f(s,x(s)) ds

|.7:1x(t2 flx(f1)|

(o)
+ /tz(tg - s)“_lf(s,x(s)) ds

< f |ey
Fa+1)"M

-4,
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which is independent of x and tends to zero as ¢, — £, — 0. Thus, JF is equicontinuous. So

J1 is relatively compact on B,. Hence, by Arzela-Ascoli’s theorem, F; is compact on B,,.

Thus all the assumptions of Lemma 2.4 are satisfied. So the conclusion of Lemma 2.4

implies that the boundary value problem (1.1) has at least one symmetric solution on [0, T'].

3.5 Existence result via Leray-Schauder’s nonlinear alternative

O

By using Leray-Schauder’s nonlinear alternative (Lemma 2.5) we give in this subsection

our last existence theorem.

Theorem 3.5 Assume that:

(Hs) there exist a continuous nondecreasing function ¥ : [0,00) — (0,00) and a function

p € C([0, T],R") such that

[f(t,x)’ <pt)y (|x|) foreach (t,x) € [0, T] x

(Hg) there exists a constant M > 0 such that

M
VD plA+ @

’

where A and ® are defined by (3.2) and (3.3), respectively.

Then the boundary value problem (1.1) has at least one symmetric solution on [0, T].

Proof Let the operator F be defined by (3.1). Firstly, we shall show that F maps bounded
sets (balls) into bounded sets in C([0, T],R). For a number r > 0, let B, = {x € C([0, T],R) :

|[%]| <r}beabounded ball in C([0, T],R). Then for ¢ € [0, T] we have

[(Fx)(@)]

[€21] + €22

< sup {I"‘[f(s,x(s))|(t)+< T

te[0,T]

|$| }:uuwm @mwwm}

<y (Il “p()(T) + w(nxn)(

1
AL A irow }:Mu“ﬂsxm

€2

o

=< W(lell)llpllﬁ + lﬁ(llxll)llpH(

+—|<7|+1P Ix11) IIPII— e
€2 €22 IZ 0t+/3;+1)

€] + [$2,|T

>1°‘ [f(s,x(s))|(T)

|€1] + [$[T
12| T

[ + (€22 T

TOt
stwmm{Fw+D+( lT

lo|
+ o
2]

a+ﬁl

F(a+1) |522| Z' ‘lr(a+ﬂ,+1)

|



Aphithana et al. Boundary Value Problems (2015) 2015:68 Page 11 of 14

and consequently,
IFxl =¥ ()lpllA + .

Next we will show that F maps bounded sets into equicontinuous sets of C([0, T], R). Let
71, T2 € [0, T] with 11 < 75 and u € B,. Then we have

|(Fx)(z2) - (F2)(m)|
1

T IN'a)

[0 (=91 = (- 9 (s.0(5)) ds + [ (ra - 9 (s, 109) s

1

b (o= W (5x6)) (D)

v | ™ al w1 7 o
< T /0 [(r2 =) = (11— 9)* ' |p(s) ds + /n (12 — 5)*p(s) ds
+ @(72 - )I*|p(s)|(T).

As 1o — 11 — 0, the right-hand side of the above inequality tends to zero independently of
x € B,. Therefore by Arzela-Ascoli’s theorem the operator F : C([0, T],R) — C([0, T],R)
is completely continuous.

Let x be a solution. Then, for ¢ € [0, T'], and the following similar computations to the
first step, we have

@] <y (I=l)lplA + @,

which leads to

[l
Y(xDlplA +@ =

In view of (Hg), there exists M such that ||x| # M. Let us set
X= {x € C([O, T],R) ]l <M}.

We see that the operator F : X — C([0, T],R) is continuous and completely continuous.
From the choice of X, there is no x € 0X such that x = vFx for some v € (0,1). Conse-
quently, by the nonlinear alternative of Leray-Schauder type (Lemma 2.5), we deduce that
F has a fixed point x € X which is a symmetric solution of the boundary value problem
(1.1). This completes the proof. d

4 Examples
In this section, we present some examples to illustrate our results.

Example 4.1 Consider the following nonlinear fractional differential equation with multi-
order fractional integral conditions:

3 Y
‘Dax(t) = S‘“(({;) )(3?\%‘)\ +1)|x(8)| + %, 0<t<4,
x(t) =x(4 - t), (4.1)

Lda(d) + 11¥3x(1) + 212x(3) + V213 x(1) + L1V7x() = 2.
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Herew =3/2, T=4,m=50=2,01=1/2, B=+/3, B3=1/2, B = 1/3, Bs = /2, I =
1/5, 0 =1/3, A3 =2/3, Aa =~/2, A5 = 1/5, m = 1/2, m2 =1, 3 = 3/2, na = 1, n5 = 1/2, and
f(t,%) = (sin((t —2)2)/19)((|x|/(3 + |x|)) + 1)|x| + (3/4). Since |f(t,x) —f(t,y)| < (4/57)|x -y,
then (H;) is satisfied with L = 4/57. We can show that 2, = 2.934752823 # 0 and

_ TOt |Ql| + |QZ|T Tot Zl | Dl+ﬂl
" T(a+1) |QI|T M(a+1) |sz | ! a+/31+1)
=13.7495814.0.

Thus LA = 0.9648829050 < 1. Hence, by Theorem 3.1, the problem (4.1) has a unique
symmetric solution on [0, 4].

Example 4.2 Consider the following nonlinear fractional differential equation with
multi-order fractional integral conditions:

D3 x(t) = A o) +1, 0<t<1

18 +x@)] T 2° ’ 42)
x(t) =x(1-1¢), 4.2
17 /1 174 1 1 1 1 2 1 _3
§I9x(§) + ﬁ15x(§) + §17x(§) + EIZJC(;) + gISx(%) =3

Here o = 3/2, T= 1, m = 5, o = 3/2, ,31 = 1/9, ﬁz = 1/5, /33 = 1/7, ﬁ4, = 1/2, ,35 = 1/8, }»1 =
1/8, Ay = 1/34, A3 = 1/37, )\4 =1/49, A =1/25, 71 = 1/2, 0y = 1/3, 13 = 1/5 N =217, 15 =

7/11, and £ (¢, x) = (/2 9% /18)(lx|/(1 + |%])) + (1/2). We choose A(t) = e /9 and we obtain
2, =0.2195131282 # 0,

|Ql|+|Qg|T> 1 & ‘
H =T + | —————= = \I*W(T) + — AP,
(T) ( I (T) ] E [Ail (n:)

i=1
=0.2749628138.

Clearly,

(—7t)2 t2
V(tx) ff}/)’ 2 ] — [yl <e_ o — I
1+ x|+ |yl +Ixllyl ) — 9 \0.2749628138 + [x —y| )

Hence, by Theorem 3.3, the problem (4.2) has a unique symmetric solution on [0,1].

Example 4.3 Consider the following nonlinear fractional differential equation with
multi-order fractional integral conditions:

=5 Gnoe_1y2
Dix() = M) BOL 91— p), 0<t<],

x(t) =x(1 - 1), (4.3)

1991 x( )+25613x( )+ I4x( )+1891 x(: )+19113x( )=3.

Herea =3/2, T=1,m=5,0=3, Bi=1/2, By =1/3, B = 1/4, B4 = 1/3, s = 1/3, A, =
1/199, Ay = 1/256, A3 = 1/10, Aq = 1/189, A5 = 1/191, n1 = 1/3, 15 = 2/3, 03 = 1/5, 04 = 1/4,
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ns = 1/6, and f(t,x) = (e™¢ =120 sin((£ — (1/2))2)/2)(|1x]/A + |x])) + 2¢(1 — £). Since If(t,x) -
ft,y)| < 1/2)|x —y|, (Hy) is satisfied with L = 1/2. We find that 2, = 0.08783388964 # 0,

Q|+ [Q|T\ T¢ o ;"
[ + 2] Z =0.9472241016 < 1.
1IT ) T(a+1) ~ T+ pi+1)
Clearly,
3 gin((¢ — 12 ~(t-3)?
e sin((E-5)7)  |w(e) 2

t _ . 2t(1 =8| < 2t(1—-1).

lf( x)‘ 2 1+ |x(0)] + 24 ) + 2t )

Hence, by Theorem 3.4, the problem (4.3) has at least one symmetric solution on [0,1].

Example 4.4 Consider the following nonlinear fractional differential equation with
multi-order fractional integral conditions:
2
DIx(t) = (6 - 32 + B2y o<r<e,
x(t) =x(1-1t), (4.4)

1 1
; x(5 )+11fx( )+13115x(%)+%13x(%)+é1ﬁx(%)=ﬁ.

Sl

Herea =4/3, T=6,m=5,0 =1/225, 81 =1/2, B> =1/v/2, B3 =1/5, Ba = 1/3, B5 = 1//3,
M o=1/2, ko =1/3, A3 = 3/11, Ay = 1/7, A5 = 1/5, ;1 = 1/2, 0y = 1/4, 93 = 2/7, 04 = 1/5,
ns = 1/2, and f(¢,x) = (1/225)(t — 3)>((x2/(1 + |x)) + ((|x] + 2)/(3 + |«]))). Then, we get
Q, =1.011549229 # 0,

T Ql+IIT T¢ 1 & b
_ L (Sl + €] . S I 1;
[(a+1) [BIT JTle+1) 2] & "T+pi+1)

=18.87497313,
and
o]
d = — =0.004393700590.
€22
Clearly,

9 x| +2 1 9
[f(t,%)| = ‘ﬁ( -3) ( + )‘_225(1‘—3) (Ic] +1).

1+ x| 3+ x|
Choosing p(t) = (1/225)(t - 3)? and ¥ (Jx|) = |*| + 1, we can show that

M
YMIpll A+

implies that M > 3.09954:8142. Hence, by Theorem 3.5, the problem (4.3) has at least one

symmetric solution on [0, 6].
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