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Abstract

The problem of magnetohydrodynamic (MHD) mixed convection flow near a
stagnation-point region over a nonlinear stretching sheet with velocity slip and
prescribed surface heat flux is investigated; this has not been studied before. Using a
similarity transformation, the governing equations are transformed into a system of
ordinary differential equations, and then are solved by employing a homotopy
analysis method. The effects of the nonlinearity parameter, the magnetic field, mixed
convection, suction/injection, and the boundary slip on the velocity and temperature
profile are analyzed and discussed. The results reveal that the increasing exponent of
the power-law stretching velocity increases the heat transfer rate at the surface. It is
also found that the velocity slip and magnetic field increase the heat transfer rate
when the free stream velocity exceeds the stretching velocity, i.e. € < 1, and they
suppress the heat transfer rate for e > 1.
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1 Introduction

The problem of stagnation-point flow and heat transfer on stretching sheet arises in an
abundance of practical applications in industry and engineering, such as cooling of elec-
tronic devices and nuclear reactors, polymer extrusion, drawing of plastic sheets, etc.; and,
moreover, in the magnetohydrodynamic (MHD) flow which has both liquid and magnetic
properties and can exhibit particular characteristics in thermal conductivity. Thus the
study of MHD stagnation-point flow on stretching sheet has attracted many researchers
in recent times, and many problems are discussed as regards different aspects, including
the stretching sheet with variable surface temperature [1] or viscous dissipation [2, 3], the
effect of slip [4, 5], and the analysis of the unsteady case [6].

Different from the flow induced by a stretching horizontal sheet, the effect of mixed con-
vection due to a buoyancy force could not be neglected for the vertical sheet. There has
been increasing interest in studying the problem of MHD with mixed convection bound-
ary layer flow and heat transfer characteristics over a stretching vertical surface [7-15].
Very recently, Ali et al. [16] studied the MHD mixed convection stagnation-point flow
and heat transfer of an incompressible viscous fluid over a vertical stretching sheet, and
the MHD boundary layer flow over a vertical stretching/shrinking sheet in a nano-fluid
was investigated by Makinde et al. [17] and Das et al. [18].
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The above investigations considered the flow on the linearly stretching sheet or vertical
sheet, but the real stretching velocity does not always need to be linear or uniform. Some
work has been done in this field. The similarity solution of the boundary layer equations
for a nonlinearly stretching sheet has been found by Akyildiz ez al. [19]. The flow and heat
transfer over a nonlinearly stretching sheet has been investigated by Akyildiz and Siginer
[20] by using a Legendre spectral method. Recently, Dhanai et al. [21], Ashraf et al. [22],
and Mabood et al. [23] analyzed the boundary layer flow and heat transfer on a nonlinearly
shrinking/stretching sheet immersed in a nanofluid.

In the present paper, motivated by the above studies, the problem of MHD mixed con-
vection stagnation-point flow on the nonlinearly vertical stretching sheet is discussed in
the presence of buoyancy force, suction/injection parameters, and boundary slip. The gov-
erning nonlinear coupled partial differential equations are reduced to a set of ordinary
differential equations by means of similarity transformations. The reduced equations are
solved by the homotopy analysis method (HAM) [24], which has been successfully ap-
plied to various interesting complicated fluid problems [25-30]. Graphs are plotted to
gain physical insight toward the key embedding physical parameters. To the best of our
knowledge, the series solutions for this model have not been presented before.

2 Mathematical formulation of the problem

We consider the steady two-dimensional MHD mixed convection flow in the vicinity of a
stagnation point over a nonlinear stretching sheet with velocity slip and prescribed surface
heat flux. The flow is confined to the region y > 0, where y is the coordinate measured
normal to the stretching surface. A uniform magnetic field of strength is applied in the
direction normal to the surface y = 0. The flow model along with the coordinate system
is shown in Figure 1. It is assumed that the sheet stretching velocity u,,(x) = cx” and the
external velocity is prescribed as u,.(x) = ax™ where ¢ and a are positive constants. The
constant m is the nonlinearity parameter, with m =1 for the linear case and m # 1 for
the nonlinear case. Under the boundary layer approximation and the assumptions that
the viscous dissipation and Joule heating are neglected, the basic equations of continuity,

momentum, and energy are given by

du v
—+—=0, @
ox 0y

Figure 1 Physical model and coordinate system. X
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du  du du, 3*u oB*(x)
= FV— +
dx 0y dx dy> 0

(ue - M) +gﬂ(T_ Too)v (2)
U—+V—=0—7- (3)

where # and v are the velocities in the x and y directions, v is the kinematic viscosity, p
is the fluid density, o is the electrical conductivity, B(x) is the transverse magnetic field,
g is the acceleration due to gravity, B is the thermal expansion coefficient, T is the fluid

temperature, and « is the thermal diffusivity. The relevant boundary conditions are given

by
2-0,_ 0 oT w
u= Mw(x) + i O_Mr V= Vw(x)r - = _q (x)! aty= 0, (4)
oy ay ay k
u— u.(x), T— Ty asy— oo, (5)

where o, is the tangential momentum accommodation coefficient, Ay is the mean free
path, v, (x) is the suction (injection) velocity, k is the thermal conductivity, and g, (x) is
the surface heat flux.

We introduce the following similarity transformations:

7= \/% D12,

¥ = Javx"VRf (), (6)

g [akI-Tx)
v q0x2m—l N

Here v is the stream function. Equation (1) is satisfied by introducing v such that u =
9y /9y and v = -9 /dx. Employing the similarity variables (6), the velocity components
and v are given by

1 -1
u=ax"f'(n) and v=—avx" D> [%f(ﬁ) + m2

nf ’(n)} (7)

where the prime denotes differentiation with respect to 7. To obtain similarity solutions,

B(x), vy(x), and g,,(x) are taken as

~ Jav(m + l)x(’”’l)/zs,

B(x) = Box" V2, Vy =
2 ®)

qw(®) = qox®" ",
where By, S, and go are constants. It is noted that S > 0 corresponds to the injection case
and S < 0 implies suction. Substituting (6) into (2) and (3), we get the following ordinary
differential equations:

£ L g7y e MO =p) 430 =0, ®
o+ P o b om_1)0 -0, (10)

2
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subject to the boundary conditions (4) and (5), which become

fO)=8,  f(0)=e+87(0),  6(0)=-1, (11)
fl(0)=1,  6(c0)=0. (12)

In the above equations, M is the magnetic parameter, A is the mixed convection parameter,
and P, is the Prandtl number, and they are given by

o B} v Gr v
M= ﬂ—po, A= giiz(;;/— = Ksz and P, = " (13)
with Gr, = gBq,x*/kv? and Re, = u.x/v being the local Grashof and Reynolds numbers,
respectively. It is noticed that A is a constant with A <0 and A > 0 corresponding to the
opposing and assisting flows, respectively, while A = 0 is for pure forced convection flow.
Further, ¢ = c/a is the velocity ratio parameter, and § = (2 — o‘,)Kane}C/ %/o, is the velocity
slip parameter with the local Knudsen number K, = Ao/+/ex.

In addition, the quantities of practical interest in this study are the skin friction coeffi-
cient Cy and the local Nusselt number Nu,, which are defined as

) X (%)

_ W o) 14
T oz (T - Too) (14)

where the surface shear stress 7,,(x) = 1(du/9y),-o and g,,(x) is the wall heat flux given by
(8). Using the similarity variables (6), we obtain

ReV’Cr=f"(0),  Re;?Nu, =1/6(0). 1)

3 Series solutions of HAM
In the framework of the HAM technique, we select the initial guesses and the linear op-

erator as
(e -1) 1 1
=S 1-—), 0, =—, 16
Jo(n) sk Aty T+7 o(17) T+7 (16)
3 2
E — 11 //’ E :8// 9/, 17
r=f +—1+nf 0 oo 17)
where £, and £ satisfy
C.
£f|:C1 + Cg?’] + —3i| =0, (18)
1+n
C
Lo |:C4 + —5} =0, (19)
1+n

in which C; (i = 1-5) are arbitrary constants.
The zeroth order deformation equations are given by

(L-q)Ls[f(n,q) - fo(n)] = ahyHy ()Nf[f (n, ), 00, 4], (20)
(L-q)Lo[0(n,q) — 00 (n)] = qhoHy (N [f (0, 9), 01, 1], (21)
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and they satisfy the following boundary conditions:

fma)=S,  fg=e+5f"(ng) 0mg=-1 atn=0, (22)

fag)—>1,  6(ng)—0 asn— oo (23)

Here g € (0,1) is an embedding parameter and / and 4y indicate the non-zero auxiliary
parameters, Hy(n) and Hy(n) indicate the non-zero auxiliary functions, the nonlinear op-

erators Ny, Ny are defined as

_ _ 3F(n,q) 1. 0% (n.q)
Ne[f(n.9),0(n.q)] = J;:gq + m; f(n,q) g:zq
_ ) i
+m|:1— <3f(n,q)) ] +M<1_ 8f(n,q)>
an an
+26(n,q), (24)
) _ ?0(n,q) P(m+1)-  _86(n,
Nl 00.0)) = 5+ 22 Dy, D
- p,m -1, LD, 25)
n
For g =0 and g =1, we have
Fm0)=ft),  Fm.1)=f(n), (26)
6(n,0)=6o(n),  6(n,1)=6(n). (27)
By using a Taylor series, it is easy to obtain
Fona) =fo) +>_fulna", (28)
n=1
0n,q) =6o(n) + Y _ 0u(n)q", (29)
n=1
in which
10"f(1,9) 10"0(n, q)
() = — ;O = ——E 30
Jam) =~ 0 | (n)=- 0 | (30)

The parameters /i; and 4y are properly selected such that series solutions converge at p = 1.
Substituting p = 1 into (28)-(29) gives

) =folm) + ), (31)
n=0

0n) = 0o(n) + > _ 0 (). (32)
n=0
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Then the mth order deformation equations and boundary conditions are

L) = xufar ()] = heHp ()W, (), (33)
L4[64(1) = xu6n-1(0)] = ho Hy ()R (), (34)
£(0) =£1(0) = 8£/(0) =fi(00) =0, 6.(0) = 6,(c0) = 0, (35)
n-1
W) =~ MFy+ 200+ " S o af]
k=0
n-1
—m Y fra i+ (M +m)(A = x), (36)
k=0
0 /7 PV(m + 1) s / - /
W) = O+ ——— > fuaibp = P2m=1) Y fi 10 (37)
k=0 k=0
with

The general solutions of (33)-(35) are

£ =fu(n) + Cr + Can + 1& (39)
+1
_ Cs
0,(n) =6,(n) + Ca + T (40)
+1

where f,,(n) and 6,(n) are the special solutions of the mth order deformation equations

and C; (i = 1-5) are governed by the boundary conditions (35), which are given by

_1(0) - 87 (0)

= =0, == _Nnox
C,=C, Ci=-C3-1,4(0) Cs 1725

. Gs=6,0. (4
For simplicity, here we take iy = hig = h. In addition, according to the rule of the solution
expression and the mth order deformation equation, the auxiliary functions Hy(n) and

Hy(n) are chosen in the form

H) = o Haln) - (42)

1+n @+n)3

By employing the software MATHEMATICA, (33) and (34) can be solved one after the

other in the order n =1,2,3,....

4 Analysis of the results

4.1 Convergence of the solutions

In order to ensure the convergence of the obtained series solutions, it is necessary to
choose the appropriate range for the auxiliary parameter /. As pointed out by Liao [24],
the interval for the admissible values for 7 corresponds to line segments nearly parallel to
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Pr=0.7, M=1, m=2, S=1, =1, A=-1, &=0.1

5 — —_— e
4+ _
— £(0)
s’ 00 — — — b
> L
§ L
< Ll ]
W b
1 1 1 1 1 1 1 1
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

Figure 2 h-Curves of f”(0) and 0(0) for the 20th order approximation when ¢ = 0.1.

Pr=0.7, M=1, m=2, S=1, 6=1, A=-1, e=2
57\\‘\‘\\“““\“‘

'(0)
60) — — —

£(0), 6(0)

Figure 3 h-Curves of f”(0) and 6(0) for the 20th order approximation when & = 2.

the horizontal axis. Figures 2 and 3 are plotted to show the admissible values of & for the
function f”(0) and 6(0) at 20th order approximation. To ensure the convergence of the
series solution by HAM, it is observed from Figures 2 and 3 that the value of  should be
chosen from —0.6 <7 < -0.1.

From the computation, it is found that the series solutions (31) and (32) converge in the
whole region of n when we take /& = —0.5. Table 1 shows the convergence of the solutions
for different orders of approximations when Pr=0.7, M =1,m=2,S=1,1=-1,and § = 1.
In order to further validate the present results, we show a comparison with previous work
in Table 2. The results indicate that the numerical and analytical solutions are in good

agreement. Hence we are confident that our results are accurate.

4.2 Results and discussion
The influence of key parameters on the coefficient of skin friction, the local Nusselt num-
ber, the velocity, and the temperature profiles are shown in this section. Figures 4 and 5
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Order of approximation (@) e =0.1 (b)e=1 (c)e=2
f’(0) 1/6(0) f”(0) 1/6(0) f’(0) 1/6(0)
1 0.5878 1.8038 -0.0556 2.1622 -0.7858 2.7746
5 0.6511 21674 -0.0283 22484 -0.7940 23482
10 0.6591 2.1700 -0.0252 22587 -0.7943 2.3501
15 0.6597 21736 -0.0248 22635 -0.7944 23559
20 0.6598 2.1758 -0.0248 22657 -0.7944 2.3580
25 0.6599 2.1768 -0.0248 2.2666 -0.7944 2.3589
30 0.6599 21771 -0.0248 22670 -0.7945 2.3593
35 0.6599 21772 -0.0248 22670 -0.7945 23593
40 0.6599 21772 -0.0248 22670 -0.7945 2.3593
Table 2 Values of f(0) and 1/6(0) for different orders of approximations
40th order of approximation Yacob and Ishak [31] Present results
Pr £”(0) 1/6(0) £”(0) 1/6(0)
0.7 1.8339 0.7776 1.8337 0.7771
1 1.7338 0.8780 1.7337 0.8780
Pr=0.7, M=1, S=1, 6=1
—
0.5
0.0
e m=0.6,0.8, 1,2

-0.5

Figure 4 Variation of the skin friction coefficient f/(0) with A for different values of m.

Pr=0.7, M=1, S=1, 6=1

1/6(0)

Figure 5 Variation of the local Nusselt number 1/6(0) with A for different values of m.
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present the variation of the skin friction coefficient f”(0) and the local Nusselt number
1/6(0) with mixed convection parameter A. The results show that the values of f”(0) and
1/6(0) increase with A. It is also observed from Figure 4 that the values of f”(0) are negative
for & = 2 > 1, which means that the sheet exerts a drag force on the fluid. For ¢ = 0.1 < 1, the
values of f(0) become positive, which indicates that the formation of the boundary layer
does not depend solely on the stretching sheet. On the other hand, the values of 1/6(0),
which represents the heat transfer rate at the surface, increase with the nonlinearity pa-
rameter m and they are always positive, i.e. the heat is transferred from the hot sheet to
the cold fluid.

The effects of mixed convection parameter A on the velocity and temperature profiles
are shown in Figures 6 and 7. The flow has a boundary layer structure, while the velocity
ratio parameter ¢ < 1 and the nonlinearity parameter 7 > 1. On the other hand, when ¢ > 1

and m > 1, the flow has an inverted boundary layer structure which results from the fact

Pr=0.7, M=1, m=2, S=1, =1
‘ ‘ ‘
14+ -
N A=-2,-1,0,1,2 =017
1.2 js e=2 — — i
g o} R
0.8 :
0.6 -
[ 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1
0.0 0.5 1.0 1.5 2.0
n
Figure 6 Velocity profile f'(y) for different values of A.
Pr=0.7, M=1, m=2, S=1, =1
0.5 ————— —
0al W\ ]
L e=01 —— ]

A=-2,-1,0,1,2 -

0

Figure 7 Temperature profile 6 (y) for different values of A.
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that the stretching velocity u,(x) of the surface exceeds the velocity u,(x) of the external
stream. From Figure 6, it is observed that the thickness of the velocity boundary layer
decreases with A for ¢ = 0.1 < 1, but it increases as A increases for ¢ = 2 > 1. The velocity
field f'(n) is always an increasing function of A for the two cases. Figure 7 shows that an
increase in A corresponds to a decrease in the temperature and the thermal boundary layer
thickness. From this figure, we can see that the wall temperature 6(0) also decreases with
increasing A, which means that the heat transfer rate 1/6(0) increases as A increases. It
is worth pointing out here that the temperature profiles show less deviation for different
values of A.

Figures 8-11 illustrate the effects of m, S, §, and M on the velocity profiles for the two
cases of ¢ < 1and ¢ > 1. It is observed that the thickness of the velocity boundary layer de-
creases with increasing values of m, S, §, and M for both cases, which implies an increasing
magnitude of the velocity gradient at the surface. Thus, the skin friction coefficient f”(0)

Pr=0.7, M=1, S=1, A=-1, é=1
—

m=0.6,0.8, 1,2

')

n

Figure 8 Velocity profile f'(n) for different values of m.

Pr=0.7, M=1, m=2, A=-1, ¢=1

S=-1,-0.5,0,1,2 i

')
s
T

Figure 9 Velocity profile f'(n) for different values of S.
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Pr=0.7, M=1, m=2, S=1, A=—1
2.0 R —_— —
oA
r\
— §=0,1,5,10 £=0.1
1.5 j =2 P B
g 1ot ]
0.5+ N
00 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
0.0 0.5 1.0 L5 2.0
n
Figure 10 Velocity profile f'() for different values of 3.
Pr=0.7, m=2, $=1, A=-1, 6=1
— ‘ —
14 B
e=01 —
g=2 — — 7
= N
0.6 - N
[ 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1 ]
0.0 0.5 1.0 L5 2.0
n
Figure 11 Velocity profile f'() for different values of M.

increases with the increasing values of m, S, §, and M. From a physical point of view this
follows from the fact that with a rise in the strength of magnetic parameter M, the Lorentz
force associated with the magnetic field makes the boundary layer thinner. Further, it is
seen from Figures 9-11 that the velocity inside the velocity boundary layer increases with
S, 8, and M for ¢ < 1 but decreases with these parameters for ¢ > 1. In addition, it is indi-
cated that the velocity slip parameter has a significant influence on the velocity compared
to the parameters m, S, and M.

Figures 12-15 show the temperature profiles for selected values of the parameters m, S,
3, and M for the two cases of ¢ <1 and ¢ > 1. The temperature is found to decrease to zero
monotonically as 7 increases, which satisfies the far field boundary condition 6(co) = 0.
The results display that the temperature and thickness of the thermal boundary layer is
lower for ¢ = 2 and higher for ¢ = 0.1 when the other parameters are constant. Figures 12
and 13 show that the wall temperature 6(0) decreases with increasing m, S for the two
cases. Thus, the heat transfer rate at the surface increases as m and S increase. Further-
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Pr=0.7, M=1, S=1, A=-1, 6=1
e B s B e e L e T B s e e e

e=01 —
0.8

m=0.6,08,1,2

0.6

o)

0.4

0.2

0.0

Figure 12 Temperature profile 6 (3) for different values of m.

Pr=0.7, M=1, m=2, A=-1, 6=1

S

0.8

S$=-1,-05,0,1,2

0.6

0(n)

0.4

0.2

0.0 L n
0.0 . k . X . 3.0

Figure 13 Temperature profile 6 (n) for different values of S.

Pr=0.7, M=1, m=2, S=1, A=-1
0.5

0.4

0.3

o)

0.2

0.1

0.0

0.0

g
=}

Figure 14 Temperature profile 6(z) for different values of §.
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Pr=0.7, m=2, S=1, A=-1, 6=1
05— —

04l ]
[ e=0.1 ]

e=2 —

o3r M=0, 1,5, 10

0(n)

02r

0.1

0.0 -

Figure 15 Temperature profile (1) for different values of M.

more, it is easy to see that the temperature and thickness of thermal boundary layer also
decrease with increasing these two parameters. Different characteristics are observed in
Figures 14 and 15. The wall temperature and thickness of thermal boundary layer decrease
with increasing 6 and M for ¢ < 1, and the reverse trend is observed for the case of ¢ > 1.
Thus, the heat transfer rate at the surface increases with § or M for ¢ < 1, and the opposite

behaviors are observed for the effects of § and M for ¢ > 1.

5 Conclusions

In this work, the MHD mixed convection stagnation-point flow toward a nonlinearly
stretching vertical sheet is analyzed. Different from the previous works, the current re-
sults focus on the effect of nonlinearly vertical stretching for the MHD stagnation-point
flow with mixed convection. The analytic solutions for momentum and energy equations
have been obtained by the method of HAM. The main conclusions can be summarized as
follows.

+ The increase of nonlinearity parameter m leads to an increases of the heat transfer
rate at surface 1/6(0), and to a decrease of both the thicknesses of the velocity and the
thermal boundary layer.

« The coefficient of the skin friction f”(0) and the heat transfer rate at the surface 1/6(0)
increase with increasing mixed convection parameter A.

+ The heat transfer rate increases as the velocity slip parameter § and magnetic
parameter M increase for ¢ < 1, but it decreases with these two parameters for ¢ > 1.

+ Inside the velocity boundary layer, the velocity increases with the increasing S, §, and
M for € <1, and the opposite trend is displayed for & > 1.

« Inside the thermal boundary layer, the temperature always decreases with increasing
A, m,and S.
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