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Abstract
In this present paper, the existence of pullback attractors for the 2D Navier-Stokes
equation with weak damping and continuous delay is considered; by virtue of the
classical Galerkin method, we derive the existence and uniqueness of global weak
and strong solutions. Using the Aubin-Lions lemma and some energy estimate in the
Banach space with delay, we obtain the uniform bound and the existence of a
uniform pullback absorbing ball for the solution’s semi-processes, and we conclude to
the global attractors via verifying the pullback asymptotical compactness by the
generalized Arzelà-Ascoli theorem.
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1 Introduction
In this present paper, we investigate the existence of a pullback attractor for the D Navier-
Stokes equations with weak damping and continuous delay that governs the motion of an
incompressible fluid:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut – ν�u + (u · ∇)u + αu + ∇p
= f (t – ρ(t), u(t – ρ(t))), (x, t) ∈ �τ ,

div u = , (x, t) ∈ �τ ,
u = , (x, t) ∈ ∂�τ ,
u(τ , x) = u(x), x ∈ �,
u(t, x) = φ(t – τ , x), (x, t) ∈ �τh,

(.)

where � ⊂R
 is a bounded domain with smooth boundary ∂�, �τ = � × (τ , +∞), �τh =

�× (τ – h, τ ), τ ∈R is the initial time, ν is the kinematic viscosity of the fluid, u = u(t, x) =
(u(t, x), u(t, x)) is the velocity vector field, which is unknown, p is the pressure, α >  is
positive constant, αu is the weak damping, f (t – ρ(t), u(t – ρ(t))) is the external force term
which contains memory effects during a fixed interval of time of length h > , ρ(t) is an
adequate given delay function, u is the initial velocity field at the initial time τ ∈ R, φ is
the initial state of delay in [τ – h, τ ], h >  is a constant.
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When α =  in (.), the external force equals , then the system reduces to the well-
known D incompressible Navier-Stokes equation:

vt – ν�v + (v · ∇)ψ + (ψ · ∇)v + ∇p = , (.)

∇ · v = . (.)

Since the last century, the global well-posedness and large-time behavior of solutions to
the Navier-Stokes equations have attracted many mathematicians.

For more results as regards the well-posedness and long-time behavior of the D au-
tonomous incompressible Navier-Stokes equations, such as the existence of global solu-
tions, the existence global attractors, the Hausdorff dimension, and the inertial manifold
approximation, we can refer to Ladyzhenskaya [], Robinson [], Sell and You [], Temam
[, ]. Moreover, Caraballo and Real [–] derived the existence of a global attractor for
the D autonomous incompressible Navier-Stokes equation with delays; Chepyzhov and
Vishik [, ] investigated the long-time behavior and convergence of the corresponding
uniform (global) attractors for the D Navier-Stokes equation with singularly oscillating
forces as the external force tending to a steady state by virtue of a linearization method and
estimated the corresponding difference equations. Foias and Temam [, ] gave a survey
of the geometric properties of solutions and the connection between solutions, dynamical
systems, and turbulence for the Navier-Stokes equations, such as the existence of ω-limit
sets; Rosa [] and Hou and Li [] obtained the existence of global (uniform) attractors for
the D autonomous (non-autonomous) incompressible Navier-Stokes equations in some
unbounded domain, respectively; Lu et al. [] and Lu [] proved the existence of uniform
attractors for D non-autonomous incompressible Navier-Stokes equations with normal
or less regular normal external force by establishing a new dynamical systems framework;
Miranville and Wang [] derived the attractors for non-autonomous nonhomogeneous
Navier-Stokes equations.

For the well-posedness of D incompressible Navier-Stokes equations, in , Leray
[, ] derived the existence of a weak solution by a weak convergence method; Hopf []
improved Leray’s result and obtained the familiar Leray-Hopf weak solution in . Since
the Navier-Stokes equations lack an appropriate prior estimate and the strong nonlinear
property, the existence of a strong solution remains open. For infinite-dimensional dynam-
ical systems, Sell [] constructed the semiflow generated by the weak solution which lacks
the global regularity and obtained the existence of global attractor of the incompressible
Navier-Stokes equations on any bounded smooth domain. Cheskidov and Foias [] intro-
duced a weak global attractor with respect to the weak topology of the natural phase space
for a D Navier-Stokes equation with periodic boundary; Flandoli and Schmalfuß [] de-
duced the existence of weak solutions and attractors for D Navier-Stokes equations with
a nonregular force; Kloeden and Valero [] investigated the weak connection of the at-
tainability set of weak solutions of D Navier-Stokes equations; Cutland [] obtained
the existence of global solutions for the D Navier-Stokes equations with small samples
and germs. Chepyzhov and Vishik [–] investigated the trajectory attractors for a D
non-autonomous incompressible Navier-Stokes system based on the work of Leray and
Hopf. Using the weak convergence topology of the space H (see below for the definition),
Kapustyan and Valero [] proved the existence of a weak attractor in both autonomous
and non-autonomous cases, and gave an existence result of strong attractors. Kapustyan
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et al. [] considered revised D incompressible Navier-Stokes equations generated by
an optimal control problem, and they proved the existence of pullback attractors by con-
structing a dynamical multivalued process.

However, the infinite-dimensional systems for D and D incompressible Navier-Stokes
equations have not yet been completely resolved, so many mathematicians pay attention to
this challenging problem, such as the existence of an inertial manifold for D incompress-
ible Navier-Stokes equations and the global attractors for the D incompressible Navier-
Stokes equations. In this regard, some mathematicians pay attention to the Navier-Stokes
equation with weak or strong damping to approximate the standard equations, such as
[–] for the D and D incompressible Naver-Stokes equations with damping. How-
ever, there are fewer results for the large-time behavior for the Navier-Stokes equations
with weak damping and distributed delay. In this paper, we shall show the existence of
uniform pullback attractors for the problem (.).

This paper will be organized as follows: in Section , we shall give some preliminaries;
in Section , the existence and uniqueness of global weak and strong solutions will be
derived; we shall prove the existence of a uniform pullback absorbing ball in Section ;
with the pullback attractors we will conclude in the last section.

2 Some preliminaries
In this paper, C will stand for a generic positive constant, depending on � and some con-
stants, but independent of the choice of the initial time τ and t. The Hausdorff semi-
distance in X from one set B to another set B is defined as

distX(B, B) = sup
b∈B

inf
b∈B

‖b – b‖X .

We set E := {u|u ∈ (C∞
 (�)), div u = }, H is the closure of the set E in the (L(�))

topology, W is the closure of the set E in the (H(�)) topology, i.e.,

W =
{

u ∈ W |‖u‖W = ‖u‖
H , u|∂� = 

}
. (.)

P is the Helmholz-Leray orthogonal projection in (L(�)) onto the space H , A := –P�

is the Stokes operator subject to the nonslip homogeneous Dirichlet boundary condition
with the domain (H(�)) ∩ V , and A is a self-adjoint positively defined operator on H .
A– is a compact operator from H to H . The sequence {ωj}∞j= is an orthonormal system of
eigenfunctions of A, {λj}∞j= ( < λ ≤ λ ≤ · · · ) are the eigenvalues of the Stokes operator
A corresponding to the eigenfunctions {ωj}∞j=. Let

Vs := D
(
A

s

)
, ‖V‖s :=

∥
∥A

s
 V

∥
∥, s ∈ R, (.)

where V := V = (H
(�)) ∩ H is a Hilbert space, and ‖v‖ = ‖v‖V = ‖∇v‖. Clearly, V = H ,

and V ↪→ H ≡ H ′ ↪→ V ′; H ′ and V ′ are dual spaces of H and V , respectively, where the
injection is dense, continuous. | · | and (·, ·) denote the norm and inner product of H , i.e.,

(u, v) =
∑

j=

∫

�

uj(x)vj(x) dx, ∀u, v ∈ (
L(�)

); (.)
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and ‖ · ‖ and ((·, ·)) denote the norm and inner product in V , i.e.,

(
(u, v)

)
=

∑

i,j=

∫

�

∂uj

∂xi
· ∂vj

∂xi
dx, ∀u, v ∈ (

H
(�)

) (.)

and

‖∇u‖ :=
∑

i=,j=

‖∂iuj‖
L(�), ∀u = (u, u). (.)

The norm ‖ · ‖∗ denotes the norm in V ′, 〈·〉 denotes the dual product in V and V ′.
We define the following bilinear form operator:

B(u, v) := P
(
(u · ∇)v

)
, ∀u, v ∈ E, (.)

and the trilinear form operator

b(u, v, w) =
∑

i,j=

∫

�

ui
∂vj

∂xi
· wj dx =

(
B(u, v), w

)
. (.)

Clearly, the trilinear operator satisfies

b(u, v, v) = , b(u, v, w) = –b(u, w, v), ∀u, v, w ∈ V , (.)
∥
∥b(u, v, w)

∥
∥ ≤ C‖u‖ 

 ‖u‖ 

V ‖v‖V ‖w‖V , ∀u, v, w ∈ V , (.)

∥
∥b(u, v, u)

∥
∥ ≤ C‖u‖ 

 ‖u‖ 

V ‖v‖V , ∀u, v ∈ V , (.)

∥
∥b(u, v, w)

∥
∥ ≤ C‖u‖V ‖v‖V ‖w‖ 

 ‖w‖ 

V , ∀u, v, w ∈ V , (.)

∥
∥b(u, v, w)

∥
∥ ≤ Cλ



V ‖u‖V ‖v‖V ‖w‖V , ∀u, v, w ∈ V . (.)

Next, we introduce some useful inequalities and lemmas.
Young’s inequality is

ab ≤ ε

p
ap +



qε


p–
bq, q =

p
p – 

,  < p < ∞,∀a, b, ε > . (.)

The Poincaré inequality is

‖u‖ ≤ λ
– 


 ‖u‖V , ∀u ∈ V , (.)

where λ is the first eigenvalue of A under the homogeneous Dirichlet boundary condition.

Lemma . Let X = H , V or V ′, such that ‖Pu‖X ≤ ‖u‖X , and Pu → u in X.

Proof See e.g. [] or []. �
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Definition . Let X and Y be Banach spaces, X ⊂ Y , we say that X is compactly embed-
ded in Y , written

X ⊂⊂ Y ,

provided
(i) ‖X‖Y ≤ C‖X‖X (x ∈ X) for some constant C;

(ii) each bounded sequence in X is precompact in Y .

Lemma . (The Lions-Aubin lemma) Let X ⊂⊂ H ⊂ Y be Banach spaces; X is the return
of itself, if un is a uniformly bounded sequence in L(, T ; Y ), and there exists p > , making
dvn
dt uniformly bounded in Lp(, T ; Y ), such that un has a subsequence which has strong

convergence in L(, T ; H).

Proof See e.g. [] or []. �

Lemma . (The Gronwall inequality) Let g , h, y all be locally integrable functions in
(t, +∞) and satisfy

dy
dt

≤ gy + h, ∀t ≥ t; (.)

dy
dt is locally integrable, and we have

y(t) ≤ y(t) exp

{∫ t

t

g(τ ) dτ

}

+
∫ t

t

h(s) exp

{

–
∫ s

t
g(τ ) dτ

}

ds, ∀t ≥ t. (.)

Proof See e.g. []. �

Lemma . (The uniform Gronwall inequality) Let g(t), h(t), and y(t) be three positive
locally integrable functions on (t, +∞) such that y(t) is locally integrable on (t, +∞) and
the following inequalities are satisfied:

dy
dt

≤ gy + h, ∀t ≥ t, (.)
∫ t+r

t
g(s) ds ≤ a,

∫ t+r

t
h(s) ds ≤ a,

∫ t+r

t
y(s) ds ≤ a, ∀t ≥ t, (.)

where r, ai (i = , , ) are positive constants. Then we have

y(t + r) ≤
(

a

r
+ a

)

ea , ∀t ≥ t. (.)

Proof See e.g. []. �

Lemma . (The generalized Arzelà-Ascoli theorem) Let {fγ (θ ) : γ ∈ �} ⊂ C = C([–r, ];
X); it is equicontinuous, and for ∀θ ∈ [–r, ], {fγ (θ ) : γ ∈ �} has relative compactness in
C([–r, ]; X).
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Proof See e.g. []. �

Next, we shall give some definitions and a theorem as regards the existence of pullback
attractors for non-autonomous systems.

Definition . Let X be a metric space, the set class {U(t, τ )} (–∞ < τ ≤ t < +∞) : X → X
is called a process in X, if

(i) U(τ , τ )x = x, τ ∈ R, ∀x ∈ X ;
(ii) U(t, τ ) = U(t, s)U(s, τ ), ∀τ ≤ s ≤ t, τ ∈ R.

Let P(X) denote all the family of nonempty subsets of X, and D the class of all families
D̂ = {D(t)|t ∈ �} ⊂P(X).

Definition . The process class {U(·, ·)} is said to be pullbackD-asymptotically compact,
if for any t ∈ R, D̂ ∈ D, and τn → –∞, xn ∈ D(τn), the sequence {U(t, τn)xn} possesses a
convergence subsequence.

Definition . A family B = {B(t)|t ∈ R} ∈ D is said to be pullback D-absorbing if, for
each t ∈ R and D̂ ∈D, there exists τ(t, D̂) ≤ t such that

U(t, τ )D(τ ) ⊂ B(t), ∀τ ≤ τ(t, D̂).

Definition . A family Â = {A(t)|t ∈ R} ∈P(X) is said to be a global pullback D-attractor
with respect to the process {U(·, ·)}, if

(i) A(t) is compact for any t ∈ R;
(ii) Â is pullback D-attracting, i.e.,

∀D̂ ∈D, t ∈ R, lim
τ→–∞ dist

(
U(t, τ )D(τ ), A(t)

)
= ,

where dist(C, C) denotes the Hausdorff semi-distance between C and C defined
as dist(C, C) = supx∈C infy∈C d(x, y) for C, C ⊂ X ;

(iii) Â is invariant, i.e., for all –∞ < τ ≤ t < +∞, we have U(t, τ )A(τ ) = A(t).

Definition . We claim that A(t) =
⋃

D̂∈D�(D̂, t), t ∈ R, where �(D̂, t) is defined as

�(D̂, t) =
⋂

s≤t

(⋃

τ≤s
U(t, τ )D(τ )

)

, ∀D̂ ∈D.

Next we give a result for the existence of a global pullback D-attractor.

Theorem . (See []) Suppose the process {U(t, τ )} is continuous and pullback
D-asymptotically compact, and there exists B̂ ∈ D which is pullback D-absorbing with
respect to {U(t, τ )}. Then the family Â = {A(t)|t ∈ R} ⊂ P(X), A(t) = �(B̂, t), t ∈ R, is a
global pullback D-attractor which is minimal in the sense that if Ĉ = {C(t)|t ∈ R} ⊂ P(X)
is closed and limτ→–∞ dist(U(t, τ )B(τ ), C(t)) = , then A(t) ⊂ C(t).
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3 Existence of global weak and strong solutions
For each t ∈ (τ , T) when T > τ , we define u : (τ – h, T) → (L(�)), here ut is a function in
(–h, ) satisfying ut = u(t + s), s ∈ (–h, ).

In the following sections, we denote by CH = C([–h, ]; H) and CV = C([–h, ]; V ) two
Banach spaces equipped with the norms

‖u‖CH = sup
θ∈[–h,]

∣
∣u(t + θ )

∣
∣ (.)

and

‖u‖CV = sup
θ∈[–h,]

∥
∥u(t + θ )

∥
∥, (.)

respectively, L
H = L(–h, ; H), L

V = L(–h, ; V ).
Assume that v ∈ H , η ∈ L

H , then the problems (.) can be written in the equivalent
form

du
dt

+ νAu + αu + B(u) + ∇p = f
(
t – ρ(t), u

(
t – ρ(t)

))
, (.)

u(τ ) = u, u(t) = φ(t), t ∈ (τ – h, τ ). (.)

In (.), the functions f : [–h,∞) × H → H and φ : [–h, ] → H are continuous and
satisfy:

(a) ρ : [,∞) → [, h], | dρ

dt | ≤ M < ;
(b) f (t, u) satisfies the Lipschitz condition with respect to u;
(c) there exist constants a > , b >  such that |f (t, u)| ≤ a|u| + b;
(d) (νλ) > ae

–M + 
h , a

(–M)α > νλ, where λ is the first eigenvalue of A under the
homogeneous Dirichlet boundary condition;

(e) from the assumption (d) (i.e., (νλ) > ae
–M + 

h > a
–M ), we have –νλ + ae

(–M)νλ
< ,

so there exists θ > , such that θ – νλ + ae
(–M)νλ

< . Noting α > , we can deduce

θ – νλ – α +
ae

( – M)νλ
< ;

(f ) from (b), there exists a positive number L(β) such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ L(β)|u – v|.

We shall give the main results in this section.

Theorem . Let u ∈ H , φ ∈ L
H , the assumptions (a)∼(f) hold, then there exists a unique

global weak solution of (.), that satisfies

u ∈ L∞(, T ; H) ∩ L(, T ; V ).

Proof Assume the orthogonal base in H of A is wj such that Awj = λjwj holds for j = , , . . . ,
Wm = span{w, w, . . . , wm} is the subspace of H . Constructing the approximation solution
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um(t) =
∑n

j=umk(t)wk (k = , , . . . , m) of problem (.), where umk(t) is to be determined,
um(t) satisfies the approximation equation

dum

dt
+ νAum + αum + PmB(um, um) = Pmf

(
t – ρ(t), u

(
t – ρ(t)

))
, (.)

um(s) = Pmφ(s), s ∈ [–h, ], (.)

where Pm : H → H is the Leray-Helmholtz projection; the pressure p has disappeared by
virtue of the application of the P.

Next, we shall use the Faedo-Galerkin method to find the global weak solution. We de-
note fm = f (t, u(t)), fmρ = f (t – ρ(t), u(t – ρ(t))).

By the local existence of a solution for the ordinary differential equation, we see that the
approximation equation of (.)-(.) possesses a local solution.

Taking the inner product of (.) with um at both sides, using Young’s inequality, we
obtain




d|um|
dt

+ νλ|um| + α|um|

≤ |um| · |fmρ |

≤ α|um|


+
|fm|
α

≤ α|um| +
|fm|
α

≤ α|um| +


α

(
a
∣
∣um

(
t – ρ(t)

)∣
∣ + b

)
, (.)

i.e.,

d|um|
dt

≤ 
α

(
a
∣
∣um

(
t – ρ(t)

)∣
∣ + b

)
– νλ|um|. (.)

Integrating (.) over [, t], we derive

∣
∣um(t)

∣
∣ ≤ ∣

∣um()
∣
∣ +

bT
α

+
a
α

∫ t



∣
∣um

(
s – ρ(s)

)∣
∣ ds – νλ

∫ t



∣
∣um(s)

∣
∣ ds

≤ ∣
∣um()

∣
∣ +

bT
α

+
a

α( – M)

∫ t

–h

∣
∣um(r)

∣
∣ dr – νλ

∫ t



∣
∣um(s)

∣
∣ ds

≤ K + K

∫ t

–h

∣
∣um(r)

∣
∣ dr – νλ

∫ t



∣
∣um(s)

∣
∣ ds, (.)

where K = |um()| + bT
α

+ K
∫ 

–h |um(r)| dr, K = a
α(–M) , K = K – νλ. From (d), K =

a
α(–M) – νλ > .

Hence

|um| ≤ K + (K – νλ)
∫ t



∣
∣um(s)

∣
∣ ds, (.)

i.e.,

|um| ≤ K + K

∫ t



∣
∣um(s)

∣
∣ ds, (.)
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and by the Gronwall inequality, we conclude

∣
∣um(t)

∣
∣ ≤ KeKT . (.)

From (.) we see that um is uniformly bounded in L∞(, T ; H) ∩ L(, T ; V ).
According to the Alaoglu compact theorem, we can find a subsequence (also denoted as

um(t)) such that

um →∗ u ∈ L∞(, T ; H); (.)

um → u ∈ L(, T ; V ), (.)

i.e., u ∈ L∞(, T ; H) ∩ L(, T ; V ).
Next, we shall prove dum

dt is uniformly bounded in L(, T ; V ′).
Since

dum

dt
= –νAum – αum – PmB(um, um) + Pmf

(
t – ρ(t), u

(
t – ρ(t)

))
(.)

and um ∈ L(, T ; V ), we have νAum ∈ L(, T ; V ′) and

∥
∥
(
PmB(um, um), um

)∥
∥

L(,T ;V∗)

≤
∫ T



∥
∥B(um, um)

∥
∥

∗ ds =
∫ T



∥
∥(um · ∇)um

∥
∥

∗ ds

≤ c

∫ T


|um|‖um‖ ds

≤ c‖um‖
L∞(,T ;H)‖um‖

L(,T ;H)

≤ c‖um‖
L∞(,T ;H)‖um‖

L(,T ;V ), (.)

i.e., PmB(um, um) is uniformly bounded in L(, T ; V ′), and Pmf (t – ρ(t), u(t – ρ(t))) ∈
L(, T ; V ) implies dum

dt is uniformly bounded in L(, T ; V ′).
In the following, we shall prove the uniqueness of the global solution.
Assume u(t; ,φ), v(t; ,φ) are two solutions of (.), whose initial data is (,φ); setting

w(t) = u(t) – v(t), it follows that

dw
dt

– ν�w + B(u, u) – B(v, v) + αw

= f
(
t – ρ(t), u

(
t – ρ(t)

))
– f

(
t – ρ(t), v

(
t – ρ(t)

))
. (.)

Noting that

B(u, u) – B(v, v) = B(w, u) + B(u, w) (.)

and

∣
∣b(w, u, w)

∣
∣ ≤ c|w|‖w‖‖u‖, (.)
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taking the inner product of (.) with w at both sides, by using Young’s inequality, we
obtain




d|w|
dt

+ ν‖w‖ + α|w|

≤ ∣
∣b(w, u, w)

∣
∣ + L(β)|w|∣∣w(

t – ρ(t)
)∣
∣

≤ c|w|‖w‖‖u‖ + L(β)|w|∣∣w(
t – ρ(t)

)∣
∣

≤ ν


‖w‖ +

c


ν
‖u‖|w| +

α|w|


+
L(β)

α

∣
∣w

(
t – ρ(t)

)∣
∣

≤ ν‖w‖ +
c


ν

‖u‖|w| + α|w| +
L(β)

α

∣
∣w

(
t – ρ(t)

)∣
∣. (.)

Integrating (.) over [, t], and noting

∫ t



∣
∣w

(
s – ρ(s)

)∣
∣ ds ≤ 

 – M

∫ t

–h

∣
∣w(s)

∣
∣ ds, (.)

we get

∣
∣w(t)

∣
∣ ≤ ∣

∣w()
∣
∣ +

∫ t



c


ν
‖u‖∣∣w(s)

∣
∣ ds +

L(β)
( – M)α

∫ t

–h

∣
∣w(s)

∣
∣ ds

=
∣
∣w()

∣
∣ +

∫ t



(
c


ν

‖u‖ +
L(β)

( – M)α

)
∣
∣w(s)

∣
∣ ds

+
L(β)

( – M)α

∫ 

–h

∣
∣u(r) – v(r)

∣
∣ dr, (.)

since

∫ 

–h

∣
∣u(r) – v(r)

∣
∣ dr =

∫ 

–h
|φ – φ| dr = , (.)

we derive

∣
∣w(t)

∣
∣ ≤ ∣

∣w()
∣
∣ +

∫ t



(
c


ν

‖u‖ +
L(β)

( – M)α

)
∣
∣w(s)

∣
∣ ds, (.)

and by the Gronwall inequality, we conclude

∣
∣w(t)

∣
∣ ≤ ∣

∣w()
∣
∣e

∫ t
(

c


ν ‖u‖+ L(β)
(–M)α ) ds. (.)

Theorem . proves that for u ∈ H , φ ∈ L
H , for the problem (.) there exists a unique

solution ut(·; τ , (u,φ)). Similar to the construction of a semigroup for an autonomous
system, we define the semi-process, the non-autonomous system {U(t, τ )φ : CH → CH},
which satisfies

U(t, τ )φ = ut
(·; τ ,

(
φ(),φ

))
, ∀φ ∈ CH , t ≥ τ ,

U(t, τ )φ = Id.
(.)

�
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Theorem . Let u ∈ V , φ ∈ L
V , the assumptions (a)∼(f) hold, then there exists a unique

global strong solution of (.) which satisfies

u ∈ L∞(, T ; V ) ∩ L(, T ; D(A)
)
.

Proof By the local existence of a solution for an ordinary differential equation, we see that
the approximation equation of (.)-(.) possesses a local solution easily, here we omit
the details.

Let um(t) be the approximation solution of (.), from Theorem ., there exists a k =
k(T) > , such that

∣
∣um(t)

∣
∣ ≤ k,  ≤ t ≤ T . (.)

Define a functional as

W
(
t, um(t)

)
=

∥
∥um(t)

∥
∥ +


ν( – M)

∫ t

t–ρ(t)

∣
∣f

(
s, u(s)

)∣
∣ ds, (.)

differentiating the function W (t, um(t)) with respect to t, we derive

dW
dt

≤ –ν|Aum| – α(Aum, um) – b(um, um, Aum) + (Aum, fρ)

+


ν( – M)
(|fm| – |fmρ |)

≤ –ν|Aum| – α‖um‖ + c|um| 
 ‖um‖|Aum| 

 + (Aum, fρ)

+


ν( – M)
(|fm| – |fmρ |)

≤ –ν|Aum| – αλ|um| + c|um| 
 ‖um‖|Aum| 

 + (Aum, fρ)

+


ν( – M)
(|fm| – |fmρ |), (.)

i.e.,

dW
dt

≤ –ν|Aum| + αλk +
ν


|Aum| +


ν c

 |um|‖um‖ +
|fρ |
ν

+ ν|Aum|

+


ν( – M)
(|fm| – |fmρ |)

≤ –


ν|Aum| + αλk +


ν c

 |um|‖um‖ +


ν( – M)
|fm|

–
 + M

ν( – M)
|fmρ |

≤ –


ν|Aum| + αλk +


ν c

 k‖um‖ +


ν( – M)
(
ak + b

)
, (.)

which implies

dW
dt

+


ν|Aw| ≤ 

ν c
 k‖um‖ +

(
a

ν( – M)
+ αλ

)

k +
b

ν( – M)
. (.)
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Integrating (.) from  to t with respect to the time variable, we get

‖um‖ +


ν( – M)

∫ t

t–ρ(t)

∣
∣f

(
s, u(s)

)∣
∣ ds +

ν



∫ t


|Aum| ds – W

(
, um()

)

≤ 
ν c

 k
∫ t


‖um‖ ds +

(
a

ν( – M)
+ αλ

)

Tk +
bT

ν( – M)
. (.)

According to the uniform Gronwall inequality, there exists a R = R(T), such that

∥
∥um(t)

∥
∥ ≤ R. (.)

From Theorem ., there exists Q = Q(T), such that

∫ T


W

(
s, um(s)

)
ds

≤
∫ T



∥
∥um(s)

∥
∥ ds +


ν( – M)

∫ T



∫ s

s–r

∣
∣f

(
v, u(v)

)∣
∣ dv ds

≤
∫ T



∥
∥um(s)

∥
∥ ds +

rT
ν( – M)

(
ak + b

)

≤ Q. (.)

Hence, um is uniformly bounded in L∞(, T ; V ) ∩ L(, T ; D(A)), by the structure of the
equation, dum

dt is uniformly bounded in L(, T ; H), the proof is similar to Theorem .,
here we omit the details. Then there exists u ∈ L∞(, T ; V ) ∩ L(, T ; D(A)), such that

um →∗ u in L∞(, T ; V ); (.)

um → u in L(, T ; D(A)
)
; (.)

dum

dt
→ du

dt
in L(, T ; H). (.)

According to the compact embedding theorem, we derive

um → u in L(, T ; V ). (.)

The uniqueness of the global solution is similar to Theorem .. �

Theorem . Assume that the assumptions (a)∼(f) hold, u ∈ H , φ ∈ L
H , the semi-

processes {Uf (t, τ )|t ≥ τ } defined by (.) is continuous for arbitrary t ≥ τ .

Proof Assume u(t), v(t) be two solutions of (.), whose initial data is (φ(),φ), (ψ(),ψ)
respectively, setting w(t) = u(t) – v(t), corresponding to the initial data w() = u() – v(),
it follows that

dw
dt

– ν�w + B(u, u) – B(v, v) + αw

= f
(
t – ρ(t), u

(
t – ρ(t)

))
– f

(
t – ρ(t), v

(
t – ρ(t)

))
, (.)
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noting that

B(u, u) – B(v, v) = B(w, u) + B(u, w),
∣
∣b(w, u, w)

∣
∣ ≤ c|w|‖w‖‖u‖, (.)

taking the inner product of (.) with um at both sides, using Young’s inequality, we derive




d|w|
dt

+ ν‖w‖ + α|w|

≤ ∣
∣b(w, u, w)

∣
∣ + L(β)|w|∣∣w(

t – ρ(t)
)∣
∣

≤ c|w|‖w‖‖u‖ + L(β)|w|∣∣w(
t – ρ(t)

)∣
∣

≤
(

ν‖w‖


+

c


ν
‖u‖|w|

)

+
α|w|


+

L(β)
α

∣
∣w

(
t – ρ(t)

)∣
∣

≤ ν‖w‖ +
c


ν

‖u‖|w| + α|w| +
L(β)

α

∣
∣w

(
t – ρ(t)

)∣
∣, (.)

i.e.,

d|w|
dt

≤ c


ν
‖u‖|w| +

L(β)
α

∣
∣w

(
t – ρ(t)

)∣
∣. (.)

Integrating (.) from  to t with respect to the time variable, and noting that

∫ t



∣
∣w

(
s – ρ(s)

)∣
∣ ds ≤ 

 – M

∫ t

–h

∣
∣w(s)

∣
∣ ds, (.)

∣
∣w(t)

∣
∣ –

∣
∣w()

∣
∣ ≤

∫ t



c


ν
‖u‖|w| ds +

L(β)
α( – M)

∫ t

–h

∣
∣w(s)

∣
∣ ds

=
∫ t



c


ν
‖u‖|w| ds +

L(β)
α( – M)

∫ t



∣
∣w(s)

∣
∣ ds

+
L(β)

α( – M)

∫ 

–h

∣
∣w(r)

∣
∣ dr, (.)

since

u(t) – v(t) = φ(t – τ ) – ψ(t – τ ), τ – h ≤ t ≤ τ , (.)

using the formula

∫ 

–h

∣
∣w(r)

∣
∣ dr =

∫ 

–h

∣
∣u(r) – v(r)

∣
∣ dr

≤ ‖φ – ψ‖
L

H
, (.)

we derive

∣
∣w(t)

∣
∣ ≤ ∣

∣w()
∣
∣ +

L(β)
α( – M)

‖φ – ψ‖
L

H

+
∫ t



(
c


ν

‖u‖ +
L(β)

α( – M)

)
∣
∣w(s)

∣
∣ ds, (.)
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hence, by the Gronwall inequality, we get

∣
∣w(t)

∣
∣ ≤

(
∣
∣w()

∣
∣ +

L(β)
α( – M)

‖φ – ψ‖
L

H

)

e
∫ t

(
c


ν ‖u‖+ L(β)

α(–M) ) ds, ∀t ≥ τ – h, (.)

‖wt‖
CH

≤
(

∣
∣w()

∣
∣ +

L(β)
α( – M)

‖φ – ψ‖
L

H

)

e
∫ t

(
c


ν ‖u‖+ L(β)

α(–M) ) ds, ∀t ≥ τ . (.)

The continuous dependence can be obtained obviously. �

4 Existence of pullback absorbing set
In this section, we shall prove the existence of a pullback absorbing set for the D Navier-
Stokes equation with continuous delay and weak damping.

The uniqueness of the solution in Theorem . proves that the operator U(t, τ )φ is a
semi-process.

However, we choose the skew-product flow in the space H × L
H = M

H , and define a
family of mappings Ũ(·, ·) : M

H → L
H , as follows:

Ũ(t, τ )(u,φ) = ut
(·; τ , (u,φ)

)
, ∀(u,φ) ∈ M

H , t ≥ τ , (.)

obviously,

Ũ(t, τ )φ = Ũ(t, τ )
(
φ(),φ

)
, t ≥ τ ,φ ∈ CH . (.)

For arbitrary (u,φ) ∈ M
H , the corresponding norm can be described as

∥
∥(u,η)

∥
∥

M
H

= |u| +
∫ 

–h

∣
∣φ(s)

∣
∣ ds. (.)

Lemma . Assume that {B(t)}t∈R are a bounded sets in CH , then the mapping Ũ(·, ·) is
attracting in CH , such that {B(t)}t∈R for the semi-process {U(·, ·)} is also attracting in CH .

Theorem . Assume that the assumptions (a)∼(f) hold, u ∈ H , φ ∈ L
H , the semi-

processes {U(t, τ )} possesses a bounded pullback absorbing set B in CH .

Proof Denote by D a bounded set in M
H , then there exists a d > , such that

|u| +
∫ 

–h

∣
∣φ(s)

∣
∣ ds ≤ d. (.)

Denote

J(t, ut) = eθ t∣∣u(t)
∣
∣ +


( – M)νλ

∫ t

t–ρ(t)
eθseθh∣∣f (s, us)

∣
∣ ds, (.)

where θ is an appropriate positive number, satisfying

θ – νλ – α +
aeθh

( – M)νλ
< . (.)
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Denote f = f (t, u(t)), fρ = f (t – ρ(t), u(t – ρ(t))), differentiate the function J(t, ut) with
respect to t, and we derive

d
dt

J(t, ut) ≤ θeθ t|u| + eθ t
(

u,
du
dt

)

+


( – M)νλ

[
eθ teθh|f | – eθ (t–ρ(t))eθ t|fρ |]

≤ θeθ t|u| + eθ t(u,ν�u – αu – B(u, u) + fρ
)

+


( – M)νλ

[
eθ teθh|f | – eθ t|fρ |]

≤ θeθ t|u| – νλeθ t|u| – αeθ t|u| + eθ t|u||fρ |

+


( – M)νλ

[
eθ teθh|f | – eθ t|fρ |]

≤ θeθ t|u| – νλeθ t|u| – αeθ t|u| + eθ t
(

νλ|u|


+
|fρ |
νλ

)

+
eθ teθh

( – M)νλ
|f | –

eθ t

( – M)νλ
|fρ |

≤ θeθ t|u| – νλeθ t|u| – αeθ t|u| +
eθ teθh

( – M)νλ
|f |

–
Meθ t

( – M)νλ
|fρ |

≤ θeθ t|u| – νλeθ t|u| – αeθ t|u| +
eθ teθh

( – M)νλ

(
a|u| + b

)

≤
(

θ – νλ – α +
aeθ teθh

( – M)νλ

)

|u|eθ t +
beθ teθh

( – M)νλ
, (.)

i.e.,

d
dt

J(t, ut) ≤
(

θ – νλ – α +
aeθ teθh

( – M)νλ

)

|u|eθ t +
beθ teθh

( – M)νλ
. (.)

Since

b(u, u, u) = , |u||fρ | ≤ νλ|u| +
|fρ |
νλ

, (.)

integrating (.) from τ to t with respect to time variable, combining (a)∼(e), we obtain

eθ t∣∣u(t)
∣
∣ ≤ 

( – M)νλ

∫ τ

τ–ρ(t)
eθseθh∣∣f (s, us)

∣
∣ ds

+
(

θ – νλ – α +
aeθh

( – M)νλ

)∫ t

τ

∣
∣u(s)

∣
∣eθs ds

+
beθh

( – M)νλ

∫ t

τ

eθs ds + eθτ |u|

≤ 
( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds
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+
(

θ – νλ – α +
aeθh

( – M)νλ

)∫ t

τ

∣
∣u(s)

∣
∣eθs ds

+
beθh

( – M)νλ

eθ t – eθτ

θ
+ eθτ |u|, (.)

here θ – νλ – α + aeθh

(–M)νλ
< , hence

eθ t∣∣u(t)
∣
∣ ≤ eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

+
beθh

( – M)θνλ

(
eθ t – eθτ

)
, t ≥ τ , (.)

choosing σ ∈ [–h, ], substituting for t: t + σ , we have

eθ (t–h)∣∣u(t + σ )
∣
∣ ≤ eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

+
beθh

( – M)θνλ

(
eθ (t+σ ) – eθτ

)
, (.)

i.e.,

eθ t∣∣u(t + σ )
∣
∣ ≤ eθh

(

eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

)

+
beθh

( – M)θνλ
eθh(eθ t – eθτ

)
, (.)

hence

eθ t∣∣u(t + σ )
∣
∣ ≤ eθh

(

eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

)

+
beθh

( – M)θνλ
eθ t

≤ C + Ceθ t , (.)

where

C = eθh
(

eθτ |u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

)

,

C =
beθh

( – M)θνλ
.

(.)

By the Gronwall inequality, we get

eθ t|ut| ≤ C + Ceθ t . (.)

Combining (.)-(.), we conclude

‖ut‖
CH

≤ Ce–θ t + C (t ≥ τ + h), (.)
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substituting for τ : t – s, denoting u(·, ·) as u(·; t – s, (u,φ)) also for arbitrary t, s ≥ h, we
have

‖ut‖
CH

=
∥
∥Ũ(t, t – s)(u,φ)

∥
∥

CH

≤ eθh
(

eθ (t–s)|u| +


( – M)νλ

∫ 

–h
eθseθh∣∣f (s, us)

∣
∣ ds

)

e–θ t + C

≤ eθh
(

e–θs|u| +
e–θ teθh

( – M)νλ

∫ 

–h
eθs∣∣f (s, us)

∣
∣ ds

)

+ C

≤ eθh
(

e–θsd +
eθh

( – M)νλ

∫ 

–h
eθs∣∣f (s, us)

∣
∣ ds

)

+ C. (.)

Denoting

ρ̃ =
eθh

( – M)νλ

∫ 

–h
eθs∣∣f (s, us)

∣
∣ ds + C, ρ̃ = ρ̃

H , (.)

then for some T̃D(t) ≥ h, such that ‖Ũ(t, t – s)(u,φ)‖CH ≤ ρ̃H for s ≥ T̃D(t), there exists a
ball BCH (, ρ̃H ) for the semi-process Ũ(t, t – s)(u,φ), B is a pullback absorbing set.

From Lemma ., the ball BCH (, ρ̃H) for the semi-process {U(t, t – s)φ} is also a pullback
absorbing set, which completes the proof. �

Theorem . Assume that the assumptions in Theorem . hold, there exists a bounded
pullback attracting set for the semi-process {U(·, ·)} in CV .

Proof Let

Q(t, ut) = |u| +


( – M)α

∫ t

t–ρ(t)

∣
∣f

(
s, u(s)

)∣
∣ ds. (.)

Differentiate the function Q(t, ut) with respect to t, and we derive

dQ
dt

= 
(

u,
du
dt

)

+


( – M)α
(|f | – |fρ |)

≤ 
(
u,νu – αu – B(u, u) + fρ

)
+


( – M)α

(|f | – |fρ |)

≤ –ν‖u‖ + |u||fρ | – α|u| +


( – M)α
(|f | – |fρ |)

≤ –ν‖u‖ + α|u| +
|fρ |
α

– α|u| +


( – M)α
|f |

–


( – M)α
|fρ |

≤ –ν‖u‖ +


( – M)α
|f | –

 + M
( – M)α

|fρ |

≤ –ν‖u‖ +


( – M)α
|f |

≤ –ν‖u‖ +


( – M)α
(
a|u| + b

)
. (.)
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From (.) and (.), there exist T > , δ > , we have max{|u|, |ut|} ≤ δ
 , for t > T .

Integrating (.) from t to t + r with respect to the time variable, we obtain

Q(t + r) + ν

∫ t+r

t
‖u‖ ds

≤ Q(t, ut) +
a

( – M)α
δ

 r +
br

( – M)α

≤ |u| +


( – M)α

∫ t

t–ρ(t)

(
a|u| + b

)
ds +

aδ
 r

( – M)α
+

br
( – M)α

, (.)

hence

ν

∫ t+r

t
‖u‖ ds ≤

(

 +
(r + h)a

( – M)α

)

δ
 +

(r + h)b
( – M)α

. (.)

From (.), we have

∫ t+r

t
‖u‖ ds ≤ δ

 , (.)

here

δ
 =


ν

[(

 +
(r + h)a

( – M)α

)

δ
 +

(r + h)b
( – M)α

]

. (.)

Denoting

W (t, ut) = ‖u‖ +


( – M)ν

∫ t

t–ρ(t)

∣
∣f

(
s, u(s)

)∣
∣ ds, (.)

we have
∫ t+r

t
W ds =

∫ t+r

t
‖u‖ ds +


( – M)ν

∫ t+r

t

(∫ s

s–ρ(s)

(
a|u| + b

)
dr

)

ds

≤ rδ
 +

rh
( – M)ν

(
aδ

 + b
)

= δ. (.)

Differentiate the function W with respect to t, and combining with the Young’s inequal-
ity, we get

dW
dt

=
d‖u‖

dt
+


( – M)ν

(|f | – |fρ |)

≤ –ν|Au| – 
∣
∣(Au,αu)

∣
∣ + 

∣
∣b(u, u, Au)

∣
∣ + (Au, fρ)

+


( – M)ν
(|f | – |fρ |)

≤ –ν|Au| – α‖u‖ + c|u| 
 ‖u‖|Au| 

 + |Au||fρ |

+


( – M)ν
(|f | – |fρ |)
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≤ –ν|Au| – α‖u‖ + 
(

ν


|Au| +


ν c

 |u|‖u‖
)

+ ν|Au| +
|fρ |
ν

+


( – M)ν
(|f | – |fρ |)

≤ –
ν


|Au| – α‖u‖ –

 + M
( – M)ν

|fρ | +

ν c

 |u|‖u‖ +
|f |

( – M)ν

≤ 
ν c

 |u|‖u‖ +
|f |

( – M)ν

≤ 
ν c

 δ

 ‖u‖ +


( – M)ν

(
a|u| + b

)
. (.)

If we denote

a =

ν c

 δ

 δ


r,

a =


( – M)ν
(
a|u| + b

)
r, (.)

a = δ,

by the uniform Gronwall inequality, it follows that

W ≤
(

a

r
+ a

)

ea (t ≥ h + r). (.)

Noting that ‖u‖ ≤ W (t, ut), using a similar technique to Theorem ., we easily get

‖u‖
CV

≤
(

a

r
+ a

)

ea (t ≥ h + r), (.)

substituting for τ : t – s, denoting u(·, ·) as u(·; t – s, (u,φ)), for arbitrary t, s ≥ h, we derive

∥
∥Ũ(t, t – s)(u,φ)

∥
∥

CV
≤

(
a

r
+ a

)

ea
(
t ≥ T̃D(t) + h + r

)
; (.)

here ρ̃
V = ( a

r + a)ea , BCV (, ρ̃V ) is a bounded pullback attracting set for the semi-
processes {U(·, ·)} in CV . �

5 Existence of pullback attractors in H
The main results in our paper can be stated as follows.

Theorem . Assume that (a)∼(f) hold, u ∈ H , φ ∈ L
H , there exists a pullback attractor

A of the problem (.) for the solutions’ semi-process {Uf (t, τ )|t ≥ τ }.

Proof Theorem . guarantees that there exists a bounded attracting set of the problem
(.), and Theorem . proves that the problem (.) possesses a bounded attracting set in
CV , respectively. If we can prove ut is compact in CH , then the problem (.) possesses a
pullback attractor; this is equivalent to proving the next two properties by the generalized
Arzelà-Ascoli theorem:
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() V ⊂⊂ H is compact.
() {U(t, τ )} is equicontinuous.

We have

∣
∣u(t; t + θ,φ) – u(t; t + θ,φ)

∣
∣ =

∣
∣
∣
∣

∫ t+θ

t+θ

u′(r) dr
∣
∣
∣
∣, (.)

and we get

∣
∣u(t; t + θ,φ) – u(t; t + θ,φ)

∣
∣

≤
∫ t+θ

t+θ

∣
∣u′(r)

∣
∣dr

≤
∫ t+θ

t+θ

(|fρ | + ν|Au| + α|u| +
∣
∣B(u)

∣
∣
)

dr

≤
∫ t+θ

t+θ

( |fρ |
ν

+
ν


+

ν


+

ν|Au|
ν

+
ν


+

α|u|
ν

+ c|Au|‖u‖
)

dr

≤
∫ t+θ

t+θ

( |fρ |
ν

+
ν


+

ν


+

ν|Au|


+
ν


+

α‖u‖

νλ
+

c
‖u‖

ν
+

ν|Au|


)

dr

≤
∫ t+θ

t+θ

( |fρ |
ν

+ ν + ν + ν|Au| + ν +
α‖u‖

νλ
+

c
‖u‖

ν
+ ν|Au|

)

dr

=
∫ t+θ

t+θ

( |fρ |
ν

+ ν + ν|Au| +
α‖u‖

νλ
+

c
‖u‖

ν

)

dr. (.)

Taking the inner product of (.) with Au at both sides, we obtain




d‖u‖

dt
+ ν|Au| + α‖u‖ + b(u, u, Au)

= (fρ , Au)

= |fρ | · |Au|

≤ |fρ |
ν

+
ν|Au|


, (.)

such that

∫ t+θ

t+θ

ν|Au| dr ≤ 
ν

∫ t+θ

t+θ

|fρ | dr +
∥
∥u(t + θ)

∥
∥, (.)

and substituting (.) into (.), we get

∣
∣u(t + θ) – u(t + θ)

∣
∣

≤
∫ t+θ

t+θ

[
|fρ |

ν
+ ν +

(
α

νλ
+

c

ν

+ 
)

‖u‖
]

dr

≤
(

ν +
α + λc

 + νλ

νλ
‖u‖ρ̃

V

)

|θ – θ| +

ν

∫ t+θ

t+θ

|fρ | dr. (.)
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Hence, U is equicontinuous, and compactness is proved.
From the fundamental theory of the existence of the pullback attractor generated by the

problem (.), one completes the proof. �
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