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Abstract
In this paper, we derive three finite difference schemes for the chiral nonlinear
Schrödinger equation (CNLS). The CNLS equation has two kinds of progressive wave
solutions: bright and dark soliton. The proposed methods are implicit, unconditionally
stable and of second order in space and time directions. The exact solutions and the
conserved quantities are used to assess the efficiency of these methods. Numerical
simulations of single bright and dark solitons are given. The interactions of two bright
solitons are also displayed.

1 Introduction
The chiral nonlinear Schrödinger (CNLS) equation [, ] we are going to study is given by

i
∂ψ

∂t
+




∂ψ

∂x + iλ
(

ψ∗ ∂ψ

∂x
– ψ

∂ψ

∂x

∗)
ψ = , –∞ < x < ∞, ()

where ψ(x, t) is a complex-valued function, ψ∗(x, t) denotes the complex conjugate of
ψ(x, t), and λ is a nonlinear coupling constant appearing through derivative coupling. This
kind of nonlinearity is also known as the current density, unlike the case of cubic nonlin-
earity which is also known as the Kerr nonlinearity. The chiral nonlinear Schrödinger is
a non-integrable equation by the classical method of inverse scattering. The single bright
soliton solution of Eq. () is given by Biswas [, ] as

ψ(x, t) = A sech
(
β(x – ct)

)
exp

(
i(cx + ωt)

)
, ()

where

β = A
√

λc and ω =
c(λA – c)


, ()

A is the amplitude of the soliton, β is the inverse width of the soliton, c is the soliton
velocity, and ω is the wave number. The bright soliton solution () exists for λc > . The
dark soliton solution exists for λc <  and has the form

ψ(x, t) = A tanh
(
β(x – ct)

)
exp

(
i(cx + ωt)

)
, ()
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where

β = A
√

–λc and ω =
c(λA – c)


. ()

Thus Eq. () has bright or dark soliton solutions that are given by () or (), respectively,
depending on the sign of λc. This phenomenon makes the solitons chiral.

Eq. () has at least four integrals of motion of conserved quantities, namely [, , ]

I(t) =
∫ ∞

–∞

∣∣ψ(x, t)
∣∣ dx, ()

I(t) = i
∫ ∞

–∞

(
ψ̄(x, t)ψx(x, t) – ψ(x, t)ψ̄x(x, t)

)
dx, ()

I(t) =
∫ ∞

–∞

[
λ
∣∣ψ(x, t)

∣∣ + i
(
ψ̄(x, t)ψx(x, t) – ψ(x, t)ψ̄x(x, t)

)]
dx ()

and

I(t) =
∫ ∞

–∞

[
λ
∣∣ψx(x, t)

∣∣ + i
(
ψ̄(x, t)ψx(x, t) – ψ(x, t)ψ̄x(x, t)

)
+ λ

∣∣ψ(x, t)
∣∣]dx. ()

Due to the exponential decay of the bright soliton solution [] when |x| → ∞, the con-
served quantities ()-() are well defined. By substituting the bright soliton solution ()
into the conserved quantities ()-(), we obtain

I =
β

λc
, I =

β

λc
, I =

A

β

(
λA + c

)
,

I =
A

b
(
c + β + λcA + λA).

The conserved quantities ()-() using dark soliton solution () are not well defined []
due the nonzero boundary condition as |x| → ∞. To overcome this difficulty, we present a
Robin-type boundary condition [], which will lead us to a modified form of the conserved
I(t) which is conserved exactly as we will see in the Numerical results section.

By assuming ψ(x, t) = u(x, t)+ iv(x, t), where u(x, t), v(x, t) are real functions, CNLS equa-
tion () can be written as the nonlinear coupled system [–] as follows:

∂u
∂t

+



∂v
∂x + λ

(
u

∂v
∂x

– v
∂u
∂x

)
v = , ()

∂v
∂t

–



∂u
∂x – λ

(
u

∂v
∂x

– v
∂u
∂x

)
u = . ()

The resulting system ()-() can be displayed in a matrix vector form as

∂w
∂t

+



A
∂w
∂x + G(w)Aw = , ()

where

w =

[
u
v

]
, A =

(
 

– 

)
, G(w) = λ

(
u

∂v
∂x

– v
∂u
∂x

)
. ()
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There are many theoretical and numerical studies in the literature about the nonlinear
Schrödinger equations (NLS). Most of these works are motivated to study single NLS and
coupled NLS (see [–] and references therein). However, to the authors’ knowledge, there
are few numerical studies for the CNLS equation. In this paper we have derived three
conservative finite difference schemes for the CNLS equation. The paper is organized as
follows. In Section , three conservative schemes are proposed for the numerical solution
of the chiral NLS. In Section , theoretical and numerical conservation properties are
proved. Accuracy of the proposed schemes is studied in Section . Stability analysis is
given in Section . Numerical results are presented in Section . Finally, some conclusions
are drawn in Section .

2 Numerical methods
We will consider the numerical solution of the nonlinear system ()-() in a finite interval
[xL, xR]. We assume xm = xL + mh, where m = , , . . . , M – , and h is called the space grid
size, also we assume tn = nk, k is the time step size. We denote the exact and numerical
solutions at the grid point (xm, tn) by wn

m and Wn
m, respectively. In this work we will present

the following numerical schemes for solving ().

2.1 Scheme 1 (nonlinear implicit scheme)
In this scheme, we will use Crank Nicholson like approach [, , ]. The scheme we pro-
pose can be given as

Wn+
m – Wn

m
k

+



Aδ
x

[
Wn+

m + Wn
m

h

]

+
{

G(Wn+
m ) + G(Wn

m)


}
A

[
Wn+

m + Wn
m



]
= , m = , , . . . , M – . ()

The scheme in () is a nonlinear implicit difference scheme. This will lead us to a block
nonlinear tridiagonal system. This system can be solved by using any iterative method
such as Newton’s method or fixed point method. In this work we adopt the latter. The
fixed point iterative method we used to solve () can be displayed as

Wn+,(s+)
m – Wn

m
k

+



Aδ
x

[
Wn+,(s+)

m + Wn
m

h

]

+
{

G(Wn+,(s)
m ) + G(Wn

m)


}
A

[
Wn+,(s+)

m + Wn
m



]
= , m = , , . . . , M –  ()

for s = , , . . . , where the initial approximation is taken as Wn+,() = Wn. In each iteration,
a block tridiagonal system is solved by Crout’s method. The iteration continues until the
condition

∥∥Wn+,(s+)
m – Wn,(s)

m
∥∥ ≤ –

is satisfied, and the value W n+,(s+)
m is used as W n+

m . The iteration procedure is repeated at
each time level. The scheme conserves the discrete analog of the conserved quantity ().
The scheme is of second order accuracy in time and space, and it is unconditionally stable.
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2.2 Scheme 2 (linearly implicit scheme)
The second scheme we present in this work is the three time level scheme [–, ]

Wn+
m – Wn–

m
k

+



Aδ
x

[
Wn+

m + Wn–
m

h

]

+ G
(
Wn

m
)
A

[
Wn+

m + Wn–
m



]
= , ()

where

G
(
Wn

m
)

= λ

[
Un

m
(V n

m+ – V n
m–)

h
– V n

m
(Un

m+ – Un
m–)

h

]
, ()

δ
x Wn

m = Wn
m+ – Wn

m + Wn
m–. ()

On expansion of the central difference operator, one can end with the following equation:

pAWn+
m– +

(
I – pA + kG

(
Wn

m
)
A

)
Wn+

m + pAWn+
m+

= –pAWn–
m– +

(
I + pA – kG

(
Wn

m
)
A

)
Wn–

m – pAWn–
m+, ()

p = k
h . The proposed scheme () forms a block linear tridiagonal system in the unknown

vector Wn+ and can be solved directly using Crout’s method. The scheme conserves the
discrete analog of the conserved quantity (). The scheme is of second order accuracy in
time and space, it is unconditionally stable according to von Neumann stability analysis.
In order to start the iteration in this scheme, we need the solution at t =  and t = k, this
can be easily obtained from the initial condition for t =  and any two-level scheme, like
Scheme  for t = k.

2.3 Scheme 3 (linearly implicit scheme 3)
In order to overcome the difficulty of solving the nonlinear block tridiagonal system ob-
tained in Scheme , we present the linearized implicit scheme []

Wn+
m – Wn

m
k

+



Aδ
x

[
Wn+

m + Wn
m

h

]

+
{

G(Wn
m) – G(Wn–

m )


}
A

[
Wn+

m + Wn
m



]
= , ()

where

G
(
Wn

m
)

= λ

[
Un

m
(V n

m+ – V n
m–)

h
– V n

m
(Un

m+ – Un
m–)

h

]
, ()

where G(w) is approximated by the extrapolation formula G(Wn
m)–G(Wn–

m )
 .

The resulting system in () and () is a linear block tridiagonal system for the unknown
numerical solution Wn+, which can be easily solved by Crout’s method. The scheme con-
serves the discrete analog of the conserved quantity (). The accuracy of Scheme  is of
second order in time and space, it is unconditionally stable according to the von Neu-
mann stability analysis. The scheme is a three-level scheme and the solutions at t =  and
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t = k are required in order to get the solution at t = nk, n = , , . . . , the same procedure in
Scheme  can be adopted.

3 Conserved quantity
To prove that the decomposed system

∂u
∂t

+



∂v
∂x + λ

(
u

∂v
∂x

– v
∂u
∂x

)
v = , ()

∂v
∂t

–



∂u
∂x – λ

(
u

∂v
∂x

– v
∂u
∂x

)
u =  ()

satisfies the conserved quantity (), we multiply Eq. () and Eq. () by u and v, re-
spectively, this will lead us to the following system:

u
∂u
∂t

+ u
∂v
∂x + λ

(
u

∂v
∂x

– v
∂u
∂x

)
uv = , ()

v
∂v
∂t

– v
∂u
∂x – λ

(
u

∂v
∂x

– v
∂u
∂x

)
uv = . ()

Adding () and () will lead us, after some manipulation, to the following equation:

∂

∂t
(
u + v) +

∂

∂x
(uvx – vux) = . ()

By integrating () with respect to x, we get

∂

∂t

∫ ∞

–∞

(
u + v)dx + (uvx – vux)|∞–∞ = . ()

By imposing the vanishing boundary conditions, Eq. () will be reduced to

∫ ∞

–∞

(
u + v)dx = constant,

which is Eq. ().
To prove that the proposed schemes preserve the discrete analog of invariant (), we

need the following lemma [, ].

Lemma  For any two discrete functions {um|m = , , . . . , M} and {vm|m = , , . . . , M},
there is the identity

M–∑
m=

um(vm)xx = –
M–∑
m=

(um)x(vm)x – u(v)x + uM(vM)x̄,

where

(um)xx =


h (um+ – um + um–),

(um)x =

h

(um+ – um), (um)x̄ =

h

(um – um–).
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We start with Scheme . To prove that Scheme  preserves the discrete analog of invari-
ant (), we rewrite () in a component-wise form as

Un+
m – Un

m
k

+


δ

x

[
V n+

m + V n
m

h

]

+
[

G(Wn+
m ) + G(Wn

m)


][
V n+

m + V n
m



]
=  ()

and

V n+
m – V n

m
k

–


δ

x

[
Un+

m + Un
m

h

]

–
[

G(Wn+
m ) + G(Wn

m)


][
Un+

m + Un
m



]
= . ()

By multiplying () by (Un+
m + Un

m) and () by (V n+
m + V n

m) and by adding the resulting
equations, we obtain


k

M–∑
m=

{[
U + V ]n+

m –
[
U + V ]n

m

}
= 

or

M–∑
m=

[
U + V ]n+

m =
M–∑
m=

[
U + V ]n

m,

which is the discrete analog of the conserved quantity ().
To prove that Scheme  preserves the discrete analog of invariant (), we adopt the same

procedure as above and write Scheme  in a component-wise form as follows:

Un+
m – Un

m
k

+


δ

x

[
V n+

m + V n–
m

h

]
+ G

(
Wn

m
)[V n+

m + V n–
m



]
= , ()

V n+
m – V n–

m
k

– δ
x

[
Un+

m + Un–
m

h

]
– G

(
Wn

m
)[Un+

m + Un–
m



]
= . ()

By multiplying () by (Un+
m + Un–

m ) and () by (V n+
m + V n–

m ) and adding the resulting
equations, we get


k

M–∑
m=

{[
U + V ]n+

m –
[
U + V ]n–

m

}
= 

or

M–∑
m=

[
U + V ]n+

m =
M–∑
m=

[
U + V ]n–

m ,

which is the discrete analog of ().
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Finally, to prove the conservation property of Scheme , we again write the scheme in a
component-wise form as

Un+
m – Un

m
k

+


δ

x

[
V n+

m + V n
m

h

]

+
{

G(Wn
m) – G(Wn–

m )


}[
V n+

m + V n
m



]
= , ()

V n+
m – V n

m
k

–


δ

x

[
Un+

m + Un
m

h

]

–
{

G(Wn
m) – G(Wn–

m )


}[
Un+

m + Un
m



]
= . ()

Now by multiplying () by (Un+
m + Un

m) and () by (V n+
m + V n

m) and by addition and
taking the summation, we end with


k

M–∑
m=

{[
U + V ]n+

m –
[
U + V ]n

m

}
= ,

and this gives

M–∑
m=

[
U + V ]n+

m =
M–∑
m=

[
U + V ]n

m,

which is the discrete analog of (). This is a good indication that all schemes will not blow
up for long time integration.

4 Accuracy of Scheme 2
To study the accuracy of the proposed schemes, we study the accuracy of Scheme . The
same procedure can be adopted for the other schemes. We start by replacing the numerical
solution Wn

m by the exact solution wn
m in () to get


k

(
wn+

m – wn–
m

)
+


h A

[
w∗

m+ – w∗
m + w∗

m–
]

+ G
(
wn

m
)
Aw∗

m = , ()

where

w∗
m =

wn+
m + wn–

m


.

Taylor’s series expansions of all terms in () about the grid point (xm, tn) can be given as
follows:

wn+
m – wn–

m
k

=
∂w
∂t

+
k


∂w
∂t +

k


∂w
∂t + · · · , ()


h

[
w∗

m+ – w∗
m + w∗

m–
]

=
∂w
∂x +

h


∂w
∂x +

k


∂w

∂x∂t + · · · , ()

w∗ =
wn+

m + wn–
m


= w +

k


∂w
∂t + · · · , ()

G
(
wn

m
)

= G
(
wn

m
)

+
h


∂G
∂x + · · · .
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Substituting ()-() into Eq. () will lead us to the local truncation error (LTE)

LTE =
[

∂w
∂t

+



A
∂w
∂x + G(w)Aw

]

+
k


∂w
∂t +

h


A

∂w
∂x +

k


G(w)A

∂w
∂t + · · · . ()

The first quantity in the right-hand side of Eq. () is zero by the differential system
under consideration, which means that Scheme  is of second order in space and time.
Similar analysis can be done for the other schemes.

5 Stability of the proposed schemes
Von Neumann stability analysis is used to study the stability of the proposed schemes.
This method is only applicable for linear schemes. To apply this method, we assume that

Un
m = Ueiβmh, i =

√
–, ()

where β ∈ R, U ∈ R
 is substituted into the difference equation for Un

m, it is found that
Un+

m is of the same form with GU replacing U. The matrix G is called the amplification
matrix. To apply von Neumann stability analysis, we will consider the linearized form of
the proposed system

∂u
∂t

+



A
∂u
∂x + αAu = , ()

where α is constant. The linearized version of Scheme  for () is

(
Un+

m – Un
m
)

+



rAδ
x
(
Un+

m + Un
m
)

+



kαA
(
Un+

m + Un
m
)

= . ()

By substituting () into (), we get after some manipulation the amplification matrix
G, which is given implicitly by

[G – I] –
(

rμA –
k

αA

)
[G + I] = , ()

where

μ = sin βh


.

Equation () can be written as

[I – ωA]G – [I + ωA] = , ()

and this gives us

G = [I – ωA]–[I + ωA] = , ()

where ω = μ – k
α.
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The von Neumann necessary condition for the stability of a system is

max
j

|λj| ≤ , j = , ,

where λj are the eigenvalues of G. The eigenvalues of the amplification matrix G are

λ =
 + iω
 – iω

,

λ =
 + iω
 – iω

,

the modulus of these eigenvalues is equal to . This means that Scheme  is unconditionally
stable, which means that it is stable for all values of k and h, but these values should be
small in order to get accurate results. The same analysis can be applied for Schemes 
and .

6 Numerical results
In this section, we will test the efficiency of the numerical schemes presented in this work,
by considering different numerical tests. Trapezoidal rule is used to calculate the con-
served quantities.

6.1 Bright soliton solution
To study the behavior of a single bright soliton solution, we choose the initial condition

ψ(x, ) = A sech(βx) exp(ivx)

and the homogenous Dirichlet boundary conditions ψ(x, ) =  at x = xL, xR. The following
set of parameters is used:

xL = –, xR = ., h = ., k = .,

A = ., λ = ., v = ., t = , , , . . . , .

Tables - display the errors and the conserved quantities for our proposed schemes.
It is very easy to see that the results are almost identical. Those numerical data support
the theoretical calculations that all schemes preserve the invariant I. Moreover, we see
that all schemes preserve the other invariants quite well. In Figure , we display the mod-
ulus of the numerical solution. We have noticed that the cpu time required for producing
the results in Table , Table  and Table  is, respectively, ., . and . sec-
onds.

Table 1 Conserved quantities (Scheme 1: bright soliton, A = 0.5, λ = 0.5, v = 0.5)

t I1 I2 I3 I4 L∞ L2

0 1.414214 1.413993 2.945836 3.045932 - -
5 1.414214 1.413988 2.945829 3.045923 0.00034 0.00202
10 1.414214 1.413975 2.945808 3.045898 0.00082 0.00458
15 1.414214 1.413948 2.945761 3.045846 0.00198 0.01076
20 1.414214 1.413842 2.945560 3.045636 0.00480 0.02581
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Table 2 Conserved quantities (Scheme 2: bright soliton, A = 0.5, λ = 0.5, v = 0.5)

t I1 I2 I3 I4 L∞ L2

0 1.414214 1.413993 2.945836 3.045932 - -
5 1.414214 1.413987 2.945828 3.045922 0.00034 0.00202
10 1.414214 1.413974 2.945806 3.045896 0.00082 0.00458
15 1.414214 1.413946 2.945758 3.045843 0.00198 0.01076
20 1.414214 1.413840 2.945557 3.045633 0.00480 0.02582

Table 3 Conserved quantities (Scheme 3: bright soliton, A = 0.5, λ = 0.5, v = 0.5)

t I1 I2 I3 I4 L∞ L2

0 1.414214 1.413993 2.945836 3.045932 - -
5 1.414214 1.413987 2.945828 3.045923 0.00034 0.00203
10 1.414214 1.413974 2.945807 3.045898 0.00082 0.00460
15 1.414214 1.413947 2.945759 3.045846 0.00198 0.01077
20 1.414214 1.413841 2.945558 3.045636 0.00480 0.02582

Figure 1 Bright soliton.

6.2 Dark soliton solution
To study the behavior of a dark soliton solution, we choose the initial condition

ψ(x, ) = A tanh(βx) exp(icx), xL < x < xR ()

together with the boundary conditions []

ψx(xL, t) – icψ(xL, t) = , ψx(xL, t) – icψ(xL, t) = , t > . ()

By using (), we can define the modified conserved quantity of I(t) as

I(t) =
∫ xR

xL

∣∣ψ(x, t)
∣∣ dx + c

∫ t



[∣∣ψ(xR, t)
∣∣ –

∣∣ψ(xL, t)
∣∣]dt, t ≥ , ()

where the proof is given in the Appendix.
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Table 4 Dark soliton (Scheme 1)

t L∞ L2 I11 (47)

0 0.000000 0.000000 11.085787
5 0.000103 0.001784 11.085787
10 0.000202 0.003501 11.085787
15 0.000280 0.005152 11.085787
20 0.000348 0.006745 11.085787

Table 5 Dark soliton (Scheme 2)

t L∞ L2 I11 (47)

0 0.000000 0.000000 11.085787
5 0.000103 0.001785 11.085787
10 0.000202 0.003502 11.085787
15 0.000280 0.005153 11.085787
20 0.000348 0.006746 11.085787

Table 6 Dark soliton (Scheme 3)

t L∞ L2 I11 (47)

0 0.000000 0.000000 11.085787
5 0.000103 0.001784 11.085787
10 0.000202 0.003501 11.085787
15 0.000280 0.005152 11.085787
20 0.000348 0.006745 11.085787

The following parameters are used in this test:

xL = –, xR = ., h = ., k = .,

A = ., λ = ., c = –., t = , , , . . . , .

The L∞, L error norms and the modified conserved quantity I are calculated for
Scheme , Scheme  and Scheme  and are displayed in Tables , , and , respectively. It is
very clear that the results of the schemes are almost identical and conserved () exactly.
The cpu time required to produce Tables ,  and  is ., . and . seconds,
respectively; we have noticed that Scheme  is expensive and requires double of the time
required for Schemes  and . In Figure , we display the numerical solution of the dark
soliton solution at t = , , , . . . , .

6.3 Interaction of two bright solitons
To study the interaction of two bright solitons, we choose the initial condition as

ψ(x, ) = ψ(x, ) + ψ(x, ),

where

ψ(x, ) = A sech
(
β(x + x)

)
exp(ivx),

ψ(x, ) = A sech
(
β(x – x)

)
exp(ivx),
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Figure 2 Dark soliton (single).

Table 7 Interaction of two bright solitons for CNLS

t I1 I2 I3 I4

0 5.164771 4.618162 10.169401 10.881909
10 5.164771 4.637349 10.198182 10.913261
40 5.164771 4.618895 10.171440 10.832564
80 5.164771 4.509860 10.007217 10.720618
100 5.164770 4.630145 10.186358 10.913433
120 5.164770 4.511656 9.988027 10.704388
140 5.164770 4.566811 10.079556 10.796694
150 5.164769 4.574081 10.092399 10.811464

where x is chosen such that the two bright solitons are initially centered at x = ±x and
well separated. In this test we use Scheme  and the following parameters are selected:

h = ., k = ., xL = –, x = , A = .,

v = ., A = ., v = ., λ = ., t = , , , . . . , .

The conserved quantities at different time during the interaction scenario are given in
Table , it is very clear that the conserved quantity I is exactly conserved. In Figure ,
we display the interaction scenario of the two bright solitons. We have noticed that the
two solitons approach each other, interact and leave the interaction region unchanged in
shape.

7 Conclusion
In this work we have solved the chiral nonlinear Schrödinger equation numerically by
deriving three different finite difference schemes. In Scheme , we derived a nonlinear im-
plicit scheme, we have used a fixed point iterative method to solve the nonlinear block
tridiagonal system obtained. In Schemes  and , we have derived two linearly implicit fi-
nite difference schemes. Crout’s method is used to solve the resulting linear block tridiag-
onal system. All numerical schemes we have derived in this work conserve the energy, and
this indicates that no blow-up is expected during the simulation, and hence all schemes
are stable. Concerning the accuracy, the proposed schemes all are of second order accu-
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Figure 3 Interaction of two bright solitons.

racy in both time and space directions. The linearized schemes, Scheme  and Scheme ,
are more efficient than Scheme  regarding the issue of the cpu execution time required.

Appendix
To prove the modified conserved quantity

I(t) =
∫ xR

xL

∣∣ψ(x, t)
∣∣ dx + c

∫ t



[∣∣ψ(xR, t)
∣∣ –

∣∣ψ(xL, t)
∣∣]dt, t ≥ , ()

we differentiate () with respect to t to get

∂

∂t
I(t) =

∫ xR

xL

(uut + vvt) dx

+ c
{[

u(xR, t) + v(xR, t)
]

–
[
u(xL, t) + v(xL, t)

]}
, t ≥ . ()

Now by integration by parts of () and making use of the differential system

∂u
∂t

+



∂v
∂x + λ

(
u

∂v
∂x

– v
∂u
∂x

)
v = , ()

∂v
∂t

–



∂u
∂x – λ

(
u

∂v
∂x

– v
∂u
∂x

)
u = , ()

together with the boundary conditions

ψx(xL, t) – icψ(xL, t) = , ψx(xL, t) – icψ(xL, t) = , t > ,

we get after some manipulation

∂

∂t
I(t) = , t > ,

which implies the conservation of the modified conserved quantity I(t).
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