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Abstract
In this paper, we deal with the second-order Hamiltonian system

(∗) ü – L(t)u +∇W(t,u) = 0.

We establish some criteria which guarantee that the above system has at least one or
infinitely many homoclinic solutions under the assumption thatW(t, x) is
subquadratic at infinity and L(t) is a real symmetric matrix and satisfies

lim inf|t|→+∞

[
|t|ν–2 inf|x|=1(L(t)x, x)

]
> 0

for some constant ν < 2. In particular, L(t) andW(t, x) are allowed to be sign-changing.
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1 Introduction
Consider the second-order Hamiltonian system

ü – L(t)u + ∇W (t, u) = , (.)

where t ∈ R, u ∈R
N , L ∈ C(R,RN×N ) is a symmetric matrix-valued function, W ∈ C(R×

R
N ,R) and ∇W (t, x) = ∇xW (t, x). As usual [], we say that a solution u(t) of system (.)

is homoclinic (to ) if u(t) →  as t → ±∞. In addition, if u(t) �≡  then u(t) is called a
nontrivial homoclinic solution.

The existence and multiplicity of nontrivial homoclinic solutions for problem (.) have
been extensively investigated in the literature with the aid of critical point theory and vari-
ational methods (see, for example, [–]). Most of them treat the case where W (t, x) is
superquadratic as |x| → ∞.

Compared to the superquadratic case, as far as the authors are aware, there are a few
papers [–] concerning the case where W (t, x) has subquadratic growth at infinity. In
these papers, since L(t) is positive definite, the energy functional associated with system
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(.) is bounded from below, techniques based on the genus properties have been well
applied. In particular, Clark’s theorem is an effective tool to prove the existence and mul-
tiplicity of homoclinic solutions for system (.). However, if L(t) is not global positive
definite on R, the problem is far more difficult as  is a saddle point rather than a local
minimum of the energy functional, which is strongly indefinite and it is not easy to prove
the boundedness of the Palais-Smale sequence.

In [], Ding studied the existence of homoclinic solutions of system (.) under the case
when L(t) is not global positive definite on R and W (t, x) is subquadratic at infinity. He
obtained the following result.

Theorem A ([]) Assume that L and W satisfy the following conditions:
(A) There exists a constant ν <  such that

|t|ν– inf|x|=

(
L(t)x, x

) → +∞ as |t| → +∞;

(A)  < inft∈R,|x|= W (t, x) ≤ supt∈R,|x|= W (t, x) < +∞;
(A) There exists a constant μ with  < μ ∈ (( – ν)/( – ν), ) such that

 <
(∇W (t, x), x

) ≤ μW (t, x), ∀(t, x) ∈R×R
N \ {};

(A) There exist three constants a, r >  and  < μ ∈ (/( – ν),μ] such that

W (t, x) ≥ a|x|μ , ∀(t, x) ∈R×R
N , |x| ≥ r;

(A) W (t, ) ≡  and there exist three constants a, r >  and  < μ ∈ (/( – ν),μ]
such that

∣∣∇W (t, x)
∣∣ ≤ a|x|μ–, ∀(t, x) ∈R×R

N , |x| ≤ r.

Then system (.) has at least one nontrivial homoclinic solution. Moreover, if W (t, x) is
also even with respect to x, then system (.) has infinitely many homoclinic solutions.

In Theorem A, assumptions (A)-(A) imply that there exist positive constants a∗, a∗,
b∗ and b∗ such that

b∗|x|μ ≤ W (t, x) ≤ a∗|x|μ , ∀(t, x) ∈R×R
N , |x| ≤ , (.)

a∗|x|μ ≤ W (t, x) ≤ b∗|x|μ, ∀(t, x) ∈R×R
N , |x| ≥ . (.)

However, there are many potential functions W (t, x) satisfying (.) and (.), but not (A).
For example W (t, x) = ( + sin t)(|x|/ – |x|/ + |x|/) is such a potential function. In
particular, Theorem A is only applicable when the potential W (t, x) is positive definite.

In the present paper, we will use new tricks to generalize and improve Theorem A. For
example, we can replace (A) by a weaker one (Lν ):

(Lν ) There exists a constant ν <  such that

lim inf|t|→+∞

[
|t|ν– inf|x|=

(
L(t)x, x

)]
> .
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We also relax (A) and (A) in Theorem A to two of the following weaker assumptions:

(W) There exist constants b, b >  and max{, /( – ν)} < γ ≤ γ <  such that

W (t, x) –
(∇W (t, x), x

) ≥
{

b|x|γ , |x| ≤ ,
b|x|γ , |x| ≥ ,

∀(t, x) ∈R×R
N ;

(W) There exist constants b, b >  and max{, /( – ν)} < γ ≤ γ <  such that

W (t, x) ≥
{

b|x|γ , |x| ≤ ,
b|x|γ , |x| ≥ ,

∀(t, x) ∈R×R
N ;

(W′) There exist constants b > , b ≥  and max{, /( – ν)} < γ < γ <  such that

W (t, x) –
(∇W (t, x), x

) ≥ b|x|γ – b|x|γ , ∀(t, x) ∈R×R
N ;

(W′) There exist constants b > , b ≥  and max{, /( – ν)} < γ < γ < 

W (t, x) ≥ b|x|γ – b|x|γ , ∀(t, x) ∈ R×R
N ;

(W′′) lim|x|→
W (t,x)
|x| = ∞ uniformly in t ∈R.

Our main results are the following four theorems.

Theorem . Assume that L and W satisfy (Lν ), (W), (W) and the following conditions:
(W) There exist constants max{, /( – ν)} < γ < γ <  and a, a ≥  such that

∣∣W (t, x)
∣∣ ≤ a|x|γ + a|x|γ , ∀(t, x) ∈R×R

N ;

(W) There exists a function ϕ ∈ C([, +∞), [, +∞)) such that

∣∣∇W (t, x)
∣∣ ≤ ϕ

(|x|), ∀(t, x) ∈R×R
N ,

where ϕ(s) = O(sγ–) as s → +, max{, /( – ν)} < γ < .
Then system (.) possesses at least one nontrivial homoclinic solution.

Theorem . Assume that L and W satisfy (Lν ), (W), (W), (W), (W) and the following
condition:

(W) W (t, –x) = W (t, x), ∀(t, x) ∈R×R
N .

Then system (.) possesses infinitely many nontrivial homoclinic solutions.

Theorem . Assume that L and W satisfy (Lν ), (W), (W), (W′) and (W). Then sys-
tem (.) possesses at least one nontrivial homoclinic solution.

Theorem . Assume that L and W satisfy (Lν ), (W), (W), (W′), (W′) and (W).
Then system (.) possesses infinitely many nontrivial homoclinic solutions.

Corollary . The conclusion of Theorem . also holds if (W′) is replaced by (W′′).
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Remark . Our results can be applied to the following potential functions:

W (t, x) =
(
 + sin t

)(|x|/ – |x|/ + |x|/) (.)

and

W (t, x) = d|x|τ –
m–∑
i=

di|x|τi + dm|x|τm , (.)

where m ≥ ,  < τ < τ < · · · < τm <  and di >  for i = , , . . . , m. Note that the above
potential functions are with indefinite signs, and hence Theorem A is not applicable. See
Examples . and . in Section .

The remainder of this paper is organized as follows. In Section , we first define a Hilbert
space E and describe its space structure. Then we state the critical point theorems needed
for the proofs of our main results. The proofs of our main results are given in Section .
Some examples to illustrate our results are given in Section .

Throughout this paper, we denote the norm of Lp(R,RN ) by ‖u‖p = (
∫
R

|u|s dt)/p for
p ≥ , and positive constants, possibly different in different places, by C, C, . . . .

2 Preliminaries
In this section, we first make the following weaker assumption on L(t):

(L) The smallest eigenvalue of L(t) → +∞ as |t| → +∞, i.e.,

lim|t|→+∞

[
inf|x|=

(
L(t)x, x

)]
= +∞.

In order to establish our existence results via the critical point theory, we first describe
some properties of the space on which the variational functional associated with (.) is
defined.

In what follows L(t) is assumed to satisfy assumption (L). We denote by IN the identity
matrix of order N , I the identity operator. Let {E(λ) : –∞ < λ < +∞} and |A| be the spectral
family and the absolute value of A, respectively, and |A|/ be the square root of |A|. Set
U = I –E() –E(–). Then U commutes with A, |A| and |A|/, and A = U|A| is the polar
decomposition of A (see [, ]). Let E = D(|A|/), the domain of |A|/, and define on
E the inner product

(u, v) =
(|A|/u, |A|/v

)
 + (u, v), ∀u, v ∈ E

and the norm

‖u‖ =
√

(u, u), ∀u ∈ E,

where, as usual, (·, ·) denotes the inner product of L. Then E is a Hilbert space. Clearly,
C∞

 ≡ C∞
 (R,RN ) is dense in E.

By (L), L(t) is bounded from below and so there is l >  such that

l(t) + l ≥ , ∀t ∈R, (.)
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where, and in the sequel,

l(t) = inf
x∈RN ,|x|=

(
L(t)x, x

)
. (.)

Set

E∗ =
{

u ∈ W ,(
R,RN)

:
∫

R

[|u̇| +
((

L(s) + lIN
)
u, u

)]
ds < +∞

}
,

(u, v)∗ =
∫

R

[
(u̇, v̇) +

((
L(s) + lIN

)
u, v

)]
ds, ∀u, v ∈ E∗

and

‖u‖∗ =
{∫

R

[|u̇| +
((

L(s) + lIN
)
u, u

)]
ds

}/

, ∀u ∈ E∗.

Then E∗ is also a Hilbert space with the above inner product (·, ·)∗ and the norm ‖ · ‖∗.

Lemma . ([]) For u ∈ E∗,

‖u‖∞ ≤ √

‖u‖∗ =

√


{∫

R

[|u̇| +
((

L(s) + lIN
)
u, u

)]
ds

}/

, (.)

∣∣u(t)
∣∣ ≤

{∫ ∞

t

√
l(s) + l

[|u̇| +
((

L(s) + lIN
)
u, u

)]
ds

}/

, ∀t ∈R (.)

and

∣∣u(t)
∣∣ ≤

{∫ t

–∞
√

l(s) + l

[|u̇| +
((

L(s) + lIN
)
u, u

)]
ds

}/

, ∀t ∈R. (.)

Lemma . Suppose that L(t) satisfies (L). Then E is compactly embedded in Lp(R,RN )
for  ≤ p ≤ ∞, and

‖u‖p
p ≤ (–p)/‖u‖p

∗,
∫

|t|>T

∣∣u(t)
∣∣p dt ≤ (–p)/

min|s|≥T [l(s) + l]
‖u‖p

∗, ∀T > . (.)

Proof In fact, the first part of Lemma . was proved in []. Here, we give the proof of
the second part. From (.), (.) and (.), we have

‖u‖p
p ≤ ‖u‖p–

∞

∫

R

∣∣u(t)
∣∣ dt ≤ ‖u‖p–

∞

∫

R

((
L(t) + lIN

)
u, u

)
dt ≤ (–p)/‖u‖p

∗ (.)

and
∫

|t|>T

∣∣u(t)
∣∣p dt ≤ ‖u‖p–

∞

∫

|t|>T

∣∣u(t)
∣∣ dt

≤ ‖u‖p–
∞

∫

|t|>T

((L(t) + lIN )u, u)
l(t) + l

dt

≤ ‖u‖p–
∞

min|s|≥T [l(s) + l]
‖u‖

∗ ≤ (–p)/

min|s|≥T [l(s) + l]
‖u‖p

∗. �
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By (L), there exists a constant α ∈R such that

(
L(t)x, x

)
> α|x|, ∀x ∈R

N \ {}. (.)

Analogous to the proof of [], Lemma ., we can prove the following lemma by using
Lemma ..

Lemma . Suppose that L(t) satisfies (L). Let

E– = E(–)E, E =
[
E() – E(–)

]
E, E+ =

[
E(+∞) – E()

]
E. (.)

Then E = E– ⊕E ⊕E+, and E–, E and E+ are orthogonal with respect to the inner products
(·, ·) and (·, ·) on E. Furthermore, the following hold:

dim
(
E(M)E

)
< +∞, ∀M ≥ , (.)

E = Ker(A), Au– = –|A|u–, Au+ = |A|u+, ∀u ∈D(A) (.)

and

u = u– + u + u+, ∀u ∈ E, (.)

where

u– = E(–)u ∈ E–, u =
[
E() – E(–)

]
u ∈ E,

u+ =
[
E(+∞) – E()

]
u ∈ E+.

(.)

In view of Lemma ., we introduce on E the following inner product:

(u, v) =
(|A|/u, |A|/v

)
 +

(
u, v)



and the norm

‖u‖ = (u, u) =
∥∥|A|/u

∥∥
 +

∥∥u∥∥
,

where u = u– + u + u+, v = v– + v + v+ ∈ E– ⊕ E ⊕ E+ = E. Then it is easy to check the
following lemma.

Lemma . Suppose that L(t) satisfies (L). Then E–, E and E+ are orthogonal with respect
to the inner product (·, ·) on E.

Analogous to the proof of [], Lemma ., Lemma ., we can prove the following
lemma.

Lemma . Suppose that L(t) satisfies (L). Then the norms ‖ · ‖, ‖ · ‖∗ and ‖ · ‖ on E are
equivalent. Hence, there exists β >  such that

‖u‖∗ ≤ β‖u‖, ∀u ∈ E. (.)
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By virtue of (Lν ), there exist two constants T >  and M >  such that

|t|ν–l(t) = |t|ν– inf|x|=

(
L(t)x, x

) ≥ M, ∀|t| ≥ T,

which implies

|t|ν–(L(t)x, x
) ≥ M|x|, ∀|t| ≥ T, x ∈R

N . (.)

Lemma . Suppose that L(t) satisfies (Lν ). Then, for  ≤ p ∈ (/( – ν), ), E is compactly
embedded in Lp(R,RN ); moreover,

∫

|t|≥T

∣∣u(t)
∣∣p dt ≤ K(p)

Tκ
‖u‖p

∗, ∀u ∈ E, T ≥ T (.)

and

‖u‖p
p ≤

[(∫

|t|≤T

[
l(t) + l

]–p/(–p) dt
)– p


+

K(p)
Tκ

]
‖u‖p

∗, ∀u ∈ E, T ≥ T, (.)

where

κ =
( – ν)p – 


> , K(p) =

[
( – p)

( – ν)p – 

]– p


M–p/
 . (.)

Proof For  ≤ p ∈ (/( – ν), ), we set r = [( – ν)p – ]/( – p). Then r > . For u ∈ E and
T ≥ T, it follows from (.) and the Hölder inequality that

∫

|t|≥T

∣∣u(t)
∣∣p dt ≤

(∫

|t|≥T
|t|–(–ν)p/(–p) dt

)– p

(∫

|t|≥T
|t|–ν

∣∣u(t)
∣∣ dt

) p


≤
(


rTr

)– p

[


M

∫

|t|≥T

(
L(t)u(t), u(t)

)
dt

] p


≤ (–p)/

Mp/
 r(–p)/Tκ

‖u‖p
∗ =

K(p)
Tκ

‖u‖p
∗.

From (.) and (.), one has

‖u‖p
p =

∫

|t|≤T

∣∣u(t)
∣∣p dt +

∫

|t|>T

∣∣u(t)
∣∣p dt

≤
(∫

|t|≤T

[
l(t) + l

]–p/(–p) dt
)– p


(∫

|t|≤T

[
l(t) + l

]∣∣u(t)
∣∣ dt

) p


+
K(p)
Tκ

‖u‖p
∗

≤
(∫

|t|≤T

[
l(t) + l

]–p/(–p) dt
)– p

 ‖u‖p
∗ +

K(p)
Tκ

‖u‖p
∗.

For  ≤ p ∈ (/( – ν), ), applying (.), we can prove that E is compactly embedded in
Lp(R,RN ) by a standard argument. �

Lemma . ([]) Let X be real Banach space, Q and S be two closed subsets of X, and S
and ∂Q link. Suppose that f ∈ C(X,R) satisfy the (PS)-condition, and that
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(i) there exist two constants η > ζ such that supx∈∂Q f (x) ≤ ζ < η ≤ infx∈S f (x);
(ii) supx∈Q f (x) < +∞.

Then f possesses a critical value c ≥ η.

Lemma . ([], Lemma .) Let X be an infinite dimensional Banach space and f ∈
C(X,R) be even, satisfy the (PS)-condition, and f () = . If X = X ⊕ X, where X is finite
dimensional, and f satisfies

(i) f is bounded from below on X;
(ii) for each finite dimensional subspace X̃ ⊂ X , there are positive constants ρ = ρ(X̃)

and σ = σ (X̃) such that f |Bρ∩X̃ ≤  and f |∂Bρ∩X̃ ≤ –σ , where Bρ = {x ∈ X : ‖x‖ = ρ}.
Then f possesses infinitely many nontrivial critical points.

Lemma . ([]) Let X be a real Banach space and f ∈ C(X,R) satisfy the (PS)-
condition. If f is bounded from below, then c = infX f is a critical value of f .

3 Proofs of theorems
Lemma . Assume that (Lν ) and (W) hold. Then, for u ∈ E,

∫

R

∣∣W (t, u)
∣∣dt ≤ φ(T)‖u‖γ + φ(T)‖u‖γ , T ≥ T, (.)

where

φ(T) = aβ
γ

[(∫

|t|≤T

[
l(t) + l

]–γ/(–γ) dt
)– γ


+

K(γ)
Tκ

]
, (.)

φ(T) = aβ
γ

[(∫

|t|≤T

[
l(t) + l

]–γ/(–γ) dt
)– γ


+

K(γ)
Tκ

]
(.)

and

κ =
( – ν)γ – 


, κ =

( – ν)γ – 


. (.)

Proof For T ≥ T, it follows from (.), (.), (.), (.) and (W) that

∫

R

∣∣W (t, u)
∣∣dt ≤ a

∫

R

∣∣u(t)
∣∣γ dt + a

∫

R

∣∣u(t)
∣∣γ dt

≤ a

[(∫

|t|≤T

[
l(t) + l

]–γ/(–γ) dt
)– γ


+

K(γ)
Tκ

]
‖u‖γ∗

+ a

[(∫

|t|≤T

[
l(t) + l

]–γ/(–γ) dt
)– γ


+

K(γ)
Tκ

]
‖u‖γ∗

≤ aβ
γ

[(∫

|t|≤T

[
l(t) + l

]–γ/(–γ) dt
)– γ


+

K(γ)
Tκ

]
‖u‖γ

+ aβ
γ

[(∫

|t|≤T

[
l(t) + l

]–γ/(–γ) dt
)– γ


+

K(γ)
Tκ

]
‖u‖γ

= φ(T)‖u‖γ + φ(T)‖u‖γ . �
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Analogous to the proof of [], Lemma ., we can prove the following lemma.

Lemma . Assume that (Lν ), (W) and (W) hold. Then the functional f : E →R defined
by

�(u) =


(∥∥u+∥∥ –

∥∥u–∥∥) –
∫

R

W (t, u) dt (.)

is well defined and of class C(E,R) and

〈
�′(u), v

〉
=

∥∥u+∥∥ –
∥∥u–∥∥ –

∫

R

(∇W (t, u), v
)

dt. (.)

Furthermore, the critical points of � in E are classical solutions of (.) with u(±∞) = .

Proof of Theorem . In view of Lemma ., � ∈ C(E,R). In what follows, we divide the
rest of the proof of Theorem . into four steps.

Step . � satisfies the (PS)-condition.
Assume that {un}n∈N ⊂ E is a (PS)-sequence: {�(un)}k∈N is bounded and ‖�′(un)‖ → 

as n → +∞. In the sequel we write for any u ∈ E

u(t) =

{
u(t) if |u(t)| < ,
 if |u(t)| ≥ ;

u(t) =

{
 if |u(t)| < ,
u(t) if |u(t)| ≥ .

(.)

Then, by (.), (.), (.) and (W), we get

〈
�′(un), un

〉
– �(un) =

∫

R

[
W (t, un) –

(∇W (t, un), un
)]

dt

≥ b

∫

R

∣∣u
n
∣∣γ dt + b

∫

R

∣∣u
n
∣∣γ dt

= b
∥∥u

n
∥∥γ

γ
+ b

∥∥u
n
∥∥γ

γ
.

It follows that there exists a constant C >  such that

b
∥∥u

n
∥∥γ

γ
+ b

∥∥u
n
∥∥γ

γ
≤ C

(
 + ‖un‖

)
. (.)

Since dim(E– ⊕ E) < +∞, there exists a constant C >  such that

∥∥u–
n + u

n
∥∥

 =
(
u–

n + u
n, un

)


=
(
u–

n + u
n, u

n
)

 +
(
u–

n + u
n, u

n
)



≤ ∥∥u–
n + u

n
∥∥

γ ′


∥∥u
n
∥∥

γ
+

∥∥u–
n + u

n
∥∥

γ ′


∥∥u
n
∥∥

γ

≤ C
∥∥u–

n + u
n
∥∥



(∥∥u
n
∥∥

γ
+

∥∥u
n
∥∥

γ

)
, (.)

where γ ′
 = γ/(γ – ) and γ ′

 = γ/(γ – ). Combining (.) with (.), one has

∥∥u–
n + u

n
∥∥ ≤ C

∥∥u–
n + u

n
∥∥

 ≤ C
(
 + ‖un‖/γ + ‖un‖/γ

)
. (.)
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Choose T > T, it follows from (.) that

∫

R

W (t, un) dt ≤ φ(T)‖un‖γ + φ(T)‖un‖γ . (.)

From (.), (.) and (.), we obtain

‖un‖ =
∥∥u–

n + u
n
∥∥ +

∥∥u+
n
∥∥

=
∥∥u–

n + u
n
∥∥ + �(un) +

∥∥u–
n
∥∥ + 

∫

R

W (t, un) dt

≤ C
(
 + ‖un‖/γ + ‖un‖/γ

)
+ �(un)

+ φ(T)‖un‖γ + φ(T)‖un‖γ

≤ C
(
 + ‖un‖γ + ‖un‖γ + ‖un‖/γ + ‖un‖/γ

)
. (.)

Since  < γ < γ < ,  < γ ≤ γ < , it follows from (.) that {‖un‖} is bounded, and so
{‖un‖∗} is bounded. Choose a constant � >  such that

‖un‖∞ ≤ √

‖un‖∗ ≤ �, n ∈N. (.)

Passing to a subsequence if necessary, it can be assumed that un ⇀ u in E. Hence un → u

in L∞
loc(R,RN ); moreover, it is easy to verify that {un(t)} converges to u(t) point-wise for

all t ∈R. Hence, (.) yields that ‖u‖∞ ≤ �. By (W), there exists M >  such that

∇W (t, x) ≤ M|x|γ–, ∀x ∈R
N , |x| ≤ �. (.)

For any given number ε > , we can choose T > T such that

K(γ)[(
√

�)γ + ‖u‖γ∗ ]
Tκ


< ε. (.)

Hence, from (.), (.), (.) and (.) we have that

∫

|t|>T

∣∣∇W (t, un) – ∇W (t, u)
∣∣|un – u|dt ≤ M

∫

|t|>T

(∣∣uk(t)
∣∣γ +

∣∣u(t)
∣∣γ)dt

≤ MK(γ)
Tκ



(‖uk‖γ∗ + ‖u‖γ∗
)

≤ MK(γ)
Tκ



[
(
√

�)γ + ‖u‖γ∗
]

≤ Mε, n ∈N. (.)

On the other hand, since un → u in L∞
loc(R,RN ), it follows from the continuity of ∇W (t, x)

that

∫ T

–T

∣∣∇W (t, un) – ∇W (t, u)
∣∣|un – u|dt = o(). (.)



Lin and Tang Boundary Value Problems  (2015) 2015:111 Page 11 of 17

Since ε is arbitrary, combining (.) with (.) we get

∫

R

(∇W (t, un) – ∇W (t, u), un – u
)

dt = o(). (.)

It follows from (.) that

〈
�′(un) – �′(u), un – u

〉
=

∥∥u+
n – u+


∥∥ –

∥∥u–
n – u–


∥∥

–
∫

R

(∇W (t, un) – ∇W (t, u), un – u
)

dt. (.)

Since 〈�′(un) – �′(u), un – u〉 = o(), it follows from (.) and (.) that

∥∥u+
n – u+


∥∥ –

∥∥u–
n – u–


∥∥ = o(). (.)

Since un ⇀ u in E and dim(E– ⊕ E) < +∞, it follows that

∥∥u
n – u


∥∥ +

∥∥u–
n – u–


∥∥ = o(). (.)

Combining (.) with (.), we have

‖un – u‖ =
∥∥u+

n – u+

∥∥ +

∥∥u
n – u


∥∥ +

∥∥u–
n – u–


∥∥ = o().

Hence, � satisfies the (PS)-condition.
Step . �(u) → +∞ as ‖u‖ → +∞ and u ∈ E+.
It follows from (.) that

∫

R

W (t, u) dt ≤ φ(T)‖u‖γ + φ(T)‖u‖γ , ∀u ∈ E. (.)

Hence, for u ∈ E+, it follows from (.) and (.) that

�(u) =


‖u‖ –

∫

R

W (t, u) dt

≥ 

‖u‖ – φ(T)‖u‖γ – φ(T)‖u‖γ → +∞

as ‖u‖ → +∞ and u ∈ E+, since  < γ < γ < .
Step . Taking e ∈ E+ with ‖e‖ = , there exist s ∈ (, ) and σ >  such that

�(u) ≤ –σ, ∀u ∈ Se := E– ⊕ E ⊕ se. (.)

Set X = E– ⊕ E ⊕Re. For u = u– + u + se ∈ X, by (.), (.) and (W),

�(u) =


(‖se‖ –

∥∥u–∥∥) –
∫

R

W (t, u) dt

≤ s


– b

∥∥u∥∥γ
γ

– b
∥∥u∥∥γ

γ
. (.)
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On the other hand, one sees that

s‖e‖
 = (se, se) = (se, u) =

(
se, u)

 +
(
se, u)

 ≤ |s|(‖e‖γ ′


∥∥u∥∥
γ

+ ‖e‖γ ′


∥∥u∥∥
γ

)
,

where γ ′
 = γ/(γ – ) > γ and γ ′

 = γ/(γ – ) > γ. Hence,

s ≤ C
(∥∥u∥∥

γ
+ min

{∥∥u∥∥
γ

, 
})

, ∀s ∈ (, ). (.)

Combining (.) with (.), we have

�(u) ≤ s


– b

∥∥u∥∥γ
γ

– b
∥∥u∥∥γ

γ

≤ s


– min{b, b}

[∥∥u∥∥γ
γ

+
(
min

{∥∥u∥∥
γ

, 
})γ]

≤ s


– –γ min{b, b}

[∥∥u∥∥
γ

+
(
min

{∥∥u∥∥
γ

, 
})]γ

≤ s


– –γ min{b, b}C–γ

 sγ

=
s


– Csγ , ∀u = u– + u + se ∈ X, s ∈ (, ),

which implies that there exist s ∈ (, ) and σ >  such that (.) holds.
Step . If E– ⊕E = {}, then Lemmas . and ., Steps - imply that � has a minimum

(< ) which yields a homoclinic solution for system (.).
If E– ⊕ E �= {}, by Step , one can take C >  and r > s large such that

�(u) ≥ –C, ∀u ∈ E+

and

�(u) ≥ , ∀u ∈ E+ with ‖u‖ ≥ r.

Let Q = Br ∩ E+. Since Se and ∂Q link, by Lemma ., –� has a critical point u∗ ∈ E with
�(u∗) ≤ –σ, which is a nontrivial homoclinic solution of system (.). �

Proof of Theorem . Set X = E, X = E– ⊕ E and X = E+. In view of Lemma . and
Steps  and  in the proof of Theorem ., X = X ⊕ X, dim X < +∞, � ∈ C(X,R), �

satisfies the (PS)-condition and is bounded from below on X. Obviously, (W) and (W)
imply �() =  and � is even. Next, we prove that assumption (ii) in Lemma . holds.

Let X̃ ⊂ X be any finite dimensional subspace. Then there exist constants c = c(X̃) > 
and c∗ = c(X̃) >  such that

c‖u‖ ≤ ‖u‖γ ,‖u‖γ ,‖u‖∞ ≤ c∗‖u‖, ∀u ∈ X̃. (.)

Since γ ≥ γ, it follows from (.) and (.) that

‖u‖γ
γ

=
∥∥u∥∥γ

γ
+

∥∥u∥∥γ
γ

≤ ∥∥u∥∥γ
γ

+ ‖u‖γ–γ∞
∥∥u∥∥γ

γ

≤ ∥∥u∥∥γ
γ

+
∥∥u∥∥γ

γ
, ∀u ∈ X̃, c∗‖u‖ < . (.)
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From (.), (.), (.), (.) and (W), one has

�(u) =


(∥∥u+∥∥ –

∥∥u–∥∥) –
∫

R

W (t, u) dt

≤ 

‖u‖ – b

∥∥u∥∥γ
γ

– b
∥∥u∥∥γ

γ

≤ 

‖u‖ – min{b, b}‖u‖γ

γ

≤ 

‖u‖ – cγ

 min{b, b}‖u‖γ , ∀u ∈ X̃, c∗‖u‖ < .

Since  < γ < , the above implies that there exist ρ = ρ(b, b, c) = ρ(X̃) ∈ (, c–∗ ) and
σ = σ (b, b, c) = σ (X̃) >  such that

�(u) ≤ , ∀u ∈ Bρ ∩ X̃; �(u) ≤ –σ , ∀u ∈ ∂Bρ ∩ X̃.

Hence assumption (ii) in Lemma . holds. By Lemma ., � has infinitely many (pairs)
critical points which are homoclinic solutions for system (.). �

Proof of Theorem . In the proof of Theorem ., assumption (W) is used only in Step 
to prove that a (PS)-sequence {un}n∈N ⊂ E is bounded. Therefore, we only prove that any
(PS)-sequence {un}n∈N ⊂ E is also bounded by using (W′) instead of (W). From (.),
(.) and (W′), we have

〈
�′(un), un

〉
– �(un) =

∫

R

[
W (t, un) –

(∇W (t, un), un
)]

dt

≥ b

∫

R

∣∣un(t)
∣∣γ dt – b

∫

R

|un|γ dt

= b‖un‖γ
γ – b‖un‖γ

γ .

It follows that there exists a constant C >  such that

b‖un‖γ
γ – b‖un‖γ

γ ≤ C
(
 + ‖un‖

)
. (.)

Since dim(E– ⊕ E) < +∞, there exists a constant C >  such that

∥∥u–
n + u

n
∥∥

 =
(
u–

n + u
n, un

)
 ≤ ∥∥u–

n + u
n
∥∥

γ ′

‖un‖γ ≤ C

∥∥u–
n + u

n
∥∥

‖un‖γ , (.)

where γ ′
 = γ/(γ – ). Combining (.) with (.), one has

∥∥u–
n + u

n
∥∥ ≤ C

∥∥u–
n + u

n
∥∥

 ≤ C
(
 + ‖un‖/γ + ‖un‖γ/γ

)
. (.)

From (.), (.) and (.), we obtain

‖un‖ =
∥∥u–

n + u
n
∥∥ +

∥∥u+
n
∥∥

=
∥∥u–

n + u
n
∥∥ + �(un) +

∥∥u–
n
∥∥ + 

∫

R

W (t, un) dt
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≤ C
(
 + ‖un‖/γ + ‖un‖γ/γ

)
+ �(un)

+ φ(T)‖un‖γ + φ(T)‖un‖γ

≤ C
(
 + ‖un‖γ + ‖un‖γ + ‖un‖/γ + ‖un‖γ/γ

)
.

Since  < γ < γ < ,  < γ < γ < , it follows that {‖un‖} is bounded. The proof is com-
plete. �

Proof of Theorem . Set X = E, X = E– ⊕ E and X = E+. In view of Lemma . and
Steps  and  in the proof of Theorem ., X = X ⊕ X, dim X < +∞, � ∈ C(X,R), �

satisfies the (PS)-condition and is bounded from below on X. Obviously, (W) and (W)
imply �() =  and � is even. Next, we prove that assumption (ii) in Lemma . holds.

Let X̃ ⊂ X be any finite dimensional subspace. Then there exist constants c = c(X̃) > 
and c∗ = c(X̃) >  such that

c‖u‖ ≤ ‖u‖γ ,‖u‖γ ≤ c∗‖u‖, ∀u ∈ X̃. (.)

From (.), (.) and (W′), one has

�(u) =


(∥∥u+∥∥ –

∥∥u–∥∥) –
∫

R

W (t, u) dt

≤ 

‖u‖ – b‖u‖γ

Lγ + b‖u‖γ
Lγ

≤ 

‖u‖ – bcγ

 ‖u‖γ + bcγ∗ ‖u‖γ , ∀u ∈ X̃.

Since  < γ < γ < , the above implies that there exist ρ = ρ(b, b, c) = ρ(X̃) >  and
σ = σ (b, b, c) = σ (X̃) >  such that

�(u) ≤ , ∀u ∈ Bρ ∩ X̃; �(u) ≤ –σ , ∀u ∈ ∂Bρ ∩ X̃.

Hence assumption (ii) in Lemma . holds. By Lemma ., � has infinitely many (pairs)
critical points which are homoclinic solutions for system (.). �

In the proof of Theorem ., (W′) is used in the last part to verify assumption (ii) of
Lemma .. It is easy to see that it also holds by using (W′′) instead of (W′). So we omit
the proof of Corollary ..

4 Examples
In this section, we give two examples to illustrate our results.

Example . In system (.), let L(t) = (|t|/ – )IN , and W (t, x) be as in (.). Then L(t)
satisfies (Lν ) with ν = /, and

∇W (t, x) =
(
 + sin t

)( 


|x|–/x –


|x|–/x +




|x|–/x
)

,

∣∣W (t, x)
∣∣ ≤ 

(|x|/ + |x|/), ∀(t, x) ∈R×R
N ,
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∣∣∇W (t, x)
∣∣ ≤ |x|/ + |x|/ + |x|/


, ∀(t, x) ∈R×R

N ,

W (t, x) –
(∇W (t, x), x

) ≥ 


|x|/ – |x|/, ∀(t, x) ∈R×R
N

and

W (t, x) ≥ |x|/ – |x|/, ∀(t, x) ∈R×R
N .

Thus all conditions of Theorem . are satisfied with




= γ = γ = γ < γ = γ =



< γ = γ =



; a = a = ;

b =



, b = , b = , b = ; ϕ(s) =
s/ + s/ + s/


.

Hence, by Theorem ., system (.) has infinitely many nontrivial homoclinic solutions.

Example . In system (.), let L(t) = (|t|� – )IN , let W (t, x) be as in (.). Set

λi =
τm – τi

τm – τ
, μi =

τi – τ

τm– – τ
, θj =

τm – τj

τm – τ
, i = , . . . , m – ; j = , . . . , m – ;

a = d +
m–∑
i=

λidi, a = dm +
m–∑
i=

( – λi)di;

b = ( – τm–)dm– +
m–∑
i=

( – τi)μidi
[
m( – τi)di( – μi)

](–μi)/μi |x|τm–

and

b = d +
m–∑
j=

θjdj
[
mdj( – θj)

](–θj)/θj .

Note that

|x|τi ≤ λi|x|τ + ( – λi)|x|τm , i = , . . . , m – ,

|x|τi ≤ 
m( – τi)di

|x|τ + μi
[
m( – τi)di( – μi)

](–μi)/μi |x|τm– , i = , . . . , m – 

and

|x|τj ≤ θj
[
mdj( – θj)

](–θj)/θj |x|τ +


mdj
|x|τm , j = , . . . , m – .

Then L(t) satisfies (Lν ) with ν =  – � <  – /τ, and

∣∣W (t, x)
∣∣ ≤ a|x|τ + a|x|τm ,

∣∣∇W (t, x)
∣∣ ≤

m∑
i=

τidi|x|τi–, ∀(t, x) ∈ R×R
N ,

W (t, x) –
(∇W (t, x), x

) ≥ ( – τm)dm|x|τm – b|x|τm– , ∀(t, x) ∈R×R
N
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and

W (t, x) ≥ d|x|τ – b|x|τ , ∀(t, x) ∈R×R
N .

Theorem . applies with

τ = γ = γ = γ < γ = τ < γ = τm– < γ = γ = τm;

b = ( – τm)dm, b = d; ϕ(s) =
m∑

i=

τidisτi–,

and system (.) has infinitely many nontrivial homoclinic solutions.
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