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Abstract
In this paper, we study the existence of solutions for a new class of boundary value
problems for nonlinear fractional differential inclusions with mixed type integral
boundary conditions. The cases when the multifunction has convex as well as
non-convex values are considered. Our results rely on the standard tools of fixed point
theory and are well illustrated with the aid of an example.
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1 Introduction and preliminaries
Fractional differential equations and inclusions are generalizations of ordinary differential
equations and inclusions to arbitrary non-integer orders. Fractional differential equations
and inclusions appear naturally in a number of fields such as physics, engineering, bio-
physics, chemistry, biology, economics, control theory, etc. Recently, many papers have
been published about fractional differential equations and inclusions by researchers which
apply the fixed point theory in their existence theorems. For instance, one can find a lot
of papers in this field (see [–] and the references therein).

Let α > , n –  < α < n, n = [α] + , and u ∈ C([a, b],R). The Caputo derivative of frac-
tional order α for the function u is defined by cDαu(t) = 

�(n–α)
∫ t

 (t – τ )n–α–u(n)(τ ) dτ (see
for more details [, –]). Also, the Riemann-Liouville fractional order integral of the
function u is defined by Iαu(t) = 

�(α)
∫ t


u(τ )

(t–τ )–α dτ (t > ) whenever the integral exists [,
–]. In [], it has been proved that the general solution of the fractional differential
equation cDαu(t) =  is given by u(t) = c + ct + ct + · · · + cn–tn–, where c, . . . , cn– are
real constants and n = [α] + . Also, for each T >  and u ∈ C([, T]) we have

IαcDαu(t) = u(t) + c + ct + ct + · · · + cn–tn–,

where c, . . . , cn– are real constants and n = [α] +  [].
Now, we review some definitions and notations about multifunctions [, ].
For a normed space (X,‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈

P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) :
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Y is compact and convex}. A multivalued map G : X → P(X) is convex (closed) valued
if G(x) is convex (closed) for all x ∈ X. The map G is bounded on bounded sets if G(B) =
⋃

x∈B G(x) is bounded in X for all B ∈ Pb(X) (i.e., supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is
called upper semicontinuous (u.s.c.) on X if for each x ∈ X, the set G(x) is a nonempty
closed subset of X, and if for each open set N of X containing G(x), there exists an open
neighborhood N of x such that G(N) ⊆ N . G is said to be completely continuous if
G(B) is relatively compact for every B ∈ Pb(X). If the multivalued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G has a closed
graph, i.e., un → u∗, yn → y∗, yn ∈ G(un) imply y∗ ∈ G(u∗). G has a fixed point if there is
x ∈ X such that x ∈ G(x). The fixed point set of the multivalued operator G will be denoted
by Fix G. A multivalued map G : J → Pcl(R) is said to be measurable if, for every y ∈ R,
the function t �→ d(y, G(t)) = inf{|y – z| : z ∈ G(t)} is measurable.

Consider the Pompeiu-Hausdorff metric Hd : P(X) ×P(X) →R∪ {∞} given by

Hd(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}

,

where d(A, b) = infa∈A d(a; b) and d(a, B) = infb∈B d(a; b). A multivalued operator N : X →
Pcl(X) is called contraction if there exists γ ∈ (, ) such that Hd(N(x), N(y)) ≤ γ d(x, y) for
each x, y ∈ X.

Let  < α ≤ ,  < p ≤ , t ∈ J = [, ],  < ξ < , and γ ,η ∈ R. In this paper, we study the
existence of solutions for the following fractional differential inclusion:

cDαu(t) ∈ F
(
t, u(t), u′(t), u′′(t), cDpu(t)

)
(.)

via the integral boundary value conditions

u() + u() = , cDpu() = γ

∫ 


u(τ ) dτ ,

u′() + u′′(ξ ) = η

∫ 


u(τ ) dτ ,

(.)

where F : J ×R
 →P(R) is a compact-valued multifunction.

We mention that the investigated fractional differential inclusion is a generalization of a
huge class of classical ordinary differential inclusions which can be found in applications
in engineering and physics etc. The boundary conditions (.) used in this manuscript,
are as general as possible and we recover several cases of fractional nonlinear differential
inclusions for many particular cases of the parameters.

We say that F : J × R
 → P(R) is a Carathéodory multifunction whenever t �→

F(t, u, v, z, w) is measurable for all u, v, z, w ∈ R and (u, v, z, w) �→ F(t, u, v, z, w) is upper
semicontinuous for almost all t ∈ J ([] and []). Also, a Carathéodory multifunc-
tion F : J × R

 → P(R) is called L-Carathéodory whenever for each ρ >  there exists
φρ ∈ L(J ,R+) such that

∥
∥F(t, u, v, z, w)

∥
∥ = sup

t∈J

{|s| : s ∈ F(t, u, v, z, w)
} ≤ φρ(t)
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for all |u|, |v|, |z|, |w| ≤ ρ , and for almost all t ∈ J ([] and []). Define the set of selections
of F by

SF ,u :=
{

v ∈ L(J ,R) : v(t) ∈ F
(
t, u(t), u′(t), u′′(t), cDpu(t)

)
for almost all t ∈ J

}
.

We define the graph of a function G to be the set Gr(G) = {(x, y) ∈ X × Y , y ∈ G(x)} and
recall two results for closed graphs and upper semicontinuity.

Lemma . (Proposition . in []) If G : X →Pcl(Y ) is u.s.c., then Gr(G) is a closed subset
of X × Y ; i.e., for every sequence {un}n∈N ⊂ X and {yn}n∈N ⊂ Y , if when n → ∞, un → u∗,
yn → y∗, and yn ∈ G(un), then y∗ ∈ G(u∗). Conversely, if G is completely continuous and
has a closed graph, then it is upper semicontinuous.

Lemma . ([]) Let X be a separable Banach space. Let F : [, ] × X →Pcp,c(X) be an
L-Carathéodory function. Then the operator


 ◦ SF : C(J , X) →Pcp,c
(
C(J , X)

)
, x �→ (
 ◦ SF )(x) = 
(SF ,x)

is a closed graph operator.

Now we state some known fixed point theorems which are needed in the sequel.

Lemma . (Nonlinear alternative for Kakutani maps []) Let E be a Banach space,
C a closed convex subset of E, U an open subset of C and  ∈ U . Suppose that F : U →
Pcp,c(C) is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (, ) with u ∈ λF(u).

Lemma . ([]) Let (X, d) be a complete metric space. If N : X →Pcl(X) is a contraction,
then Fix N �= ∅.

2 Main results
Now, we are ready to prove our main results. Let X = {u : u, u′, u′′, cDpu ∈ C(J ,R)} en-
dowed with the norm ‖u‖ = supt∈J |u(t)| + supt∈J |u′(t)| + supt∈J |u′′(t)| + supt∈J |cDpu(t)|.
Then (X,‖ · ‖) is a Banach space [].

Lemma . Let y ∈ L(J ,R). Then the integral solution of the linear problem

⎧
⎪⎨

⎪⎩

cDαu(t) = y(t),
u() + u() = , cDpu() = γ

∫ 
 u(τ ) dτ ,

u′() + u′′(ξ ) = η
∫ 

 u(τ ) dτ ,
(.)

is given by

u(t) = Iαy(t) +
(




– t
)

Iα–y(ξ ) + A(t)Iαy()

+ B(t)Iα–py() + C(t)Iα+y(), (.)
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where

A(t) = –


(
 + C(t)

)
,

B(t) =



�( – p)
(
– + t – t) +

�( – p)


C(t), (.)

C(t) =


 + γ�( – p)
[
γ�( – p)

(
 – t + t) + η(t – )

]
.

Proof It is well known that the solution of equation cDαu(t) = y(t) can be written as

u(t) = Iαy(t) + c + ct + ct,

where c, c, c ∈ R are arbitrary constants. Then we get

u′(t) = Iα–y(t) + c + ct, u′′(t) = Iα–y(t) + c

and

cDpu(t) = Iα–py(t) + c
t–p

�( – p)
,  < p ≤ .

By using the boundary conditions u() + u() = , cDpu() = γ
∫ 

 u(τ ) dτ , u′() + u′′(ξ ) =
η

∫ 
 u(τ ) dτ , we obtain

c = –



Iαy() + Iα–y(ξ ) –
�( – p)


Iα–py() +

γ�( – p) – η



∫ 


u(τ ) dτ ,

c = –Iα–y(ξ ) + �( – p)Iα–py() +
(
η – γ�( – p)

)
∫ 


u(τ ) dτ

and

c = –
�( – p)


Iα–py() +

γ�( – p)


∫ 


u(τ ) dτ .

Then

u(t) = Iαy(t) –



Iαy() +
(




– t
)

Iα–y(ξ ) +
�( – p)(– + t – t)


Iα–py()

+



[
γ�( – p)

(
 – t + t) + η(t – )

]
∫ 


u(τ ) dτ . (.)

Letting A =
∫ 

 u(τ ) dτ , we have

A =
∫ 


u(τ ) dτ =

∫ 



∫ t



(t – s)α–

�(α)
y(s) ds dt + c +




c +



c

= Iα+y() + c +



c +



c,
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or after substituting c, c, and c,

A =


 + γ�( – p)

[

Iα+y() –



Iαy() +
�( – p)


Iα–py()

]

.

Substituting the value A in (.), we get (.). The proof is completed. �

Remark . Throughout this paper, the following relations hold:

∣
∣A(t)

∣
∣ ≤ 


( + C),

∣
∣B(t)

∣
∣ ≤ �( – p)

(



+



C

)

,

∣
∣C(t)

∣
∣ ≤ 

 + γ�( – p)
[
γ�( – p) + η

]
:= C,

∣
∣A′(t)

∣
∣ ≤ 


C′

,
∣
∣B′(t)

∣
∣ ≤ �( – p)

(

 +



C′



)

,

∣
∣C′(t)

∣
∣ ≤ [γ�( – p) + η]

 + γ�( – p)
:= C′

,

∣
∣A′′(t)

∣
∣ ≤ 


C′′

 ,
∣
∣B′′(t)

∣
∣ ≤ �( – p)

(

 +



C′′



)

,

∣
∣C′′(t)

∣
∣ ≤ γ�( – p)

 + γ�( – p)
:= C′′

 ,

∣
∣cDpA(t)

∣
∣ ≤ D,

∣
∣cDpB(t)

∣
∣ ≤  +

�( – p)


D,

∣
∣cDpC(t)

∣
∣ ≤ γ

 + γ�( – p)
:= D.

Definition . A function u ∈ C(J ,R) is called a solution for the problem (.)-(.) if
there exists a function v ∈ L(J ,R) with v(t) ∈ F(t, u(t), u′(t), u′′(t), cDpu(t)) for almost all
t ∈ J , u() + u() = , cDpu() = γ

∫ 
 u(τ ) dτ , u′() + u′′(ξ ) = η

∫ 
 u(τ ) dτ , and

u(t) = Iαv(t) +
(




– t
)

Iα–v(ξ ) + A(t)Iαv() + B(t)Iα–pv() + C(t)Iα+v() (.)

for all t ∈ J .

For the sake of brevity, we set

 =


�(α + )
+




ξα–

�(α – )
+




( + C)


�(α + )

+ �( – p)
(




+



C

)


�(α – p + )
+




C


�(α + )
, (.)

 =


�(α)
+

ξα–

�(α – )
+




C′



�(α + )

+ �( – p)
(

 +



C′



)


�(α – p + )
+




C′



�(α + )

, (.)

 =


�(α – )
+ C′′




�(α + )

+ �( – p)
(

 +



C′′



)


�(α – p + )
+




C′′



�(α + )

(.)
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and

 =


�(α – p + )
+ D


�(α + )

+
(

 +
�( – p)


D

)


�(α – p + )
+




D


�(α + )
. (.)

Theorem . Suppose that:

(H) F : J ×R
 →Pcp,c(R) is a L-Carathéodory multifunction.

(H) There exist continuous nondecreasing functions ψi : [,∞) → (,∞) and functions
pi ∈ C(J ,R+),  ≤ i ≤ , such that

∥
∥F(t, x, x, x, x)

∥
∥ := sup

{|v| : v ∈ F(t, x, x, x, x)
} ≤

∑

i=

pi(t)ψi
(|xi|

)

for each (t, xi) ∈ J ×R,  ≤ i ≤ .
(H) There exists a constant M >  such that

M
∑

i= i‖pi‖ψi(M)
> ,

where i,  ≤ i ≤  are defined by (.)-(.).

Then the inclusion boundary value problem (.)-(.) has at least one solution.

Proof To transform the problem (.)-(.) into a fixed point problem, we define an oper-
ator N : X →P(X) as

N (u) =

{

h ∈ X : h(t) =

{
Iαv(t) + ( 

 – t)Iα–v(ξ ) + A(t)Iαv()
+ B(t)Iα–pv() + C(t)Iα+v(), t ∈ J , v ∈ SF ,u

}}

.

We will show that N satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof consists of several steps. As a first step, we show thatN is convex
for each u ∈ X. This step is obvious since SF ,u is convex (F has convex values), and therefore
we omit the proof.

In the second step, we show that N maps bounded sets (balls) into bounded sets in X.
For a positive number r, let Br = {u ∈ X : ‖u‖ ≤ r} be a bounded ball in X. Then, for each
h ∈N (u) and u ∈ Br , there exists v ∈ SF ,u such that

h(t) = Iαv(t) +
(




– t
)

Iα–v(ξ ) + A(t)Iαv() + B(t)Iα–pv() + C(t)Iα+v(), t ∈ J .

Then we have

∣
∣h(t)

∣
∣ ≤ Iα

∣
∣v(t)

∣
∣ +

∣
∣
∣
∣




– t
∣
∣
∣
∣I

α–∣∣v(ξ )
∣
∣ +

∣
∣A(t)

∣
∣Iα

∣
∣v()

∣
∣

+
∣
∣B(t)

∣
∣Iα–p∣∣v()

∣
∣ +

∣
∣C(t)

∣
∣Iα+∣∣v()

∣
∣

≤ Iα
[
p(t)ψ

(∣∣u(t)
∣
∣) + p(t)ψ

(∣∣u′(t)
∣
∣)
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+ p(t)ψ
(∣∣u′′(t)

∣
∣) + p(t)ψ

(∣∣cDpu(t)
∣
∣)]

+



Iα–[p(ξ )ψ
(∣∣u(ξ )

∣
∣) + p(ξ )ψ

(∣∣u′(ξ )
∣
∣)

+ p(ξ )ψ
(∣
∣u′′(ξ )

∣
∣
)

+ p(ξ )ψ
(∣
∣cDpu(ξ )

∣
∣
)]

+



( + C)Iα
[
p()ψ

(∣∣u()
∣
∣) + p()ψ

(∣∣u′()
∣
∣)

+ p()ψ
(∣
∣u′′()

∣
∣
)

+ p()ψ
(∣
∣cDpu()

∣
∣
)]

+ �( – p)
(




+



C

)

Iα–p[p()ψ
(∣
∣u()

∣
∣
)

+ p()ψ
(∣
∣u′()

∣
∣
)

+ p()ψ
(∣∣u′′()

∣
∣) + p()ψ

(∣∣cDpu()
∣
∣)]

+ CIα+[p()ψ
(∣
∣u()

∣
∣
)

+ p()ψ
(∣
∣u′()

∣
∣
)

+ p()ψ
(∣
∣u′′()

∣
∣
)

+ p()ψ
(∣
∣cDpu()

∣
∣
)]

≤ [‖p‖ψ(r) + ‖p‖ψ(r) + ‖p‖ψ(r) + ‖p‖ψ(r)
]
{


�(α + )

+



ξα–

�(α – )

+



( + C)


�(α + )
+ �( – p)

(



+



C

)


�(α – p + )
+




C


�(α + )

}

= 

∑

i=

‖pi‖ψi(r)

for all t ∈ J . In a similar manner we obtain

∣
∣h′(t)

∣
∣ ≤ [‖p‖ψ(r) + ‖p‖ψ(r) + ‖p‖ψ(r) + ‖p‖ψ(r)

]
{


�(α)

+
ξα–

�(α – )

+



C′



�(α + )

+ �( – p)
(

 +



C′



)


�(α – p + )
+




C′



�(α + )

}

= 

∑

i=

‖pi‖ψi(r),

∣
∣h′′(t)

∣
∣ ≤ [‖p‖ψ(r) + ‖p‖ψ(r) + ‖p‖ψ(r) + ‖p‖ψ(r)

]
{


�(α – )

+ C′′



�(α + )

+ �( – p)
(

 +



C′′



)


�(α – p + )
+




C′′



�(α + )

}

= 

∑

i=

‖pi‖ψi(r)

and

∣
∣cDph(t)

∣
∣ ≤ [‖p‖ψ(r) + ‖p‖ψ(r) + ‖p‖ψ(r) + ‖p‖ψ(r)

]
{


�(α – p + )

+ D


�(α + )
+

(

 +
�( – p)


D

)


�(α – p + )
+




D


�(α + )

}

= 

∑

i=

‖pi‖ψi(r)
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for all t ∈ J . Thus we get

‖h‖ ≤ ( +  +  + )
∑

i=

‖pi‖ψi(r) =
∑

i=

i‖pi‖ψi(r),

which implies that N maps bounded sets into bounded sets in X.
Now, we prove that N maps bounded sets into equi-continuous subsets of X. Suppose

that u ∈ Br and t, t ∈ J with t < t. Then we have

∣
∣h(t) – h(t)

∣
∣

≤
∣
∣
∣
∣


�(α)

∫ t


(t – s)α–v(τ ) dτ –


�(α)

∫ t


(t – s)α–v(τ ) dτ

∣
∣
∣
∣

+ |t – t|Iα–∣∣v(ξ )
∣
∣ +

∣
∣A(t) – A(t)

∣
∣Iα

∣
∣v()

∣
∣ +

∣
∣B(t) – B(t)

∣
∣Iα–p∣∣v()

∣
∣

+
∣
∣C(t) – C(t)

∣
∣Iα+∣∣v()

∣
∣

≤ 
�(α)

∫ t



[
(t – s)α– – (t – s)α–]∣∣v(τ )

∣
∣dτ +


�(α)

∫ t

t

(t – s)α–∣∣v(τ )
∣
∣dτ

+ |t – t|Iα–∣∣v(ξ )
∣
∣ +

∣
∣A(t) – A(t)

∣
∣Iα

∣
∣v()

∣
∣ +

∣
∣B(t) – B(t)

∣
∣Iα–p∣∣v()

∣
∣

+
∣
∣C(t) – C(t)

∣
∣Iα+∣∣v()

∣
∣

≤
∑

i=

‖pi‖ψi(r)
{
(
tα
 – tα


) 
�(α + )

+ |t – t| ξα–

�(α – )
+

∣
∣A(t) – A(t)

∣
∣ 
�(α + )

+
∣
∣B(t) – B(t)

∣
∣ 
�(α – p + )

+
∣
∣C(t) – C(t)

∣
∣ 
�(α + )

}

.

Proceeding as above we have

∣
∣h′(t) – h′(t)

∣
∣

≤
∣
∣
∣
∣


�(α – )

∫ t


(t – s)α–v(τ ) dτ –


�(α – )

∫ t


(t – s)α–v(τ ) dτ

∣
∣
∣
∣

+
∣
∣A′(t) – A′(t)

∣
∣Iα

∣
∣v()

∣
∣ +

∣
∣B′(t) – B′(t)

∣
∣Iα–p∣∣v()

∣
∣

+
∣
∣C′(t) – C′(t)

∣
∣Iα+∣∣v()

∣
∣

≤
∑

i=

‖pi‖ψi(r)
{
(
tα–
 – tα–


) 
�(α)

+
∣
∣A′(t) – A′(t)

∣
∣ 
�(α + )

+
∣
∣B′(t) – B′(t)

∣
∣ 
�(α – p + )

+
∣
∣C′(t) – C′(t)

∣
∣ 
�(α + )

}

,

∣
∣h′′(t) – h′′(t)

∣
∣

≤
∑

i=

‖pi‖ψi(r)
{
(
tα–
 – tα–


) 
�(α – )

+
∣
∣A′′(t) – A′′(t)

∣
∣ 
�(α + )

+
∣
∣B′′(t) – B′′(t)

∣
∣ 
�(α – p + )

+
∣
∣C′′(t) – C′′(t)

∣
∣ 
�(α + )

}
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and

∣
∣cDph(t) – cDph(t)

∣
∣

≤
∑

i=

‖pi‖ψi(r)
{
(
tα–p
 – tα–p


) 
�(α – p + )

+ |t – t| γ

 + γ�( – p)


�(α + )

+ |t – t|
(

 +
γ

 + γ�( – p)

)


�(α – p + )

+ |t – t| 


�( – p)γ
 + γ�( – p)


�(α + )

}

.

Obviously the right-hand side of the above inequalities tends to zero independently of
u ∈ Br as t – t → . Therefore it follows by the Ascoli-Arzelá theorem thatN : X →P(X)
is completely continuous.

In our next step, we show thatN is upper semicontinuous. It is well known by Lemma .
that N will be upper semicontinuous if we prove that it has a closed graph, since N is
already shown to be completely continuous. Thus we will prove that N has a closed graph.
Let un → u∗, hn ∈N (un), and hn → h∗. Then we need to show that h∗ ∈N (u∗). Associated
with hn ∈N (un), there exists vn ∈ SF ,un such that, for each t ∈ J ,

hn(t) = Iαvn(t) +
(




– t
)

Iα–vn(ξ ) + A(t)Iαvn() + B(t)Iα–pvn() + C(t)Iα+vn().

Thus it suffices to show that there exists v∗ ∈ SF ,u∗ such that, for each t ∈ J ,

h∗(t) = Iαv∗(t) +
(




– t
)

Iα–v∗(ξ ) + A(t)Iαv∗() + B(t)Iα–pv∗() + C(t)Iα+v∗().

Let us consider the linear operator 
 : L(J ,R) → C(J ,R) given by

f �→ 
(v)(t) = Iαv(t) +
(




– t
)

Iα–v(ξ ) + A(t)Iαv() + B(t)Iα–pv() + C(t)Iα+v().

Observe that

∥
∥hn(t) – h∗(t)

∥
∥ =

∥
∥
∥
∥Iα

(
vn(t) – v∗(t)

)
+

(



– t
)

Iα–(vn(ξ ) – v∗(ξ )
)

+ A(t)Iα
(
vn() – v∗()

)
+ B(t)Iα–p(vn() – v∗()

)

+ C(t)Iα+(vn() – v∗()
)
∥
∥
∥
∥ → , as n → ∞.

Thus, it follows by Lemma . that 
 ◦ SF is a closed graph operator. Further, we have
hn(t) ∈ 
(SF ,un ). Since un → u∗, therefore, we have

h∗(t) = Iαv∗(t) +
(




– t
)

Iα–v∗(ξ ) + A(t)Iαv∗() + B(t)Iα–pv∗() + C(t)Iα+v∗()

for some v∗ ∈ SF ,u∗ .
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Finally, we show that there exists an open set U ⊆ X with u /∈N (u) for any λ ∈ (, ) and
all u ∈ ∂U . Let λ ∈ (, ) and u ∈ λN (u). Then there exists v ∈ L(J ,R) with v ∈ SF ,u such
that, for t ∈ J , we have

u(t) = λIαv(t) + λ

(



– t
)

Iα–v(ξ ) + λA(t)Iαv() + λB(t)Iα–pv() + λC(t)Iα+v().

Using the computations of the second step above we have

‖u‖ ≤ ( +  +  + )
[‖p‖ψ

(‖u‖) + ‖p‖ψ
(‖u‖)

+ ‖p‖ψ
(‖u‖) + ‖p‖ψ

(‖u‖)],

which implies that

‖u‖
∑

i= i‖pi‖ψi(‖u‖)
≤ .

In view of (H), there exists M such that ‖u‖ �= M. Let us set

U =
{

u ∈ X : ‖x‖ < M
}

.

Note that the operator N : U → P(X) is upper semicontinuous and completely contin-
uous. From the choice of U , there is no u ∈ ∂U such that u ∈ λN (u) for some λ ∈ (, ).
Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we de-
duce that N has a fixed point u ∈ U which is a solution of the problem (.)-(.). This
completes the proof. �

In the next theorem, we prove the existence of solution for the inclusion boundary value
problem (.)-(.) when the multifunction F is non-convex valued.

Theorem . Assume that:

(H) F : J × R
 → Pcp(R) is such that F(·, u, v, z, w) : J → Pcp(R) is measurable for each

u, v, z, w ∈R.
(H) For almost all t ∈ J and u, u, u, u, w, w, w, w ∈R we have

Hd
(
F(t, u, u, u, u), F(t, w, w, w, w)

)

≤ m(t)
(|u – w| + |u – w| + |u – w| + |u – w|

)

with m ∈ C(J ,R+) and d(, F(t, , , , )) ≤ m(t), for almost all t ∈ J .

Then the boundary value problem (.)-(.) has at least one solution on J if ‖m‖∑
i=i < .

Proof Observe that the set SF ,u is nonempty for each u ∈ X by the assumption (H), so F
has a measurable selection (see Theorem III. in []). Now we show that the operator N ,
defined in the beginning of proof of Theorem ., satisfies the assumptions of Lemma ..



Ntouyas et al. Boundary Value Problems  (2015) 2015:92 Page 11 of 14

To show that N (u) ∈Pcl(X) for each u ∈ X, let {un}n≥ ∈N (u) be such that un → u (n →
∞) in X. Then u ∈ X and there exists vn ∈ SF ,un such that, for each t ∈ J ,

un(t) = Iαvn(t) +
(




– t
)

Iα–vn(ξ ) + A(t)Iαvn() + B(t)Iα–pvn() + C(t)Iα+vn().

As F has compact values, we pass onto a subsequence (if necessary) to find that vn con-
verges to v in L(J ,R). Thus, v ∈ SF ,u and for each t ∈ J , we have

un(t) → u(t) = Iαv(t) +
(




– t
)

Iα–v(ξ ) + A(t)Iαv() + B(t)Iα–pv() + C(t)Iα+v().

Hence, u ∈N (u).
Next we show that N is a contractive multifunction with constant δ = ‖m‖∑

i= i < .
Let u, w ∈ X and h ∈N (u). Then there exists v ∈ SF ,u such that, for each t ∈ J ,

h(t) = Iαv(t) +
(




– t
)

Iα–v(ξ ) + A(t)Iαv() + B(t)Iα–pv() + C(t)Iα+v().

By (H), we have

Hd
(
F
(
t, u(t), u′(t), u′′(t), cDpu(t)

)
, F

(
t, w(t), w′(t), w′′(t), cDpw(t)

))

≤ m(t)
(∣
∣u(t) – w(t)

∣
∣ +

∣
∣u′(t) – w′(t)

∣
∣ +

∣
∣u′′(t) – w′′(t)

∣
∣ +

∣
∣cDpu(t) – cDpw(t)

∣
∣
)
,

so there exists z ∈ F(t, u(t), u′(t), u′′(t), cDpu(t)) such that

∣
∣v(t) – z

∣
∣ ≤ m(t)

(∣
∣u(t) – w(t)

∣
∣ +

∣
∣u′(t) – w′(t)

∣
∣ +

∣
∣u′′(t) – w′′(t)

∣
∣ +

∣
∣cDpu(t) – cDpw(t)

∣
∣
)

for almost all t ∈ J . Define the multifunction U : J →P(R) by

U(t) =
{

z ∈ R :
∣
∣v(t) – z

∣
∣ ≤ m(t)

(∣∣u(t) – w(t)
∣
∣ +

∣
∣u′(t) – w′(t)

∣
∣ +

∣
∣u′′(t) – w′′(t)

∣
∣

+
∣
∣cDpu(t) – cDpw(t)

∣
∣) for almost all t ∈ J

}
.

It is easy to check that the multifunction U(·) ∩ F(·, u(·), u′(·), u′′(·), cDpu(·)) is measurable.
Hence, we can choose v ∈ SF ,u such that

∣
∣v(t)–v(t)

∣
∣ ≤ m(t)

(∣
∣u(t)–w(t)

∣
∣+

∣
∣u′(t)–w′(t)

∣
∣+

∣
∣u′′(t)–w′′(t)

∣
∣+

∣
∣cDpu(t)– cDpw(t)

∣
∣
)

for almost all t ∈ J . Consider h ∈N (u) which is defined by

h(t) = Iαv(t) +
(




– t
)

Iα–v(ξ ) + A(t)Iαv() + B(t)Iα–pv() + C(t)Iα+v().

Thus,

∣
∣h(t) – h(t)

∣
∣ = Iα

∣
∣v(t) – v(t)

∣
∣ +

∣
∣
∣
∣




– t
∣
∣
∣
∣I

α–∣∣v() – v()
∣
∣ +

∣
∣A(t)

∣
∣Iα

∣
∣v() – v()

∣
∣

+
∣
∣B(t)

∣
∣Iα–p∣∣v() – v()

∣
∣ +

∣
∣C(t)

∣
∣Iα+∣∣v() – v()

∣
∣
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≤ ‖m‖
{


�(α + )

+



ξα–

�(α – )
+




( + C)


�(α + )

+ �( – p)
(




+



C

)


�(α – p + )
+




C


�(α + )

}

‖u – w‖

= ‖m‖‖u – w‖.

In a similar manner we obtain

∣
∣h′

(t) – h′
(t)

∣
∣ ≤ ‖m‖

{


�(α)
+

ξα–

�(α – )
+




C′



�(α + )

+ �( – p)
(

 +



C′



)


�(α – p + )
+




C′



�(α + )

}

‖u – w‖

= ‖m‖‖u – w‖,

∣
∣h′′

 (t) – h′′
(t)

∣
∣ ≤ ‖m‖

{


�(α – )
+ C′′




�(α + )
+ �( – p)

(

 +



C′′



)


�(α – p + )

+



C′′



�(α + )

}

‖u – w‖

= ‖m‖‖u – w‖

and

∣
∣cDph(t) – cDph(t)

∣
∣ ≤ ‖m‖

{


�(α – p + )
+ D


�(α + )

+
(

 +
�( – p)


D

)


�(α – p + )
+




D


�(α + )

}

‖u – w‖

= ‖m‖‖u – w‖.

Hence,

‖h – h‖ ≤ ‖m‖
∑

i=

i‖u – w‖.

Analogously, interchanging the roles of u and w, we obtain

Hd
(
N (u),N (w)

) ≤ ‖m‖
∑

i=

i‖u – w‖.

Since δ = ‖m‖∑
i= i < , N is a contraction, it follows by Lemma . that N has a fixed

point u which is a solution of (.)-(.). This completes the proof. �

Now, we give an illustrative example.

Example . We consider the following fractional differential inclusion:

cD

 u(t) ∈

[

,
t

 | sin π
 t||u(t)|

 + |u(t)| +
t| sin u′(t)|

 + | sin u′(t)| +
t

 | cos u′′(t)|
 + | cos u′′(t)|

+
t|cD 

 u(t)|
| cosπ t|( + |cD 

 u(t)|)

]

, (.)
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via the boundary value conditions

u() + u() = , cD

 u() =


,

∫ 


u(τ ) dτ ,

u′() + u′′
(




)

=


,

∫ 


u(τ ) dτ ,

where t ∈ J = [, ]. By the above inclusion problem, we have α = /, p = /, ξ = /,
and γ = η = /,. Now, we define an operator F : J ×R×R×R×R→ Pcp(R) by

F(t, x, x, x, x) =
[

,
t

 | sin π
 t||x|

 + |x| +
t| sin x|

 + | sin x| +
t

 | cos x|
 + | cos x|

+
t|x|

| cosπ t|( + |x|)
]

.

Also, we define the function m : J → R
+ by m(t) = t/. It is clear that m is continuous

on J and ‖m‖ = /. Finally, one can write

Hd
(
F(t, x, x, x, x), F(t, y, y, y, y)

)

≤ m(t)
(|x – y| + |x – y| + |x – y| + |x – y|

)
,

where t ∈ J and xi, yi ∈ R (i = , , , ). On the other hand, there exist the following values:

 = .,  = .,  = .,  = ..

Then ‖m‖( +  +  + ) = 
 × . = . < . Consequently, all assump-

tions and conditions of Theorem . are satisfied. Hence, Theorem . implies that the
fractional differential inclusion problem (.) has at least one solution.
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