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Abstract
In this paper, we consider the integro-differential equation utt –M(‖∇u‖22)�u +∫ t
0 g(t – τ )�u(τ )dτ + ut = f (u), (x, t) ∈ � × (0, T ), with initial and Dirichlet boundary
conditions. Under suitable assumptions on the functions g and the initial data,
a blow-up result with arbitrary positive initial energy is established.
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1 Introduction
In this paper we study the following nonlinear integro-differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

utt – M(‖∇u‖
)�u +

∫ t
 g(t – τ )�u(τ ) dτ + ut = f (u), (x, t) ∈ � × (, T),

u(x, t) = , x ∈ ∂� × (, T),

u(x, ) = u(x), ut(x, ) = u(x), x ∈ �,

(.)

where � is a bounded domain in R
n with a smooth boundary ∂�, M is a positive C-func-

tion like M(s) = m + bsγ , m > , b ≥ , γ ≥ , and s ≥ , g represents the kernel of the
memory term and f is a nonlinear function like f (u) = |u|p–u, p > , they will be specified
later.

Before going further, (.) without the viscoelastic term, that is, g ≡ , for the case that
M ≡ , (.) becomes a nonlinear wave equation which has been extensively studied and
several results concerning existence and nonexistence have been established [–]. When
M is not a constant function, a special case of (.) is Kirchhoff equation which has been
introduced in order to describe the nonlinear vibrations of an elastic string. Kirchhoff []
was the first one to study the oscillations of stretched strings and plates. In this case the
existence and nonexistence of solutions have been discussed by many authors; see [–]
and the references cited therein.

For (.) with g �= , in the case that M ≡ , (.) becomes a semilinear viscoelastic equa-
tion which has been extensively studied and many results concerning global existence
and blow-up in finite time have been proved. See in this regard [–]. For instance,
Messaoudi [] studied (.) with damping term a|ut|m–ut and f (u) = b|u|p–u and proved
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a blow-up result for solutions with negative initial energy if p > m ≥  and a global result
for  ≤ p ≤ m. This result has later been improved by the same author in [] to accommo-
date certain solutions with positive initial energy. In [], Song and Zhong considered (.)
with strong damping –�ut and f (u) = |u|p–u and proved a blow-up result for solutions
with positive initial energy by using the ideas of the ‘potential well’ theory introduced by
Payne and Sattinger [].

For g �=  and M is not a constant function, (.) is a model to describe the motion of
deformable solids as hereditary effect is incorporated. It may also be used to describe the
dynamics of an extensible string with fading memory. This equation states that the dy-
namic equilibrium of a body depends not only on the present state of deformation, but
also on the previous history of the deformation []. Also, (.) is applied to the theory of
the heat conduction with memory; see [, ]. Therefore, the dynamics of (.) is of great
importance and interest as they have wide applications in natural sciences.

This type of problem have been considered by many authors and several results concern-
ing existence, nonexistence, and asymptotic behavior have been established. Equation (.)
was first studied by Torrejón and Young [], who proved the existence of weakly asymp-
totic stable solution for a large analytical datum. Later, Munoz Rivera [] showed the
existence of global solutions for small datum and the total energy decays to zero expo-
nentially under some restrictions. In [], Wu and Tsai studied (.) for a strong damping
–�ut and proved the global existence, decay result, and blow-up properties. Recently, they
[] discussed the local existence and blow-up of solutions with positive initial energy for
nonlinear damping under some conditions.

In this paper, we consider problem (.) and will establish a blow-up result for (.) with
arbitrary positive initial energy under suitable assumptions on the functions g and the
initial data. This result extends earlier ones [, ], in which only some a positive initial
energy is considered. The main tool in proving blow-up result is the ‘concavity method’
where the basic idea of the method is to construct a positive defined functional F(t) of the
solution by the energy inequality and show that F–α(t) is a concave function of t.

The rest of this paper is organized as follows. In Section , we give some preliminaries
and state the main result. In Section , we prove the blow-up result by a concavity method.
Section  is devoted to a simple discussion of the main result.

2 Preliminaries
First, let us introduce some notation used throughout this paper. We denote by ‖ · ‖q the
Lq(�) norm for  ≤ q ≤ ∞ and by ‖∇ ·‖ the Dirichlet norm in H

(�), which is equivalent
to the H(�) norm. Moreover, we set

(ϕ,ψ) =
∫

�

ϕ(x)ψ(x) dx

as the usual L(�) inner product.
We next state some assumptions on f , M, and g :
(A) f () =  and there are two positive constants c and δ such that

∣
∣f (s) – f

(
s′)∣∣ ≤ c

∣
∣s – s′∣∣(|s|p– +

∣
∣s′∣∣p–)
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and

sf (s) ≥ ( + δ)F(s)

for s, s′ ∈R,  < p ≤ (n–)
n– if n >  and  < p < ∞ if n ≤ , where F(s) =

∫ s
 f (τ ) dτ .

(A) M is a positive C-function like M(s) = m + bsγ , m > , b ≥ , γ ≥ , and s ≥ ,
and it satisfies

(δ + )M(s) –
(
M(s) + δm

)
s ≥ , ∀s ≥ ,

where M(s) =
∫ s

 M(τ ) dτ and δ is the constant appeared in (A).
(A) Assume g(t) : R+ →R+ belongs to C(R+) and satisfy

g(t) ≥ , g ′(t) ≤  for t ≥ 

and

l =
∫ ∞


g(s) ds <

δm

 + δ
.

(A) The function e t
 g(t) is of positive type in the following sense:

∫ t


υ(s)

∫ s


e

s–τ
 g(s – τ ) dτ ds ≥ ,

∀υ ∈ C([,∞)) and ∀t > .

Remark . It is clear that f (u) = |u|p–u, p ≥ γ + , and m(s) = m + bsγ , where m > ,
b ≥ , γ ≥  satisfy the assumptions (A) and (A) with α/ ≤ δ ≤ (p – )/. It is also
obvious that g(t) = εe–t with  < ε < m satisfies the assumptions (A) and (A).

Now we are ready to state the local existence of problem (.), whose proof can be found
in [].

Theorem . Assume that (A)-(A) hold, and that u ∈ H
(�)∩H(�), u ∈ L(�), then

there exists a unique solution u of (.) satisfying

u ∈ C
(
[, T); H

(�) ∩ H(�)
)

and ut ∈ C
(
[, T); L(�)

) ∩ L([, T); H
(�)

)
.

Moreover, at least one of the following statements holds true:
(i) T = ∞,

(ii) ‖ut(t)‖
 + ‖�u(t)‖

 → ∞ as t → T–.

We introduce the energy functional E(t) associated to our equation,

E(t) =


∥
∥ut(t)

∥
∥

 +



M
(∥∥∇u(t)

∥
∥



)
–




∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥



+



(g ◦ ∇u)(t) –
∫

�

F(u) dx, (.)
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where

(g ◦ ∇w)(t) =
∫ t


g(t – τ )

∥
∥∇w(t) – ∇w(τ )

∥
∥

 dτ .

As in [], we see that

d
dt

E(t) = –
∫

�

∣
∣ut(t)

∣
∣ dx +



(
g ′ ◦ ∇u

)
(t) –




g(t)
∥
∥∇u(t)

∥
∥

 ≤ ,

which implies

E(t) ≤ E() –
∫ t



∫

�

∣
∣ut(τ )

∣
∣ dx dτ . (.)

Let

I(u) = M
(∥
∥∇u(t)

∥
∥



)∥
∥∇u(t)

∥
∥

 –
∫

�

f (u)u dx

for u ∈ H
(�). We finally state our main blow-up result for problem (.).

Theorem . Assume (A)-(A) hold. If u ∈ H
(�) ∩ H(�), u ∈ L(�), satisfy the fol-

lowing conditions:

E() > ,
∫

�

u(x)u(x) dx >  (.)

and

I(u) < , ‖u‖
 >

(δ + )E()
(δm – (δ + )l) min{λ, } , (.)

where δ is the constant appeared in (A) and λ is the constant of the Poincaré inequality
on �, then the corresponding solution u(t) of problem (.) blows up in a finite time T∗ > .

3 Proof of Theorem 2.2
In this section, we deal with the blow-up solutions of equation (.). Before we prove our
blow-up result, we need the following lemmas.

Lemma . (see [], Lemma .) Assume that g(t) satisfies the assumptions (A) and
(A), and �(t) is a function that is twice continuously differentiable, satisfying

⎧
⎨

⎩

�′′(t) + �′(t) >
∫ t

 g(t – τ )
∫
�

∇u(τ , x)∇u(t, x) dx dτ ,

�() > , �′() > 

for every t ∈ [, T), where u(t) is the corresponding solution of (.) with u and u. Then
the function �(t) is strictly increasing on [, T).

Lemma . Assume u ∈ H
(�) ∩ H(�), u ∈ L(�), satisfy

∫

�

u(x)u(x) dx > .
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If the local solution u(t) of (.) satisfies

I(u) < ,

then ‖u(t)‖
 is strictly increasing on [, T).

Proof Since u(t) is the local solution of (.), by a simple computation we have




d

dt

∫

�

∣
∣u(t, x)

∣
∣ dx =

∫

�

(∣
∣ut(t)

∣
∣ + uutt

)
dx

=
∫

�

∣
∣ut(t, x)

∣
∣ dx –

∫

�

uut dx – M
(∥
∥∇u(t)

∥
∥



)∥
∥∇u(t)

∥
∥



+
∫

�

f (u)u dx +
∫ t


g(t – τ )

∫

�

∇u(t) · ∇u(τ ) dx dτ

> –
∫

�

uut dx +
∫ t


g(t – τ )

∫

�

∇u(t) · ∇u(τ ) dx dτ ,

where the last inequality uses I(u) < , which implies

d

dt

∫

�

∣
∣u(t, x)

∣
∣ dx +

d
dt

∫

�

∣
∣u(t, x)

∣
∣ dx >

∫ t


g(t – τ )

∫

�

∇u(t) · ∇u(τ ) dx dτ .

Therefore, this lemma comes from Lemma .. �

Proof of Theorem . We next prove Theorem . in two steps. First, by a contradiction
argument we claim that

I
(
u(t)

)
<  (.)

and

∥
∥u(t)

∥
∥

 >
(δ + )E()

(δm – (δ + )l) min{λ, } (.)

for every t ∈ [, T). If this was not the case, then there would exist a time t such that

t = min
{

t ∈ (, T) : I
(
u(t)

)
= 

}
> . (.)

By the continuity of the solution u(t) as a function of t, we see that I(u(t)) <  when t ∈
(, t) and I(u(t)) = . Thus by Lemma . we have

∥
∥u(t)

∥
∥

 > ‖u‖
 >

(δ + )E()
(δm – (δ + )l) min{λ, }

for every t ∈ [, t). In addition, it is obvious that ‖u(t)‖
 is continuous on [, t]. Thus the

following inequality is obtained:

∥
∥u(t)

∥
∥

 >
(δ + )E()

(δm – (δ + )l) min{λ, } . (.)
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On the other hand, it follows from the definition of E(t) and (.) that




M
(∥∥∇u(t)

∥
∥



)
–




∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥



+



(g ◦ ∇u)(t) –
∫

�

F
(
u(t)

)
dx ≤ E(). (.)

Using the assumptions (A) and (A), we have

M
(∥
∥∇u(t)

∥
∥



)∥
∥∇u(t)

∥
∥

 + δm
∥
∥∇u(t)

∥
∥

 – (δ + )l
∥
∥∇u(t)

∥
∥



–
∫

�

f
(
u(t)

)
u(t) dx ≤ (δ + )E().

Noting the fact that I(u(t)) = , we then have

(
δm – (δ + )l

)∥∥∇u(t)
∥
∥

 ≤ (δ + )E().

Thus, by the Poincaré inequality, we have

∥
∥u(t)

∥
∥

 ≤ (δ + )E()
(δm – (δ + )l) min{λ, } . (.)

Obviously, there is a contradiction between (.) and (.). Thus, we have proved that (.)
is true for every t ∈ [, T). Furthermore, by Lemma . we see that (.) is also valid on
t ∈ [, T).

Secondly, we prove that the solution of problem (.) blows up in a finite time. Assume
by contradiction that the solution u is global. Then, for sufficiently large T > , we consider
H(t) : [, T] →R+ defined by

H(t) =
∥
∥u(t)

∥
∥

 +
∫ t



∥
∥u(τ )

∥
∥

 dτ + (T – t)‖u‖
 + α(t + t),

where t and α are positive constants, which will be determined in the sequel. A direct
computation yields

H ′(t) = 
∫

�

u(t)ut(t) dx +
∥
∥u(t)

∥
∥

 – ‖u‖
 + α(t + t)

= 
∫

�

u(t)ut(t) dx + 
∫ t



(
u(τ ), ut(τ )

)
dτ + α(t + t)

and

H ′′(t) = 
(
utt , u(t)

)
+ 

∥
∥ut(t)

∥
∥

 + 
(
u(t), ut(t)

)
+ α

= 
∥
∥ut(t)

∥
∥

 – M
(‖∇u‖


)‖∇u‖

 + 
∫ t


g(t – τ )

∫

�

∇u(τ )∇u(t) dx dτ

+ 
∫

�

f (u)u dx + α.
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Therefore, we have

H(t)H ′′(t) – (δ + )H ′(t)

= H(t)
(

∥
∥ut(t)

∥
∥

 – M
(‖∇u‖


)‖∇u‖

 +
∫ t


g(t – τ )

∫

�

∇u(τ )∇u(t) dx dτ

+
∫

�

f (u)u dx + α

)

– (δ + )
(∫

�

u(t)ut(t) dx +
∫ t



(
u(τ ), ut(τ )

)
dτ + α(t + t)

)

= H(t)
(∥

∥ut(t)
∥
∥

 – M
(‖∇u‖


)‖∇u‖

 +
∫ t


g(t – τ )

∫

�

∇u(τ )∇u(t) dx dτ

+
∫

�

f (u)u dx + α

)

+ (δ + )
(
G(t) –

(
H(t) – (T – t)‖u‖


)
�(t)

)
, (.)

where �(t), G(t) : [, T] →R+ are the functions defined by

�(t) =
∥
∥ut(t)

∥
∥

 +
∫ t



∥
∥ut(τ )

∥
∥

 dτ + α

and

G(t) = �(t)
(∥

∥u(t)
∥
∥

 +
∫ t



∥
∥u(τ )

∥
∥

 dτ + α(t + t)
)

–
(∫

�

u(t)ut(t) dx +
∫ t


(u, ut) dτ + α(t + t)

)

.

Using the Schwarz inequality, we have

(∫

�

uut dx
)

≤ ∥
∥u(t)

∥
∥



∥
∥ut(t)

∥
∥

,

(∫ t


(u, ut) dτ

)

≤
∫ t



∥
∥u(τ )

∥
∥

 dτ

∫ t



∥
∥ut(τ )

∥
∥

 dτ

and

∫

�

u(t)ut(t) dx
∫ t



(
u(τ ), ut(τ )

)
dτ

≤ ∥
∥u(t)

∥
∥



(∫ t



∥
∥ut(τ )

∥
∥

 dτ

) 
 ∥
∥ut(t)

∥
∥



(∫ t



∥
∥u(τ )

∥
∥

 dτ

) 


≤ 

∥
∥u(t)

∥
∥



∫ t



∥
∥ut(τ )

∥
∥

 dτ +


∥
∥ut(t)

∥
∥



∫ t



∥
∥u(τ )

∥
∥

 dτ

and

α(t + t)
∫

�

u(t)ut(t) dx

≤ √
α
√

α(t + s)
∥
∥u(t)

∥
∥



∥
∥ut(t)

∥
∥



≤ 

α
∥
∥u(t)

∥
∥

 +


α(t + t)∥∥ut(t)

∥
∥

.



Jie and Fei Boundary Value Problems  (2015) 2015:96 Page 8 of 10

Similarly, we have

α(t + t)
∫ t



(
u(τ ), ut(τ )

)
dτ ≤ 


α

∫ t



∥
∥u(τ )

∥
∥

 dτ +


α(t + t)

∫ t



∥
∥ut(τ )

∥
∥

 dτ .

The previous inequalities entail G(t) ≥  for every [, T]. Using (.), we get

H(t)H ′′(t) – (δ + )H ′(t) ≥ H(t)L(t), (.)

where

L(t) = –(δ + )
∥
∥ut(t)

∥
∥

 – M
(‖∇u‖


)‖∇u‖



+ 
∫ t


g(t – τ )

∫

�

∇u(τ )∇u(t) dx dτ

+ 
∫

�

f (u)u dx – (δ + )
∫ t



∥
∥ut(τ )

∥
∥

 dτ – (δ + )α

= –(δ + )
∥
∥ut(t)

∥
∥

 – 
(

M
(‖∇u‖


)

–
∫ t


g(τ ) dτ

)

‖∇u‖


+ 
∫

�

f (u)u dx – (δ + )α – (δ + )
∫ t



∥
∥ut(τ )

∥
∥

 dτ

+ 
∫ t


g(t – τ )

∫

�

∇u(t)
(∇u(τ ) – ∇u(t)

)
dx dτ . (.)

Using Young’s inequality, we have

∫ t


g(t – τ )

∫

�

∇u(t)∇(
u(τ ) – u(t)

)
dx dτ

≥ –(δ + )(g ◦ ∇u)(t) –


(δ + )

∫ t


g(τ ) dτ

∥
∥∇u(t)

∥
∥

. (.)

Inserting (.) into (.), we have

L(t) ≥ –(δ + )
∥
∥ut(t)

∥
∥

 – (δ + )(g ◦ ∇u)(t)

– 
(

M
(‖∇u‖


)

–
∫ t


g(τ ) dτ

)

‖∇u‖


+ 
∫

�

f (u)u dx – (δ + )
∫ t



∥
∥ut(τ )

∥
∥

 dτ

–


δ + 

∫ t


g(τ ) dτ‖∇u‖

 – (δ + )α

≥ –(δ + )E(t) + 
(
(δ + )M

(‖∇u‖

)

– M
(‖∇u‖


)‖∇u‖


)

– (δ + )
∫ t



∥
∥ut(τ )

∥
∥

 dτ – 
∫

�

[
(δ + )F(u) – f (u)u

]
dx

–
(

δ +


δ + 

)∫ t


g(τ ) dτ‖∇u‖

 – (δ + )α

≥ –(δ + )E() + 
(
(δ + )M

(‖∇u‖

)

– M
(‖∇u‖


)‖∇u‖


)
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+ δ

∫ t



∥
∥ut(τ )

∥
∥

 dτ – 
∫

�

[
(δ + )F(u) – f (u)u

]
dx

–
(

δ +


δ + 

)∫ t


g(τ ) dτ‖∇u‖

 – (δ + )α.

Using the assumptions (A) and (A), we have

L(t) ≥ –(δ + )E() +
(

δm –
(

δ +


δ + 

)∫ t


g(τ ) dτ

)

‖∇u‖
 – (δ + )α

≥ –(δ + )E() +
(
δm – (δ + )l

)
λ
∥
∥u(t)

∥
∥

 – (δ + )α

≥ –(δ + )E() +
(
δm – (δ + )l

)
λ‖u‖

 – (δ + )α,

where the last inequality follows from Lemma . and the Poincaré inequality. From (.),
we have

(δ + )E() <
(
δm – (δ + )l

)
λ‖u‖

 <
(
δm – (δ + )l

)
λ‖u‖

.

Thus, we can let α satisfy

(δ + )α <
(
δm – (δ + )l

)
λ‖u‖

 – (δ + )E(),

which implies that there exists θ >  (independent of T ) such that

L(t) ≥ θ for t ∈ [, T]. (.)

By (.) and (.), it follows that

H(t)H ′′(t) – (δ + )H ′(t) > .

Moreover, we let t satisfy

αt +
∫

�

uu dx > ,

which means H ′() > . Thus by H ′′(t) >  we see that H(t) and H ′(t) are strictly increasing
on [, T].

Setting y(t) = H(t)–δ , then we have

y′(t) = –δH(t)–(δ+)H ′(t) < 

and

y′′(t) = –δH–δ–(H(t)H ′′(t) – (δ + )H ′(t)) < 

for all t ∈ [, T], which implies that y(t) reaches  in finite time, say as t → T∗. Since T∗ is
independent of the initial choice of T , we may assume that T∗ < T . This tells us that

lim
t→T∗ H(t) = ∞. �
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4 Conclusions
In this paper, we consider the integro-differential equation

utt – M
(‖∇u‖


)
�u +

∫ t


g(t – τ )�u(τ ) dτ + ut = f (u), (x, t) ∈ � × (, T),

with initial and Dirichlet boundary conditions which arises in the dynamics of an exten-
sible string with fading memory. Under suitable assumptions on the relax function g and
the initial data, we establish a blow-up result with arbitrary positive initial energy. The
main tool in proving the blow-up result is the ‘concavity method’ where the basic idea of
the method is to construct a positive defined functional F(t) of the solution by the energy
inequality and show that F–α(t) is a concave function of t.
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